* spot/graph/graph.hh, spot/taalgos/tgba2ta.cc, spot/tl/formula.hh, spot/twaalgos/dot.cc, spot/twaalgos/ltl2tgba_fm.cc, spot/twaalgos/ndfs_result.hxx, spot/twaalgos/powerset.cc, spot/twaalgos/stutter.cc: Here.
482 lines
14 KiB
C++
482 lines
14 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2009-2011, 2013-2018 Laboratoire de Recherche et
|
|
// Développement de l'Epita (LRDE).
|
|
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
// et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "config.h"
|
|
#include <set>
|
|
#include <iterator>
|
|
#include <vector>
|
|
#include <spot/twaalgos/powerset.hh>
|
|
#include <spot/misc/hash.hh>
|
|
#include <spot/twaalgos/sccinfo.hh>
|
|
#include <spot/twaalgos/cycles.hh>
|
|
#include <spot/twaalgos/gtec/gtec.hh>
|
|
#include <spot/twaalgos/product.hh>
|
|
#include <spot/twa/bddprint.hh>
|
|
#include <spot/twaalgos/sccfilter.hh>
|
|
#include <spot/twaalgos/ltl2tgba_fm.hh>
|
|
#include <spot/twaalgos/dualize.hh>
|
|
#include <spot/twaalgos/remfin.hh>
|
|
#include <spot/misc/bitvect.hh>
|
|
#include <spot/misc/bddlt.hh>
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
static power_map::power_state
|
|
bv_to_ps(const bitvect* in)
|
|
{
|
|
power_map::power_state ps;
|
|
unsigned ns = in->size();
|
|
for (unsigned pos = 0; pos < ns; ++pos)
|
|
if (in->get(pos))
|
|
ps.insert(pos);
|
|
return ps;
|
|
}
|
|
|
|
struct bv_hash
|
|
{
|
|
size_t operator()(const bitvect* bv) const noexcept
|
|
{
|
|
return bv->hash();
|
|
}
|
|
};
|
|
|
|
struct bv_equal
|
|
{
|
|
bool operator()(const bitvect* bvl, const bitvect* bvr) const
|
|
{
|
|
return *bvl == *bvr;
|
|
}
|
|
};
|
|
}
|
|
|
|
twa_graph_ptr
|
|
tgba_powerset(const const_twa_graph_ptr& aut, power_map& pm, bool merge)
|
|
{
|
|
{
|
|
typedef std::set<bdd, bdd_less_than> sup_map;
|
|
sup_map sup;
|
|
// Record occurrences of all guards
|
|
for (auto& t: aut->edges())
|
|
sup.emplace(t.cond);
|
|
}
|
|
|
|
unsigned ns = aut->num_states();
|
|
unsigned nap = aut->ap().size();
|
|
|
|
if ((-1UL / ns) >> nap == 0)
|
|
throw std::runtime_error("too many atomic propositions (or states)");
|
|
|
|
// Build a correspondence between conjunctions of APs and unsigned
|
|
// indexes.
|
|
std::vector<bdd> num2bdd;
|
|
num2bdd.reserve(1UL << nap);
|
|
std::map<bdd, unsigned, bdd_less_than> bdd2num;
|
|
bdd all = bddtrue;
|
|
bdd allap = aut->ap_vars();
|
|
while (all != bddfalse)
|
|
{
|
|
bdd one = bdd_satoneset(all, allap, bddfalse);
|
|
all -= one;
|
|
bdd2num.emplace(one, num2bdd.size());
|
|
num2bdd.emplace_back(one);
|
|
}
|
|
|
|
size_t nc = num2bdd.size(); // number of conditions
|
|
assert(nc == (1UL << nap));
|
|
|
|
// An array of bit vectors of size 'ns'. Each original state is
|
|
// represented by 'nc' consecutive bitvectors representing the
|
|
// possible destinations for each condition.
|
|
//
|
|
// src cond
|
|
// 0 !a&!b [...bit vector of size ns...]
|
|
// !a&b [...bit vector of size ns...]
|
|
// a&!b [...bit vector of size ns...]
|
|
// a&b [...bit vector of size ns...]
|
|
// 1 !a&!b [...bit vector of size ns...]
|
|
// !a&b [...bit vector of size ns...]
|
|
// a&!b [...bit vector of size ns...]
|
|
// a&b [...bit vector of size ns...]
|
|
// 2 !a&!b [...bit vector of size ns...]
|
|
// !a&b [...bit vector of size ns...]
