* src/ta/taexplicit.cc, src/ta/taexplicit.hh: Bug fix TGTA * src/taalgos/minimize.cc,src/taalgos/minimize.hh: TGTA minimization * src/taalgos/tgba2ta.cc: add a TGTA minimization command (uses -Rm) * src/taalgos/minimize.cc, src/taalgos/minimize.hh (minimize_tgbta): New function. * src/taalgos/tgba2ta.cc: Set livelock-accepting flag of TGTA states to false so they can be merged with other states. * src/ta/taexplicit.cc (hash): Use id. * src/ta/taexplicit.hh: Cosmetics.
606 lines
20 KiB
C++
606 lines
20 KiB
C++
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
|
|
// de l Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
//#define TRACE
|
|
|
|
#include <iostream>
|
|
#ifdef TRACE
|
|
#define trace std::clog
|
|
#else
|
|
#define trace while (0) std::clog
|
|
#endif
|
|
|
|
#include "ltlast/atomic_prop.hh"
|
|
#include "ltlast/constant.hh"
|
|
#include "tgba/formula2bdd.hh"
|
|
#include "misc/bddop.hh"
|
|
#include <cassert>
|
|
#include "ltlvisit/tostring.hh"
|
|
#include <iostream>
|
|
#include "tgba/bddprint.hh"
|
|
#include "tgbaalgos/gtec/nsheap.hh"
|
|
#include <stack>
|
|
#include "tgba2ta.hh"
|
|
#include "taalgos/statessetbuilder.hh"
|
|
#include "ta/tgbtaexplicit.hh"
|
|
|
|
using namespace std;
|
|
|
|
namespace spot
|
|
{
|
|
|
|
ta_explicit*
|
|
build_ta(ta_explicit* ta, bdd atomic_propositions_set_,
|
|
bool artificial_initial_state_mode,
|
|
bool artificial_livelock_accepting_state_mode, bool degeneralized)
|
|
{
|
|
|
|
std::stack<state_ta_explicit*> todo;
|
|
const tgba* tgba_ = ta->get_tgba();
|
|
|
|
// build Initial states set:
|
|
state* tgba_init_state = tgba_->get_init_state();
|
|
|
|
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
|
|
|
|
bdd satone_tgba_condition;
|
|
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
|
atomic_propositions_set_, bddtrue)) != bddfalse)
|
|
{
|
|
tgba_condition -= satone_tgba_condition;
|
|
state_ta_explicit* init_state;
|
|
if (degeneralized)
|
|
{
|
|
init_state = new state_ta_explicit(tgba_init_state->clone(),
|
|
satone_tgba_condition, true,
|
|
((tgba_sba_proxy*) tgba_)->state_is_accepting(tgba_init_state));
|
|
}
|
|
else
|
|
{
|
|
init_state = new state_ta_explicit(tgba_init_state->clone(),
|
|
satone_tgba_condition, true, false);
|
|
}
|
|
|
|
state_ta_explicit* s = ta->add_state(init_state);
|
|
assert(s == init_state);
|
|
ta->add_to_initial_states_set(s);
|
|
|
|
todo.push(init_state);
|
|
}
|
|
tgba_init_state->destroy();
|
|
|
|
while (!todo.empty())
|
|
{
|
|
state_ta_explicit* source = todo.top();
|
|
todo.pop();
|
|
|
|
tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter(
|
|
source->get_tgba_state());
|
|
for (tgba_succ_it->first(); !tgba_succ_it->done(); tgba_succ_it->next())
|
|
{
|
|
const state* tgba_state = tgba_succ_it->current_state();
|
|
bdd tgba_condition = tgba_succ_it->current_condition();
|
|
bdd tgba_acceptance_conditions =
|
|
tgba_succ_it->current_acceptance_conditions();
|
|
bdd satone_tgba_condition;
|
|
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
|
atomic_propositions_set_, bddtrue)) != bddfalse)
|
|
{
|
|
|
|
tgba_condition -= satone_tgba_condition;
|
|
|
|
bdd all_props = bddtrue;
|
|
bdd dest_condition;
|
|
if (satone_tgba_condition == source->get_tgba_condition())
|
|
while ((dest_condition = bdd_satoneset(all_props,
|
|
atomic_propositions_set_, bddtrue)) != bddfalse)
|
|
{
|
|
all_props -= dest_condition;
|
|
state_ta_explicit* new_dest;
|
|
if (degeneralized)
|
|
{
|
