* spot/twaalgos/aiger.cc, spot/twaalgos/aiger.hh: Reimplement print_aiger for speed gain, also heuristics to minimize the number of gates as well as different encoding types have been added. * bin/ltlsynt.cc: Make the new options for print-aiger available. * tests/core/ltlsynt.test: Adjust tests.
703 lines
23 KiB
C++
703 lines
23 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2017-2020 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "config.h"
|
|
#include <spot/twaalgos/aiger.hh>
|
|
|
|
#include <cmath>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
|
|
#include <spot/twa/twagraph.hh>
|
|
#include <spot/misc/bddlt.hh>
|
|
#include <spot/misc/minato.hh>
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
static std::vector<std::string>
|
|
name_vector(unsigned n, const std::string& prefix)
|
|
{
|
|
std::vector<std::string> res(n);
|
|
for (unsigned i = 0; i != n; ++i)
|
|
res[i] = prefix + std::to_string(i);
|
|
return res;
|
|
}
|
|
|
|
// A class to represent an AIGER circuit
|
|
class aig
|
|
{
|
|
private:
|
|
unsigned max_var_;
|
|
unsigned num_inputs_;
|
|
unsigned num_latches_;
|
|
unsigned num_outputs_;
|
|
|
|
std::vector<unsigned> latches_;
|
|
std::vector<unsigned> outputs_;
|
|
std::vector<std::string> input_names_;
|
|
std::vector<std::string> output_names_;
|
|
std::vector<std::pair<unsigned, unsigned>> and_gates_;
|
|
// Cache the function computed by each variable as a bdd.
|
|
std::unordered_map<unsigned, bdd> var2bdd_;
|
|
std::unordered_map<bdd, unsigned, bdd_hash> bdd2var_;
|
|
|
|
public:
|
|
aig(const std::vector<std::string>& inputs,
|
|
const std::vector<std::string>& outputs,
|
|
unsigned num_latches)
|
|
: max_var_((inputs.size() + num_latches)*2),
|
|
num_inputs_(inputs.size()),
|
|
num_latches_(num_latches),
|
|
num_outputs_(outputs.size()),
|
|
latches_(num_latches),
|
|
outputs_(outputs.size()),
|
|
input_names_(inputs),
|
|
output_names_(outputs)
|
|
{
|
|
bdd2var_[bddtrue] = 1;
|
|
var2bdd_[1] = bddtrue;
|
|
bdd2var_[bddfalse] = 0;
|
|
var2bdd_[0] = bddfalse;
|
|
|
|
bdd2var_.reserve(4 * (num_inputs_ + num_latches_));
|
|
var2bdd_.reserve(4 * (num_inputs_ + num_latches_));
|
|
}
|
|
|
|
aig(unsigned num_inputs, unsigned num_latches, unsigned num_outputs)
|
|
: aig(name_vector(num_inputs, "in"), name_vector(num_outputs, "out"),
|
|
num_latches)
|
|
{
|
|
}
|
|
|
|
// register the bdd corresponding the an
|
|
// aig literal
|
|
inline void register_new_lit(unsigned v, const bdd& b)
|
|
{
|
|
assert(!var2bdd_.count(v) || var2bdd_.at(v) == b);
|
|
assert(!bdd2var_.count(b) || bdd2var_.at(b) == v);
|
|
var2bdd_[v] = b;
|
|
bdd2var_[b] = v;
|
|
// Also store negation
|
|
// Do not use aig_not as tests will fail
|
|
var2bdd_[v ^ 1] = !b;
|
|
bdd2var_[!b] = v ^ 1;
|
|
}
|
|
|
|
inline unsigned input_var(unsigned i) const
|
|
{
|
|
assert(i < num_inputs_);
|
|
return (1 + i) * 2;
|
|
}
|
|
|
|
inline unsigned latch_var(unsigned i)
|
|
{
|
|
assert(i < latches_.size());
|
|
return (1 + num_inputs_ + i) * 2;
|
|
}
|
|
|
|
inline unsigned gate_var(unsigned i)const
|
|
{
|
|
assert(i < and_gates_.size());
|
|
return (1 + num_inputs_ + num_latches_ + i) * 2;
|
|
}
|
|
|
|
void set_output(unsigned i, unsigned v)
|
|
{
|
|
assert(v <= max_var_+1);
|
|
outputs_[i] = v;
|
|
}