|
|
// a&!b [...bit vector of size ns...]
|
|
// a&b [...bit vector of size ns...]
|
|
// ...
|
|
//
|
|
// since there are nc possible "cond" value, ans ns sources, the
|
|
// ns*nc bitvectors of ns bits each can take a lot of space. In
|
|
// issue #302, we had the case of an automaton with ns=8777
|
|
// states, and 8 atomic propositions (nc=256): this large array
|
|
// would require 2.3GB, causing out-of-memory error on small
|
|
// systems.
|
|
//
|
|
// To work around this, we reduce the number of states we store in
|
|
// this array to reduced_ns, which we currently limit to 512
|
|
// (chosen arbitrarily), and use it as a least-recently-used
|
|
// cache. A separate vector of size ns, contains pointer
|
|
// (i.e. iterators) to a list cell that gives an index in this
|
|
// cache. The purpose of the list is to maintain the
|
|
// least-recently-used order.
|
|
typedef std::list<std::pair<unsigned, unsigned>>::const_iterator iter;
|
|
std::list<std::pair<unsigned, unsigned>> lru; // list of (idx in bv, state#)
|
|
std::vector<iter> iters(ns, lru.end());
|
|
const unsigned reduced_ns = std::min(512U, ns);
|
|
auto bv =
|
|
std::unique_ptr<bitvect_array>(make_bitvect_array(ns, reduced_ns * nc));
|
|
|
|
// Get the index of src in bv, filling bv in an LRU-fashion if needed.
|
|
auto index = [&](unsigned src) {
|
|
iter i = iters[src];
|
|
if (i != lru.end())
|
|
{
|
|
// bv has already been filled for this state. Just move it
|
|
// to the front of the LRU list.
|
|
lru.splice(lru.begin(), lru, i);
|
|
return i->first;
|
|
}
|
|
|
|
unsigned idx = lru.size();
|
|
bool reused = false;
|
|
if (idx < reduced_ns)
|
|
{
|
|
lru.emplace_front(idx, src);
|
|
}
|
|
else
|
|
{
|
|
unsigned state;
|
|
std::tie(idx, state) = lru.back();
|
|
iters[state] = lru.end();
|
|
lru.pop_back();
|
|
lru.emplace_front(idx, src);
|
|
reused = true;
|
|
}
|
|
iters[src] = lru.begin();
|
|
|
|
size_t base = idx * nc;
|
|
if (reused)
|
|
for (unsigned i = 0; i < nc; ++i)
|
|
bv->at(base + i).clear_all();
|
|
for (auto& t: aut->out(src))
|
|
{
|
|
bdd all = t.cond;
|
|
while (all != bddfalse)
|
|
{
|
|
bdd one = bdd_satoneset(all, allap, bddfalse);
|
|
all -= one;
|
|
unsigned num = bdd2num[one];
|
|
bv->at(base + num).set(t.dst);
|
|
}
|
|
}
|
|
|
|
assert(idx == lru.begin()->first);
|
|
return idx;
|
|
};
|
|
|
|
typedef power_map::power_state power_state;
|
|
|
|
typedef std::unordered_map<bitvect*, int, bv_hash, bv_equal> power_set;
|
|
power_set seen;
|
|
|
|
std::vector<const bitvect*> toclean;
|
|
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->copy_ap_of(aut);
|
|
|
|
{
|
|
unsigned init_num = aut->get_init_state_number();
|
|
auto bvi = make_bitvect(ns);
|
|
bvi->set(init_num);
|
|
power_state ps{init_num};
|
|
unsigned num = res->new_state();
|
|
res->set_init_state(num);
|
|
seen[bvi] = num;
|
|
assert(pm.map_.size() == num);
|
|
pm.map_.emplace_back(std::move(ps));
|
|
toclean.emplace_back(bvi);
|
|
}
|
|
|
|
// outgoing map
|
|
auto om = std::unique_ptr<bitvect_array>(make_bitvect_array(ns, nc));
|
|
|
|
for (unsigned src_num = 0; src_num < res->num_states(); ++src_num)
|
|
{
|
|
om->clear_all();
|
|
|
|
const power_state& src = pm.states_of(src_num);
|
|
for (auto s: src)
|
|
{
|
|
size_t base = index(s) * nc;
|