|
|
|
new_dest = new state_ta_explicit(tgba_state->clone(),
|
|
dest_condition, false,
|
|
((tgba_sba_proxy*) tgba_)->state_is_accepting(
|
|
tgba_state));
|
|
|
|
}
|
|
else
|
|
{
|
|
new_dest = new state_ta_explicit(tgba_state->clone(),
|
|
dest_condition, false, false);
|
|
|
|
}
|
|
state_ta_explicit* dest = ta->add_state(new_dest);
|
|
|
|
if (dest != new_dest)
|
|
{
|
|
// the state dest already exists in the testing automata
|
|
new_dest->get_tgba_state()->destroy();
|
|
delete new_dest;
|
|
}
|
|
else
|
|
{
|
|
todo.push(dest);
|
|
}
|
|
|
|
ta->create_transition(source, bdd_setxor(
|
|
source->get_tgba_condition(),
|
|
dest->get_tgba_condition()),
|
|
tgba_acceptance_conditions, dest);
|
|
|
|
}
|
|
|
|
}
|
|
tgba_state->destroy();
|
|
}
|
|
delete tgba_succ_it;
|
|
|
|
}
|
|
|
|
compute_livelock_acceptance_states(ta);
|
|
if (artificial_livelock_accepting_state_mode)
|
|
{
|
|
|
|
state_ta_explicit* artificial_livelock_accepting_state =
|
|
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddtrue,
|
|
false, false, true, 0);
|
|
|
|
add_artificial_livelock_accepting_state(ta,
|
|
artificial_livelock_accepting_state);
|
|
|
|
}
|
|
|
|
return ta;
|
|
|
|
}
|
|
|
|
ta_explicit*
|
|
tgba_to_ta(const tgba* tgba_, bdd atomic_propositions_set_,
|
|
bool artificial_initial_state_mode,
|
|
bool artificial_livelock_accepting_state_mode, bool degeneralized)
|
|
{
|
|
ta_explicit* ta;
|
|
|
|
state* tgba_init_state = tgba_->get_init_state();
|
|
if (artificial_initial_state_mode)
|
|
{
|
|
state_ta_explicit* ta_init_state = new state_ta_explicit(
|
|
tgba_init_state->clone(), bddfalse, true);
|
|
|
|
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions(),
|
|
ta_init_state);
|
|
}
|
|
else
|
|
{
|
|
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions());
|
|
}
|
|
tgba_init_state->destroy();
|
|
|
|
// build ta automata:
|
|
build_ta(ta, atomic_propositions_set_, artificial_initial_state_mode,
|
|
artificial_livelock_accepting_state_mode, degeneralized);
|
|
return ta;
|
|
}
|
|
|
|
void
|
|
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
|
|
state_ta_explicit* artificial_livelock_accepting_state)
|
|
{
|
|
|
|
state_ta_explicit* artificial_livelock_accepting_state_added =
|
|
testing_automata->add_state(artificial_livelock_accepting_state);
|
|
|
|
// unique artificial_livelock_accepting_state
|
|
assert(artificial_livelock_accepting_state_added
|
|
== artificial_livelock_accepting_state);
|
|
|
|
ta::states_set_t states_set = testing_automata->get_states_set();
|
|
ta::states_set_t::iterator it;
|
|
|
|
std::set<bdd, bdd_less_than>* conditions_to_livelock_accepting_states =
|
|
new std::set<bdd, bdd_less_than>;
|
|
|
|
for (it = states_set.begin(); it != states_set.end(); it++)
|
|
{
|
|
|
|
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
|
|
|
|
conditions_to_livelock_accepting_states->clear();
|
|
|
|
state_ta_explicit::transitions* trans = source->get_transitions();
|
|
state_ta_explicit::transitions::iterator it_trans;
|
|
|
|
if (trans != 0)
|
|
for (it_trans = trans->begin(); it_trans != trans->end();)
|
|
{
|
|
state_ta_explicit* dest = (*it_trans)->dest;
|
|
|
|
state_ta_explicit::transitions* dest_trans =
|
|
(dest)->get_transitions();
|
|
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
|
|
|
|
//TODO TA++
|
|
if (dest->is_livelock_accepting_state()
|
|
&& (!dest->is_accepting_state() || dest_trans_empty))
|
|
{
|
|
conditions_to_livelock_accepting_states->insert(