|
|
|
|
void set_latch(unsigned i, unsigned v)
|
|
{
|
|
assert(v <= max_var_+1);
|
|
latches_[i] = v;
|
|
}
|
|
|
|
unsigned aig_true() const
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
unsigned aig_false() const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
unsigned aig_not(unsigned v)
|
|
{
|
|
unsigned not_v = v ^ 1;
|
|
assert(var2bdd_.count(v)
|
|
&& var2bdd_.count(not_v));
|
|
return not_v;
|
|
}
|
|
|
|
unsigned aig_and(unsigned v1, unsigned v2)
|
|
{
|
|
assert(var2bdd_.count(v1));
|
|
assert(var2bdd_.count(v2));
|
|
bdd b = var2bdd_[v1] & var2bdd_[v2];
|
|
auto it = bdd2var_.find(b);
|
|
if (it != bdd2var_.end())
|
|
return it->second;
|
|
max_var_ += 2;
|
|
and_gates_.emplace_back(v1, v2);
|
|
register_new_lit(max_var_, b);
|
|
return max_var_;
|
|
}
|
|
|
|
unsigned aig_and(std::vector<unsigned> vs)
|
|
{
|
|
if (vs.empty())
|
|
return aig_true();
|
|
if (vs.size() == 1)
|
|
return vs[0];
|
|
if (vs.size() == 2)
|
|
return aig_and(vs[0], vs[1]);
|
|
|
|
do
|
|
{
|
|
if (vs.size()&1)
|
|
// Odd size -> make even
|
|
vs.push_back(aig_true());
|
|
// Sort to increase reusage gates
|
|
std::sort(vs.begin(), vs.end());
|
|
// Reduce two by two inplace
|
|
for (unsigned i = 0; i < vs.size()/2; ++i)
|
|
vs[i] = aig_and(vs[2*i], vs[2*i + 1]);
|
|
vs.resize(vs.size()/2);
|
|
}while (vs.size() > 1);
|
|
return vs[0];
|
|
}
|
|
|
|
unsigned aig_or(unsigned v1, unsigned v2)
|
|
{
|
|
unsigned n1 = aig_not(v1);
|
|
unsigned n2 = aig_not(v2);
|
|
return aig_not(aig_and(n1, n2));
|
|
}
|
|
|
|
unsigned aig_or(std::vector<unsigned> vs)
|
|
{
|
|
for (unsigned i = 0; i < vs.size(); ++i)
|
|
vs[i] = aig_not(vs[i]);
|
|
return aig_not(aig_and(vs));
|
|
}
|
|
|
|
unsigned aig_pos(unsigned v)
|
|
{
|
|
return v & ~1;
|
|
}
|
|
|
|
void remove_unused()
|
|
{
|
|
// Run a DFS on the gates to collect
|
|
// all nodes connected to the output.
|
|
std::vector<unsigned> todo;
|
|
std::vector<bool> used(and_gates_.size(), false);
|
|
|
|
// The variables are numbered by first enumerating
|
|
// inputs, latches and finally the and-gates
|
|
// v_latch = (1+n_i+i)*2 if latch is in positive form
|
|
// if v/2 < 1+n_i -> v is an input
|
|
// v_gate = (1+n_i+n_l+i)*2 if gate is in positive form
|
|
// if v/2 < 1+n_i_nl -> v is a latch
|
|
auto v2idx = [&](unsigned v)->unsigned
|
|
{
|
|
assert(!(v & 1));
|
|
const unsigned Nlatch_min = 1 + num_inputs_;
|
|
const unsigned Ngate_min = 1 + num_inputs_ + num_latches_;
|
|
|
|
// Note: this will at most run twice
|
|
while (true)
|
|
{
|
|
unsigned i = v / 2;
|
|
if (i >= Ngate_min)
|
|
// v is a gate
|
|
return i - Ngate_min;
|
|
else if (i >= Nlatch_min)
|
|
// v is a latch -> get gate
|
|
v = aig_pos(latches_.at(i - Nlatch_min));
|
|
else
|
|
// v is a input -> nothing to do
|
|
return -1U;
|
|
}
|
|
};
|
|
|
|
auto mark = [&](unsigned v)
|
|
{
|
|
unsigned idx = v2idx(aig_pos(v));
|
|
if ((idx == -1U) || used[idx])
|
|
return;
|
|
used[idx] = true;
|
|
todo.push_back(idx);
|
|
};
|
|
|
|
for (unsigned v : outputs_)
|
|
mark(v);
|
|
|
|
while (!todo.empty())
|
|
{
|
|
unsigned idx = todo.back();
|
|
todo.pop_back();
|
|
|
|
mark(and_gates_[idx].first);
|
|
mark(and_gates_[idx].second);
|
|
}
|
|
// Erase and_gates that were not seen in the above
|
|
// exploration.