|
for (unsigned c = 0; c < nc; ++c)
|
|
om->at(c) |= bv->at(base + c);
|
|
}
|
|
for (unsigned c = 0; c < nc; ++c)
|
|
{
|
|
auto dst = &om->at(c);
|
|
if (dst->is_fully_clear())
|
|
continue;
|
|
auto i = seen.find(dst);
|
|
unsigned dst_num;
|
|
if (i != seen.end())
|
|
{
|
|
dst_num = i->second;
|
|
}
|
|
else
|
|
{
|
|
dst_num = res->new_state();
|
|
auto dst2 = dst->clone();
|
|
seen[dst2] = dst_num;
|
|
toclean.emplace_back(dst2);
|
|
auto ps = bv_to_ps(dst);
|
|
assert(pm.map_.size() == dst_num);
|
|
pm.map_.emplace_back(std::move(ps));
|
|
}
|
|
res->new_edge(src_num, dst_num, num2bdd[c]);
|
|
}
|
|
}
|
|
|
|
for (auto v: toclean)
|
|
delete v;
|
|
if (merge)
|
|
res->merge_edges();
|
|
return res;
|
|
}
|
|
|
|
twa_graph_ptr
|
|
tgba_powerset(const const_twa_graph_ptr& aut)
|
|
{
|
|
power_map pm;
|
|
return tgba_powerset(aut, pm);
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
class fix_scc_acceptance final: protected enumerate_cycles
|
|
{
|
|
public:
|
|
typedef dfs_stack::const_iterator cycle_iter;
|
|
typedef twa_graph_edge_data trans;
|
|
typedef std::set<trans*> edge_set;
|
|
typedef std::vector<edge_set> set_set;
|
|
protected:
|
|
const_twa_graph_ptr ref_;
|
|
power_map& refmap_;
|
|
edge_set reject_; // set of rejecting edges
|
|
set_set accept_; // set of cycles that are accepting
|
|
edge_set all_; // all non rejecting edges
|
|
unsigned threshold_; // maximum count of enumerated cycles
|
|
unsigned cycles_left_; // count of cycles left to explore
|
|
|
|
public:
|
|
fix_scc_acceptance(const scc_info& sm, const_twa_graph_ptr ref,
|
|
power_map& refmap, unsigned threshold)
|
|
: enumerate_cycles(sm), ref_(ref), refmap_(refmap),
|
|
threshold_(threshold)
|
|
{
|
|
}
|
|
|
|
bool fix_scc(const int m)
|
|
{
|
|
reject_.clear();
|
|
accept_.clear();
|
|
cycles_left_ = threshold_;
|
|
run(m);
|
|
|
|
// std::cerr << "SCC #" << m << '\n';
|
|
// std::cerr << "REJECT: ";
|
|
// print_set(std::cerr, reject_) << '\n';
|
|
// std::cerr << "ALL: ";
|
|
// print_set(std::cerr, all_) << '\n';
|
|
// for (set_set::const_iterator j = accept_.begin();
|
|
// j != accept_.end(); ++j)
|
|
// {
|
|
// std::cerr << "ACCEPT: ";
|
|
// print_set(std::cerr, *j) << '\n';
|
|
// }
|
|
|
|
auto acc = aut_->acc().all_sets();
|
|
for (auto i: all_)
|
|
i->acc = acc;
|
|
return threshold_ != 0 && cycles_left_ == 0;
|
|
}
|
|
|
|
bool is_cycle_accepting(cycle_iter begin, edge_set& ts) const
|
|
{
|
|
auto a = std::const_pointer_cast<twa_graph>(aut_);
|
|
|
|
// Build an automaton representing this loop.
|
|
auto loop_a = make_twa_graph(aut_->get_dict());
|
|
int loop_size = std::distance(begin, dfs_.end());
|
|
loop_a->new_states(loop_size);
|
|
int n;
|
|
cycle_iter i;
|
|
for (n = 1, i = begin; n <= loop_size; ++n, ++i)
|
|
{
|
|
trans* t = &a->edge_data(i->succ);
|
|
loop_a->new_edge(n - 1, n % loop_size, t->cond);
|
|
if (reject_.find(t) == reject_.end())
|
|
ts.insert(t);
|
|
}
|
|
assert(i == dfs_.end());
|
|
|
|
unsigned loop_a_init = loop_a->get_init_state_number();
|
|
assert(loop_a_init == 0);
|
|
|
|
// Check if the loop is accepting in the original automaton.
|
|
bool accepting = false;
|
|
|
|
// Iterate on each original state corresponding to the
|
|
// start of the loop in the determinized automaton.
