spot/src/tgbaalgos/ltl2tgba_fm.cc
Alexandre Duret-Lutz f11df7679a * src/tgbaalgos/ltl2tgba_fm.cc: Add a superfluous return to pacify
some GCC version.  Report from Denis Poitrenaud.
2004-05-04 11:22:06 +00:00

636 lines
17 KiB
C++

// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "misc/hash.hh"
#include "misc/bddalloc.hh"
#include "misc/bddlt.hh"
#include "misc/minato.hh"
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "ltlvisit/tostring.hh"
#include <cassert>
#include "tgba/tgbabddconcretefactory.hh"
#include "ltl2tgba_fm.hh"
namespace spot
{
using namespace ltl;
namespace
{
// Helper dictionary. We represent formulae using BDDs to
// simplify them, and then translate BDDs back into formulae.
//
// The name of the variables are inspired from Couvreur's FM paper.
// "a" variables are promises (written "a" in the paper)
// "next" variables are X's operands (the "r_X" variables from the paper)
// "var" variables are atomic propositions.
class translate_dict
{
public:
translate_dict(bdd_dict* dict)
: dict(dict),
a_set(bddtrue),
var_set(bddtrue),
next_set(bddtrue)
{
}
~translate_dict()
{
fv_map::iterator i;
for (i = next_map.begin(); i != next_map.end(); ++i)
destroy(i->first);
dict->unregister_all_my_variables(this);
}
bdd_dict* dict;
/// Formula-to-BDD-variable maps.
typedef Sgi::hash_map<const formula*, int,
ptr_hash<formula> > fv_map;
/// BDD-variable-to-formula maps.
typedef Sgi::hash_map<int, const formula*> vf_map;
fv_map next_map; ///< Maps "Next" variables to BDD variables
vf_map next_formula_map; ///< Maps BDD variables to "Next" variables
bdd a_set;
bdd var_set;
bdd next_set;
int
register_proposition(const formula* f)
{
int num = dict->register_proposition(f, this);
var_set &= bdd_ithvar(num);
return num;
}
int
register_a_variable(const formula* f)
{
int num = dict->register_acceptance_variable(f, this);
a_set &= bdd_ithvar(num);
return num;
}
int
register_next_variable(const formula* f)
{
int num;
// Do not build a Next variable that already exists.
fv_map::iterator sii = next_map.find(f);
if (sii != next_map.end())
{
num = sii->second;
}
else
{
f = clone(f);
num = dict->register_anonymous_variables(1, this);
next_map[f] = num;
next_formula_map[num] = f;
}
next_set &= bdd_ithvar(num);
return num;
}
std::ostream&
dump(std::ostream& os) const
{
fv_map::const_iterator fi;
os << "Next Variables:" << std::endl;
for (fi = next_map.begin(); fi != next_map.end(); ++fi)
{
os << " " << fi->second << ": Next[";
to_string(fi->first, os) << "]" << std::endl;
}
os << "Shared Dict:" << std::endl;
dict->dump(os);
return os;
}
formula*
var_to_formula(int var) const
{
vf_map::const_iterator isi = next_formula_map.find(var);
if (isi != next_formula_map.end())
return clone(isi->second);
isi = dict->acc_formula_map.find(var);
if (isi != dict->acc_formula_map.end())
return clone(isi->second);
isi = dict->var_formula_map.find(var);
if (isi != dict->var_formula_map.end())
return clone(isi->second);
assert(0);
// Never reached, but some GCC versions complain about
// a missing return otherwise.
return 0;
}
formula*
conj_bdd_to_formula(bdd b)
{
if (b == bddfalse)
return constant::false_instance();
multop::vec* v = new multop::vec;
while (b != bddtrue)
{
int var = bdd_var(b);
formula* res = var_to_formula(var);
bdd high = bdd_high(b);
if (high == bddfalse)
{
res = unop::instance(unop::Not, res);
b = bdd_low(b);
}
else
{
assert(bdd_low(b) == bddfalse);
b = high;
}
assert(b != bddfalse);
v->push_back(res);
}
return multop::instance(multop::And, v);
}
const formula*
bdd_to_formula(bdd f)
{
if (f == bddfalse)
return constant::false_instance();
multop::vec* v = new multop::vec;
minato_isop isop(f);
bdd cube;
while ((cube = isop.next()) != bddfalse)
v->push_back(conj_bdd_to_formula(cube));
return multop::instance(multop::Or, v);
}
void
conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t)
{
assert(b != bddfalse);
while (b != bddtrue)
{
int var = bdd_var(b);
bdd high = bdd_high(b);
if (high == bddfalse)
{
// Simply ignore negated acceptance variables.
b = bdd_low(b);
}
else
{
formula* ac = var_to_formula(var);
if (! a->has_acceptance_condition(ac))
a->declare_acceptance_condition(clone(ac));
a->add_acceptance_condition(t, ac);
b = high;
}
assert(b != bddfalse);
}
}
};
// The rewrite rules used here are adapted from Jean-Michel
// Couvreur's FM paper.