|
|
// To avoid renumbering all gates, erasure is done
|
|
// by setting both inputs to "false"
|
|
for (unsigned idx = 0; idx < used.size(); ++idx)
|
|
if (!used[idx])
|
|
{
|
|
and_gates_[idx].first = 0;
|
|
and_gates_[idx].second = 0;
|
|
}
|
|
}
|
|
|
|
// Takes a bdd, computes the corresponding literal
|
|
// using its DNF
|
|
unsigned bdd2DNFvar(const bdd& b,
|
|
const std::unordered_map<unsigned, unsigned>&
|
|
bddvar_to_num)
|
|
{
|
|
std::vector<unsigned> plus_vars;
|
|
std::vector<unsigned> prod_vars(num_inputs_);
|
|
|
|
minato_isop cond(b);
|
|
bdd prod;
|
|
|
|
while ((prod = cond.next()) != bddfalse)
|
|
{
|
|
prod_vars.clear();
|
|
// Check if existing
|
|
auto it = bdd2var_.find(prod);
|
|
if (it != bdd2var_.end())
|
|
plus_vars.push_back(it->second);
|
|
else
|
|
{
|
|
// Create
|
|
while (prod != bddfalse && prod != bddtrue)
|
|
{
|
|
unsigned v =
|
|
input_var(bddvar_to_num.at(bdd_var(prod)));
|
|
if (bdd_high(prod) == bddfalse)
|
|
{
|
|
v = aig_not(v);
|
|
prod = bdd_low(prod);
|
|
}
|
|
else
|
|
prod = bdd_high(prod);
|
|
prod_vars.push_back(v);
|
|
}
|
|
plus_vars.push_back(aig_and(prod_vars));
|
|
}
|
|
}
|
|
|
|
// Done building
|
|
return aig_or(plus_vars);
|
|
}
|
|
|
|
// Takes a bdd, computes the corresponding literal
|
|
// using its INF
|
|
unsigned bdd2INFvar(bdd b)
|
|
{
|
|
// F = !v&low | v&high
|
|
// De-morgan
|
|
// !(!v&low | v&high) = !(!v&low) & !(v&high)
|
|
// !v&low | v&high = !(!(!v&low) & !(v&high))
|
|
auto b_it = bdd2var_.find(b);
|
|
if (b_it != bdd2var_.end())
|
|
return b_it->second;
|
|
|
|
unsigned v_var = bdd2var_.at(bdd_ithvar(bdd_var(b)));
|
|
|
|
bdd b_branch[2] = {bdd_low(b), bdd_high(b)};
|
|
unsigned b_branch_var[2];
|
|
|
|
for (unsigned i: {0, 1})
|
|
{
|
|
auto b_branch_it = bdd2var_.find(b_branch[i]);
|
|
if (b_branch_it == bdd2var_.end())
|
|
b_branch_var[i] = bdd2INFvar(b_branch[i]);
|
|
else
|
|
b_branch_var[i] = b_branch_it->second;
|
|
}
|
|
|
|
unsigned r = aig_not(aig_and(v_var, b_branch_var[1]));
|
|
unsigned l = aig_not(aig_and(aig_not(v_var), b_branch_var[0]));
|
|
return aig_not(aig_and(l, r));
|
|
}
|
|
|
|
void
|
|
print(std::ostream& os) const
|
|
{
|
|
// Writing gates to formatted buffer speed-ups output
|
|
// as it avoids "<<" calls
|
|
// vars are unsigned -> 10 digits at most