|
|
for (auto s: refmap_.states_of(begin->s))
|
|
{
|
|
// Check the product between LOOP_A, and ORIG_A starting
|
|
// in S.
|
|
if (!product(loop_a, ref_, loop_a_init, s)->is_empty())
|
|
{
|
|
accepting = true;
|
|
break;
|
|
}
|
|
}
|
|
return accepting;
|
|
}
|
|
|
|
std::ostream&
|
|
print_set(std::ostream& o, const edge_set& s) const
|
|
{
|
|
o << "{ ";
|
|
for (auto i: s)
|
|
o << i << ' ';
|
|
o << '}';
|
|
return o;
|
|
}
|
|
|
|
virtual bool
|
|
cycle_found(unsigned start) override
|
|
{
|
|
cycle_iter i = dfs_.begin();
|
|
while (i->s != start)
|
|
++i;
|
|
edge_set ts;
|
|
bool is_acc = is_cycle_accepting(i, ts);
|
|
do
|
|
++i;
|
|
while (i != dfs_.end());
|
|
if (is_acc)
|
|
{
|
|
accept_.emplace_back(ts);
|
|
all_.insert(ts.begin(), ts.end());
|
|
}
|
|
else
|
|
{
|
|
for (auto t: ts)
|
|
{
|
|
reject_.insert(t);
|
|
for (auto& j: accept_)
|
|
j.erase(t);
|
|
all_.erase(t);
|
|
}
|
|
}
|
|
|
|
// Abort this algorithm if we have seen too much cycles, i.e.,
|
|
// when cycle_left_ *reaches* 0. (If cycle_left_ == 0, that
|
|
// means we had no limit.)
|
|
return (cycles_left_ == 0) || --cycles_left_;
|
|
}
|
|
};
|
|
|
|
static bool
|
|
fix_dba_acceptance(twa_graph_ptr det,
|
|
const_twa_graph_ptr ref, power_map& refmap,
|
|
unsigned threshold)
|
|
{
|
|
det->copy_acceptance_of(ref);
|
|
|
|
scc_info sm(det, scc_info_options::NONE);
|
|
|
|
unsigned scc_count = sm.scc_count();
|
|
|
|
fix_scc_acceptance fsa(sm, ref, refmap, threshold);
|
|
|
|
for (unsigned m = 0; m < scc_count; ++m)
|
|
if (!sm.is_trivial(m))
|
|
if (fsa.fix_scc(m))
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
twa_graph_ptr
|
|
tba_determinize(const const_twa_graph_ptr& aut,
|
|
unsigned threshold_states, unsigned threshold_cycles)
|
|
{
|
|
power_map pm;
|
|
// Do not merge edges in the deterministic automaton. If we
|
|
// add two self-loops labeled by "a" and "!a", we do not want
|
|
// these to be merged as "1" before the acceptance has been fixed.
|
|
auto det = tgba_powerset(aut, pm, false);
|
|
|
|
if ((threshold_states > 0)
|
|
&& (pm.map_.size() > aut->num_states() * threshold_states))
|
|
return nullptr;
|
|
if (fix_dba_acceptance(det, aut, pm, threshold_cycles))
|
|
return nullptr;
|
|
det->merge_edges();
|
|
return det;
|
|
}
|
|
|
|
twa_graph_ptr
|
|
tba_determinize_check(const twa_graph_ptr& aut,
|
|
unsigned threshold_states,
|
|
unsigned threshold_cycles,
|
|
formula f,
|
|
const_twa_graph_ptr neg_aut)
|
|
{
|
|
if (f == nullptr && neg_aut == nullptr)
|
|
return nullptr;
|
|
if (aut->num_sets() > 1)
|
|
return nullptr;
|
|
|
|
auto det = tba_determinize(aut, threshold_states, threshold_cycles);
|
|
|
|
if (!det)
|
|
return nullptr;
|
|
|
|
if (neg_aut == nullptr)
|
|
{
|
|
neg_aut = ltl_to_tgba_fm(formula::Not(f), aut->get_dict());
|
|
// Remove useless SCCs.
|
|
neg_aut = scc_filter(neg_aut, true);
|
|
}
|
|
|
|
if (product(det, neg_aut)->is_empty())
|
|
// Complement the DBA.
|
|
if (product(aut, remove_fin(dualize(det)))->is_empty())
|
|
// Finally, we are now sure that it was safe
|
|
// to determinize the automaton.
|
|
return det;
|
|
|
|
return aut;
|
|
}
|
|
}
|