|
|
(*it_trans)->condition);
|
|
|
|
}
|
|
|
|
//remove hole successors states
|
|
|
|
if (dest_trans_empty)
|
|
{
|
|
source->get_transitions((*it_trans)->condition)->remove(
|
|
*it_trans);
|
|
delete (*it_trans);
|
|
it_trans = trans->erase(it_trans);
|
|
}
|
|
else
|
|
{
|
|
it_trans++;
|
|
}
|
|
}
|
|
|
|
if (conditions_to_livelock_accepting_states != 0)
|
|
{
|
|
std::set<bdd, bdd_less_than>::iterator it_conditions;
|
|
for (it_conditions
|
|
= conditions_to_livelock_accepting_states->begin(); it_conditions
|
|
!= conditions_to_livelock_accepting_states->end(); it_conditions++)
|
|
{
|
|
|
|
testing_automata->create_transition(source, (*it_conditions),
|
|
bddfalse, artificial_livelock_accepting_state);
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
delete conditions_to_livelock_accepting_states;
|
|
|
|
}
|
|
|
|
namespace
|
|
{
|
|
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
|
|
}
|
|
|
|
void
|
|
compute_livelock_acceptance_states(ta_explicit* testing_automata)
|
|
{
|
|
// We use five main data in this algorithm:
|
|
// * sscc: a stack of strongly stuttering-connected components (SSCC)
|
|
scc_stack_ta sscc;
|
|
|
|
// * arc, a stack of acceptance conditions between each of these SCC,
|
|
std::stack<bdd> arc;
|
|
|
|
// * h: a hash of all visited nodes, with their order,
|
|
// (it is called "Hash" in Couvreur's paper)
|
|
numbered_state_heap* h =
|
|
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
|
|
|
// * num: the number of visited nodes. Used to set the order of each
|
|
// visited node,
|
|
int num = 0;
|
|
|
|
// * todo: the depth-first search stack. This holds pairs of the
|
|
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
|
|
// over the successors of STATE. In our use, ITERATOR should
|
|
// always be freed when TODO is popped, but STATE should not because
|
|
// it is also used as a key in H.
|
|
std::stack<pair_state_iter> todo;
|
|
|
|
// * init: the set of the depth-first search initial states
|
|
std::stack<state*> init_set;
|
|
|
|
ta::states_set_t::const_iterator it;
|
|
ta::states_set_t init_states = testing_automata->get_initial_states_set();
|
|
for (it = init_states.begin(); it != init_states.end(); it++)
|
|
{
|
|
state* init_state = (*it);
|
|
init_set.push(init_state);
|
|
|
|
}
|
|
|
|
while (!init_set.empty())
|
|
{
|
|
// Setup depth-first search from initial states.
|
|
{
|
|
state_ta_explicit* init =
|
|
down_cast<state_ta_explicit*> (init_set.top());
|
|
init_set.pop();
|
|
state_ta_explicit* init_clone = init;
|
|
numbered_state_heap::state_index_p h_init = h->find(init_clone);
|
|
|
|
if (h_init.first)
|
|
continue;
|
|
|
|
h->insert(init_clone, ++num);
|
|
sscc.push(num);
|
|
arc.push(bddfalse);
|
|
sscc.top().is_accepting
|
|
= testing_automata->is_accepting_state(init);
|
|
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
|
|
iter->first();
|
|
todo.push(pair_state_iter(init, iter));
|
|
|
|
}
|
|
|
|
while (!todo.empty())
|
|
{
|
|
|
|
state* curr = todo.top().first;
|
|
|
|
numbered_state_heap::state_index_p spi = h->find(curr);
|
|
// If we have reached a dead component, ignore it.
|
|
if (*spi.second == -1)
|
|
{
|
|
todo.pop();
|
|
continue;
|
|
}
|
|
|
|
// We are looking at the next successor in SUCC.
|
|
tgba_succ_iterator* succ = todo.top().second;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (succ->done())
|
|
{
|
|
// We have explored all successors of state CURR.
|
|
|
|
// Backtrack TODO.