class ltl_trad_visitor: public const_visitor
{
public:
ltl_trad_visitor(translate_dict& dict)
: dict_(dict)
{
}
virtual
~ltl_trad_visitor()
{
}
bdd result() const
{
return res_;
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(dict_.register_proposition(node));
}
void
visit(const constant* node)
{
switch (node->val())
{
case constant::True:
res_ = bddtrue;
return;
case constant::False:
res_ = bddfalse;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* node)
{
switch (node->op())
{
case unop::F:
{
// r(Fy) = r(y) + a(y)r(XFy)
const formula* child = node->child();
bdd y = recurse(child);
int a = dict_.register_a_variable(child);
int x = dict_.register_next_variable(node);
res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
return;
}
case unop::G:
{
// The paper suggests that we optimize GFy
// as
// r(GFy) = (r(y) + a(y))r(XGFy)
// instead of
// r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
// but this is just a particular case
// of the "merge all states with the same
// symbolic rewriting" optimization we do later.
// (r(Fy).r(GFy) and r(GFy) have the same symbolic
// rewriting.) Let's keep things simple here.
// r(Gy) = r(y)r(XGy)
const formula* child = node->child();
int x = dict_.register_next_variable(node);
bdd y = recurse(child);
res_ = y & bdd_ithvar(x);
return;
}
case unop::Not:
{
// r(!y) = !r(y)
res_ = bdd_not(recurse(node->child()));
return;
}
case unop::X:
{
// r(Xy) = Next[y]
int x = dict_.register_next_variable(node->child());
res_ = bdd_ithvar(x);
return;
}
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* node)
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
switch (node->op())
{
// r(f1 logical-op f2) = r(f1) logical-op r(f2)
case binop::Xor:
res_ = bdd_apply(f1, f2, bddop_xor);
return;
case binop::Implies:
res_ = bdd_apply(f1, f2, bddop_imp);
return;
case binop::Equiv:
res_ = bdd_apply(f1, f2, bddop_biimp);
return;
case binop::U:
{
// r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
int a = dict_.register_a_variable(node->second());
int x = dict_.register_next_variable(node);
res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
return;
}
case binop::R:
{
// r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
int x = dict_.register_next_variable(node);
res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
return;
}
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* node)
{
int op = -1;
switch (node->op())
{
case multop::And:
op = bddop_and;
res_ = bddtrue;
break;
case multop::Or:
op = bddop_or;
res_ = bddfalse;
break;
}
assert(op != -1);
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
{
res_ = bdd_apply(res_, recurse(node->nth(n)), op);
}
}
bdd
recurse(const formula* f)
{
ltl_trad_visitor v(dict_);
f->accept(v);
return v.result();
}
private:
translate_dict& dict_;
bdd res_;
};
}
tgba_explicit*
ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
bool exprop, bool symb_merge)
{
// Normalize the formula. We want all the negations on
// the atomic propositions. We also suppress logic
// abbreviations such as <=>, =>, or XOR, since they
// would involve negations at the BDD level.
formula* f1 = unabbreviate_logic(f);
formula* f2 = negative_normal_form(f1);
destroy(f1);
std::set<const formula*> formulae_seen;
std::set<const formula*> formulae_to_translate;
// Map a representation of successors to a canonical formula.
// We do this because many formulae (such as `aR(bRc)' and
// `aR(bRc).(bRc)') are equivalent, and are trivially identified
// by looking at the set of successors.
typedef std::map<bdd, const formula*, bdd_less_than> succ_to_formula;
succ_to_formula canonical_succ;
translate_dict d(dict);
ltl_trad_visitor v(d);
formulae_seen.insert(f2);
formulae_to_translate.insert(f2);
tgba_explicit* a = new tgba_explicit(dict);
a->set_init_state(to_string(f2));
while (!formulae_to_translate.empty())
{
// Pick one formula.
const formula* f = *formulae_to_translate.begin();
formulae_to_translate.erase(formulae_to_translate.begin());
// Translate it into a BDD to simplify it.
// FIXME: Currently the same formula can be converted into a
// BDD twice. Once in the symb_merge block below, and then
// once here.
f->accept(v);
bdd res = v.result();
succ_to_formula::iterator cs = canonical_succ.find(res);
if (cs == canonical_succ.end())
canonical_succ[res] = clone(f);
std::string now = to_string(f);
// We used to factor only Next and A variables while computing
// prime implicants, with
// minato_isop isop(res, d.next_set & d.a_set);
// in order to obtain transitions with formulae of atomic
// proposition directly, but unfortunately this led to strange
// factorizations. For instance f U g was translated as
// r(f U g) = g + a(g).r(X(f U g)).(f + g)
// instead of just
// r(f U g) = g + a(g).r(X(f U g)).f
// Of course both formulae are logically equivalent, but the
// latter is "more deterministic" than the former, so it should
// be preferred.