|
|
char gate_buffer[3*10+5];
|
|
auto write_gate = [&](unsigned o, unsigned i0, unsigned i1)
|
|
{
|
|
std::sprintf(gate_buffer, "%u %u %u\n", o, i0, i1);
|
|
os << gate_buffer;
|
|
};
|
|
// Count active gates
|
|
unsigned n_gates=0;
|
|
for (auto& g : and_gates_)
|
|
if ((g.first != 0) && (g.second != 0))
|
|
++n_gates;
|
|
// Note max_var_ is now an upper bound
|
|
os << "aag " << max_var_ / 2
|
|
<< ' ' << num_inputs_
|
|
<< ' ' << num_latches_
|
|
<< ' ' << num_outputs_
|
|
<< ' ' << n_gates << '\n';
|
|
for (unsigned i = 0; i < num_inputs_; ++i)
|
|
os << (1 + i) * 2 << '\n';
|
|
for (unsigned i = 0; i < num_latches_; ++i)
|
|
os << (1 + num_inputs_ + i) * 2 << ' ' << latches_[i] << '\n';
|
|
for (unsigned i = 0; i < outputs_.size(); ++i)
|
|
os << outputs_[i] << '\n';
|
|
for (unsigned i=0; i<and_gates_.size(); ++i)
|
|
if ((and_gates_[i].first != 0) && (and_gates_[i].second != 0))
|
|
write_gate(gate_var(i), and_gates_[i].first, and_gates_[i].second);
|
|
for (unsigned i = 0; i < num_inputs_; ++i)
|
|
os << 'i' << i << ' ' << input_names_[i] << '\n';
|
|
for (unsigned i = 0; i < outputs_.size(); ++i)
|
|
os << 'o' << i << ' ' << output_names_[i] << '\n';
|
|
}
|
|
};
|
|
|
|
static void
|
|
state_to_vec(std::vector<bool>& v, unsigned s)
|
|
{
|
|
for (unsigned i = 0; i < v.size(); ++i)
|
|
{
|
|
v[i] = s & 1;
|
|
s >>= 1;
|
|
};
|
|
}
|
|
|
|
static void
|
|
output_to_vec(std::vector<bool>& v, bdd b,
|
|
const std::unordered_map<unsigned, unsigned>&
|
|
bddvar_to_outputnum)
|
|
{
|
|
std::fill(v.begin(), v.end(), false);
|
|
while (b != bddtrue && b != bddfalse)
|
|
{
|
|
unsigned i = bddvar_to_outputnum.at(bdd_var(b));
|
|
v.at(i) = (bdd_low(b) == bddfalse);
|
|
if (v[i])
|
|
b = bdd_high(b);
|
|
else
|
|
b = bdd_low(b);
|
|
}
|
|
}
|
|
|
|
static bdd
|
|
state_to_bdd(unsigned s, bdd all_latches)
|
|
{
|
|
bdd b = bddtrue;
|
|
unsigned size = bdd_nodecount(all_latches);
|
|
if (size)
|
|
{
|
|
unsigned st0 = bdd_var(all_latches);
|
|
for (unsigned i = 0; i < size; ++i)
|
|
{
|
|
b &= (s & 1) ? bdd_ithvar(st0 + i) : bdd_nithvar(st0 + i);
|
|
s >>= 1;
|
|
}
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Switch initial state and 0 in the AIGER encoding, so that the
|
|
// 0-initialized latches correspond to the initial state.