|
|
todo.pop();
|
|
|
|
// fill rem with any component removed,
|
|
numbered_state_heap::state_index_p spi =
|
|
h->index(curr);
|
|
assert(spi.first);
|
|
|
|
sscc.rem().push_front(curr);
|
|
|
|
// When backtracking the root of an SSCC, we must also
|
|
// remove that SSCC from the ROOT stacks. We must
|
|
// discard from H all reachable states from this SSCC.
|
|
assert(!sscc.empty());
|
|
if (sscc.top().index == *spi.second)
|
|
{
|
|
// removing states
|
|
std::list<state*>::iterator i;
|
|
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
|
|
&& ((sscc.top().is_accepting) || (sscc.top().condition
|
|
== testing_automata->all_acceptance_conditions()));
|
|
|
|
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
|
{
|
|
numbered_state_heap::state_index_p spi = h->index(
|
|
(*i));
|
|
assert(spi.first->compare(*i) == 0);
|
|
assert(*spi.second != -1);
|
|
*spi.second = -1;
|
|
if (is_livelock_accepting_sscc)
|
|
{//if it is an accepting sscc
|
|
//add the state to G (=the livelock-accepting states set)
|
|
|
|
state_ta_explicit * livelock_accepting_state =
|
|
down_cast<state_ta_explicit*> (*i);
|
|
|
|
livelock_accepting_state->set_livelock_accepting_state(
|
|
true);
|
|
}
|
|
|
|
}
|
|
|
|
assert(!arc.empty());
|
|
sscc.pop();
|
|
arc.pop();
|
|
|
|
}
|
|
|
|
// automata reduction
|
|
testing_automata->delete_stuttering_and_hole_successors(curr);
|
|
|
|
delete succ;
|
|
// Do not delete CURR: it is a key in H.
|
|
continue;
|
|
}
|
|
|
|
// Fetch the values destination state we are interested in...
|
|
state* dest = succ->current_state();
|
|
|
|
bdd acc_cond = succ->current_acceptance_conditions();
|
|
// ... and point the iterator to the next successor, for
|
|
// the next iteration.
|
|
succ->next();
|
|
// We do not need SUCC from now on.
|
|
|
|
|
|
// Are we going to a new state through a stuttering transition?
|
|
bool is_stuttering_transition =
|
|
testing_automata->get_state_condition(curr)
|
|
== testing_automata->get_state_condition(dest);
|
|
state* dest_clone = dest;
|
|
spi = h->find(dest_clone);
|
|
|
|
// Is this a new state?
|
|
if (!spi.first)
|
|
{
|
|
if (!is_stuttering_transition)
|
|
{
|
|
init_set.push(dest);
|
|
dest_clone->destroy();
|
|
continue;
|
|
}
|
|
|
|
// Number it, stack it, and register its successors
|
|
// for later processing.
|
|
h->insert(dest_clone, ++num);
|
|
sscc.push(num);
|
|
arc.push(acc_cond);
|
|
sscc.top().is_accepting = testing_automata->is_accepting_state(
|
|
dest);
|
|
|
|
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
|
|
iter->first();
|
|
todo.push(pair_state_iter(dest, iter));
|
|
continue;
|
|
}
|
|
|
|
// If we have reached a dead component, ignore it.
|
|
if (*spi.second == -1)
|
|
continue;
|
|
|
|
trace << "***compute_livelock_acceptance_states: CYCLE***"
|
|
<< std::endl;
|
|
|
|
if (!curr->compare(dest))
|
|
{
|
|
state_ta_explicit * self_loop_state =
|
|
down_cast<state_ta_explicit*> (curr);
|
|
assert(self_loop_state);
|
|
|
|
if (testing_automata->is_accepting_state(self_loop_state)
|
|
|| (acc_cond
|
|
== testing_automata->all_acceptance_conditions()))
|
|
self_loop_state->set_livelock_accepting_state(true);
|
|
trace
|
|
<< "***compute_livelock_acceptance_states: CYCLE: self_loop_state***"
|
|
<< std::endl;
|
|
|
|
}
|
|
|
|
// Now this is the most interesting case. We have reached a
|
|
// state S1 which is already part of a non-dead SSCC. Any such
|
|
// non-dead SSCC has necessarily been crossed by our path to
|
|
// this state: there is a state S2 in our path which belongs
|
|
// to this SSCC too. We are going to merge all states between
|
|
// this S1 and S2 into this SSCC.