//
// Therefore we now factor all variables. This may lead to more
// transitions than necessary (e.g., r(f + g) = f + g will be
// coded as two transitions), but we later merge all transitions
// with same source/destination and acceptance conditions. This
// is the goal of the `dests' hash.
//
// Note that this is still not optimal. For instance it is
// better to encode `f U g' as
// r(f U g) = g + a(g).r(X(f U g)).f.!g
// because that leads to a deterministic automaton. In order
// to handle this, we take the conditions of any transition
// going to true (it's `g' here), and remove it from the other
// transitions.
//
// In `exprop' mode, considering all possible combinations of
// outgoing propositions generalizes the above trick.
typedef std::map<bdd, bdd, bdd_less_than> prom_map;
typedef Sgi::hash_map<const formula*, prom_map, ptr_hash<formula> >
dest_map;
dest_map dests;
// Compute all outgoing arcs.
// If EXPROP is set, we will refine the symbolic
// representation of the successors for all combinations of
// the atomic properties involved in the formula.
// VAR_SET is the set of these properties.
bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
// ALL_PROPS is the combinations we have yet to consider.
// We used to start with `all_props = bddtrue', but it is
// more efficient to start with the set of all satisfiable
// variables combinations.
bdd all_props = bdd_existcomp(res, d.var_set);
while (all_props != bddfalse)
{
bdd one_prop_set =
exprop ? bdd_satoneset(all_props, var_set, bddtrue) : bddtrue;
all_props -= one_prop_set;
minato_isop isop(res & one_prop_set);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
const formula* dest =
d.conj_bdd_to_formula(bdd_existcomp(cube, d.next_set));
// If we already know a state with the same successors,
// use it in lieu of the current one. (See the comments
// for canonical_succ.) We need to do this only for new
// destinations.
if (symb_merge
&& formulae_seen.find(dest) == formulae_seen.end())
{
dest->accept(v);
bdd succbdd = v.result();
succ_to_formula::iterator cs =
canonical_succ.find(succbdd);
if (cs != canonical_succ.end())
{
destroy(dest);
dest = clone(cs->second);
}
else
{
canonical_succ[succbdd] = clone(dest);
}
}
bdd promises = bdd_existcomp(cube, d.a_set);
bdd conds =
exprop ? one_prop_set : bdd_existcomp(cube, var_set);
dest_map::iterator i = dests.find(dest);
if (i == dests.end())
{
dests[dest][promises] = conds;
}
else
{
i->second[promises] |= conds;
destroy(dest);
}
}
}
// Check for an arc going to 1 (True). Register it first, that
// way it will be explored before the other during the model
// checking.
dest_map::const_iterator i = dests.find(constant::true_instance());
// COND_FOR_TRUE is the conditions of the True arc, so when
// can remove them from all other arcs. It might sounds that
// this is not needed when exprop is used, but in fact it is
// complementary.
//
// Consider
// f = r(X(1) R p) = p.(1 + r(X(1) R p))
// with exprop the two outgoing arcs would be
// p p
// f ----> 1 f ----------> 1
//
// where in fact we could output
// p
// f ----> 1
//
// because there is no point in looping on f if we can go to 1.
bdd cond_for_true = bddfalse;
if (i != dests.end())
{
// Transitions going to 1 (true) are not expected to make
// any promises.
assert(i->second.size() == 1);
prom_map::const_iterator j = i->second.find(bddtrue);
assert(j != i->second.end());
cond_for_true = j->second;
tgba_explicit::transition* t =
a->create_transition(now, constant::true_instance()->val_name());
a->add_condition(t, d.bdd_to_formula(cond_for_true));
}
// Register other transitions.
for (i = dests.begin(); i != dests.end(); ++i)
{
const formula* dest = i->first;
// The cond_for_true optimization can cause some
// transitions to be removed. So we have to remember
// whether a formula is actually reachable.
bool reachable = false;
if (dest != constant::true_instance())
{
std::string next = to_string(dest);
for (prom_map::const_iterator j = i->second.begin();
j != i->second.end(); ++j)
{
bdd cond = j->second - cond_for_true;
if (cond == bddfalse) // Skip false transitions.
continue;
tgba_explicit::transition* t =
a->create_transition(now, next);
a->add_condition(t, d.bdd_to_formula(cond));
d.conj_bdd_to_acc(a, j->first, t);
reachable = true;
}
}
else
{
// "1" is reachable.
reachable = true;
}
if (reachable
&& formulae_seen.find(dest) == formulae_seen.end())
{
formulae_seen.insert(dest);
formulae_to_translate.insert(dest);
}
else
{
destroy(dest);
}
}
}
// Free all formulae.
for (std::set<const formula*>::iterator i = formulae_seen.begin();
i != formulae_seen.end(); ++i)
destroy(*i);
for (succ_to_formula::iterator i = canonical_succ.begin();
i != canonical_succ.end(); ++i)
destroy(i->second);
// Turn all promises into real acceptance conditions.
a->complement_all_acceptance_conditions();
return a;
}
}