|
|
static unsigned
|
|
encode_init_0(unsigned src, unsigned init)
|
|
{
|
|
return src == init ? 0 : src == 0 ? init : src;
|
|
}
|
|
|
|
// Takes a product and returns the
|
|
// number of highs
|
|
inline unsigned count_high(bdd b)
|
|
{
|
|
unsigned high=0;
|
|
while (b != bddtrue)
|
|
{
|
|
if (bdd_low(b) == bddfalse)
|
|
{
|
|
++high;
|
|
b = bdd_high(b);
|
|
}
|
|
else
|
|
{
|
|
assert(bdd_high(b) == bddfalse);
|
|
b = bdd_low(b);
|
|
}
|
|
}
|
|
return high;
|
|
}
|
|
|
|
// Heuristic to minimize the number of gates
|
|
// in the resulting aiger
|
|
// the idea is to take the (valid) output with the
|
|
// least "highs" for each transition.
|
|
// Another idea is to chose conditions such that transitions
|
|
// can share output conditions. Problem this is a combinatorial
|
|
// problem and suboptimal solutions that can be computed in
|
|
// reasonable time have proven to be not as good
|
|
// Stores the outcondition to use in the used_outc vector
|
|
// for each transition in aut
|
|
std::vector<bdd> maxlow_outc(const const_twa_graph_ptr& aut,
|
|
const bdd& all_inputs)
|
|
{
|
|
std::vector<bdd> used_outc(aut->num_edges()+1, bddfalse);
|
|
|
|
for (const auto &e : aut->edges())
|
|
{
|
|
unsigned idx = aut->edge_number(e);
|
|
assert(e.cond != bddfalse);
|
|
bdd bout = bdd_exist(e.cond, all_inputs);
|
|
assert(((bout & bdd_existcomp(e.cond, all_inputs)) == e.cond) &&
|
|
"Precondition (in) & (out) == cond violated");
|
|
unsigned n_high=-1u;
|
|
while (bout != bddfalse)
|
|
{
|
|
bdd nextsat = bdd_satone(bout);
|
|
bout -= nextsat;
|
|
unsigned next_high = count_high(nextsat);
|
|
if (next_high<n_high)
|
|
{
|
|
n_high = next_high;
|
|
used_outc[idx] = nextsat;
|
|
}
|
|
}
|
|
assert(used_outc[idx] != bddfalse);
|
|
}
|
|
//Done
|
|
return used_outc;
|
|
}
|
|
|
|
// Transforms an automaton into an AIGER circuit
|
|
// using irreducible sums-of-products
|
|
static aig
|
|
aut_to_aiger(const const_twa_graph_ptr& aut, const bdd& all_outputs,
|
|
const char* mode)
|
|
{
|
|
// The aiger circuit cannot encode the acceptance condition
|
|
// Test that the acceptance condition is true
|
|
if (!aut->acc().is_t())
|
|
throw std::runtime_error("Cannot turn automaton into aiger circuit");
|
|
|
|
// get the propositions
|
|
std::vector<std::string> input_names;
|
|
std::vector<std::string> output_names;
|
|
bdd all_inputs = bddtrue;
|
|
std::vector<bdd> all_inputs_vec;
|
|
std::unordered_map<unsigned, unsigned> bddvar_to_num;
|
|
for (const auto& ap : aut->ap())
|
|
{
|
|
int bddvar = aut->get_dict()->has_registered_proposition(ap, aut);
|
|
assert(bddvar >= 0);
|
|
bdd b = bdd_ithvar(bddvar);
|
|
if (bdd_implies(all_outputs, b)) // ap is an output AP
|
|
{
|
|
bddvar_to_num[bddvar] = output_names.size();
|
|
output_names.emplace_back(ap.ap_name());
|
|
}
|
|
else // ap is an input AP
|
|
{
|
|
bddvar_to_num[bddvar] = input_names.size();
|
|
input_names.emplace_back(ap.ap_name());
|
|
all_inputs &= b;
|
|
all_inputs_vec.push_back(b);
|
|
}
|
|
}
|
|
|
|
// Decide on which outcond to use
|
|
// The edges of the automaton all have the form in&out
|
|
// due to the unsplit
|
|
// however we need the edge to be deterministic in out too
|
|
// So we need determinism and we also want the resulting aiger
|
|
// to have as few gates as possible
|
|
std::vector<bdd> used_outc = maxlow_outc(aut, all_inputs);
|
|
|
|
// Encode state in log2(num_states) latches.