|
|
//
|
|
// This merge is easy to do because the order of the SSCC in
|
|
// ROOT is ascending: we just have to merge all SSCCs from the
|
|
// top of ROOT that have an index greater to the one of
|
|
// the SSCC of S2 (called the "threshold").
|
|
int threshold = *spi.second;
|
|
std::list<state*> rem;
|
|
bool acc = false;
|
|
|
|
while (threshold < sscc.top().index)
|
|
{
|
|
assert(!sscc.empty());
|
|
assert(!arc.empty());
|
|
acc |= sscc.top().is_accepting;
|
|
acc_cond |= sscc.top().condition;
|
|
acc_cond |= arc.top();
|
|
rem.splice(rem.end(), sscc.rem());
|
|
sscc.pop();
|
|
arc.pop();
|
|
}
|
|
|
|
// Note that we do not always have
|
|
// threshold == sscc.top().index
|
|
// after this loop, the SSCC whose index is threshold might have
|
|
// been merged with a lower SSCC.
|
|
|
|
// Accumulate all acceptance conditions into the merged SSCC.
|
|
sscc.top().is_accepting |= acc;
|
|
sscc.top().condition |= acc_cond;
|
|
|
|
sscc.rem().splice(sscc.rem().end(), rem);
|
|
|
|
}
|
|
|
|
}
|
|
delete h;
|
|
|
|
}
|
|
|
|
tgbta_explicit*
|
|
tgba_to_tgbta(const tgba* tgba_, bdd atomic_propositions_set_)
|
|
{
|
|
|
|
state* tgba_init_state = tgba_->get_init_state();
|
|
state_ta_explicit* ta_init_state = new state_ta_explicit(
|
|
tgba_init_state->clone(), bddfalse, true);
|
|
tgba_init_state->destroy();
|
|
|
|
tgbta_explicit* tgbta = new spot::tgbta_explicit(tgba_,
|
|
tgba_->all_acceptance_conditions(), ta_init_state);
|
|
|
|
// build ta automata:
|
|
build_ta(tgbta, atomic_propositions_set_, true, true, false);
|
|
|
|
trace << "***tgba_to_tgbta: POST build_ta***" << std::endl;
|
|
|
|
// adapt a ta automata to build tgbta automata :
|
|
ta::states_set_t states_set = tgbta->get_states_set();
|
|
ta::states_set_t::iterator it;
|
|
tgba_succ_iterator* initial_states_iter = tgbta->succ_iter(
|
|
tgbta->get_artificial_initial_state());
|
|
initial_states_iter->first();
|
|
if (initial_states_iter->done())
|
|
return tgbta;
|
|
bdd first_state_condition = (initial_states_iter)->current_condition();
|
|
delete initial_states_iter;
|
|
|
|
bdd bdd_stutering_transition = bdd_setxor(first_state_condition,
|
|
first_state_condition);
|
|
|
|
for (it = states_set.begin(); it != states_set.end(); it++)
|
|
{
|
|
|
|
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
|
|
|
|
state_ta_explicit::transitions* trans = state->get_transitions();
|
|
if (state->is_livelock_accepting_state())
|
|
{
|
|
|
|
bool trans_empty = (trans == 0 || trans->empty());
|
|
if (trans_empty)
|
|
{
|
|
trace
|
|
<< "***tgba_to_tgbta: PRE if (state->is_livelock_accepting_state()) ... create_transition ***"
|
|
<< std::endl;
|
|
tgbta->create_transition(state, bdd_stutering_transition,
|
|
tgbta->all_acceptance_conditions(), state);
|
|
trace
|
|
<< "***tgba_to_tgbta: POST if (state->is_livelock_accepting_state()) ... create_transition ***"
|
|
<< std::endl;
|
|
|
|
} else {
|
|
state->set_livelock_accepting_state(false);
|
|
}
|
|
}
|
|
|
|
if (state->compare(tgbta->get_artificial_initial_state()))
|
|
tgbta->create_transition(state, bdd_stutering_transition, bddfalse,
|
|
state);
|
|
|
|
trace << "***tgba_to_tgbta: POST create_transition ***" << std::endl;
|
|
|
|
}
|
|
|
|
return tgbta;
|
|
|
|
}
|
|
|
|
}
|