|
|
unsigned log2n = std::ceil(std::log2(aut->num_states()));
|
|
unsigned st0 = aut->get_dict()->register_anonymous_variables(log2n, aut);
|
|
|
|
unsigned num_outputs = output_names.size();
|
|
unsigned init = aut->get_init_state_number();
|
|
assert(num_outputs == (unsigned) bdd_nodecount(all_outputs));
|
|
aig circuit(input_names, output_names, log2n);
|
|
|
|
// Register
|
|
// latches
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
circuit.register_new_lit(circuit.latch_var(i), bdd_ithvar(st0+i));
|
|
// inputs
|
|
for (unsigned i = 0; i < all_inputs_vec.size(); ++i)
|
|
circuit.register_new_lit(circuit.input_var(i), all_inputs_vec[i]);
|
|
// Latches and outputs are expressed as a DNF in which each term
|
|
// represents a transition.
|
|
// latch[i] (resp. out[i]) represents the i-th latch (resp. output) DNF.
|
|
|
|
std::vector<bool> out_vec(output_names.size());
|
|
std::vector<bool> next_state_vec(log2n);
|
|
if (strcasecmp(mode, "ISOP") == 0)
|
|
{
|
|
std::vector<std::vector<unsigned>> latch(log2n);
|
|
std::vector<std::vector<unsigned>> out(num_outputs);
|
|
// Keep track of bdd that were already transformed into a gate
|
|
std::unordered_map<bdd, unsigned, bdd_hash> incond_map;
|
|
std::vector<unsigned> prod_state(log2n);
|
|
for (unsigned s = 0; s < aut->num_states(); ++s)
|
|
{
|
|
unsigned src = encode_init_0(s, init);
|
|
prod_state.clear();
|
|
unsigned src2 = src;
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
{
|
|
unsigned v = circuit.latch_var(i);
|
|
prod_state.push_back(src2 & 1 ? v : circuit.aig_not(v));
|
|
src2 >>= 1;
|
|
}
|
|
assert(src2 <= 1);
|
|
unsigned state_var = circuit.aig_and(prod_state);
|
|
// Done state var
|
|
|
|
for (auto &e: aut->out(s))
|
|
{
|
|
unsigned e_idx = aut->edge_number(e);
|
|
// Same outcond for all ins
|
|
const bdd &letter_out = used_outc[e_idx];
|
|
output_to_vec(out_vec, letter_out, bddvar_to_num);
|
|
|
|
unsigned dst = encode_init_0(e.dst, init);
|
|
state_to_vec(next_state_vec, dst);
|
|
|
|
// Get the isops over the input condition
|
|
// Each isop only contains variables from in
|
|
// -> directly compute the corresponding
|
|
// variable and and-gate
|
|
bdd incond = bdd_exist(e.cond, all_outputs);
|
|
auto incond_var_it = incond_map.find(incond);
|
|
if (incond_var_it == incond_map.end())
|
|
// The incond and its isops have not yet been calculated
|
|
{
|
|
bool inserted;
|
|
unsigned var = circuit.bdd2DNFvar(incond, bddvar_to_num);
|
|
std::tie(incond_var_it, inserted) =
|
|
incond_map.insert(std::make_pair(incond, var));
|
|
assert(inserted && incond_var_it->second == var);
|
|
}
|
|
|
|
// AND with state
|
|
unsigned t =
|
|
circuit.aig_and(state_var, incond_var_it->second);
|
|
// Set in latches/outs having "high"
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
if (next_state_vec[i])
|
|
latch[i].push_back(t);
|
|
for (unsigned i = 0; i < num_outputs; ++i)
|
|
if (out_vec[i])
|
|
out[i].push_back(t);
|
|
} // edge
|
|
} // state
|
|
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
circuit.set_latch(i, circuit.aig_or(latch[i]));
|
|
for (unsigned i = 0; i < num_outputs; ++i)
|
|
circuit.set_output(i, circuit.aig_or(out[i]));
|
|
circuit.remove_unused();
|
|
}
|
|
else if (strcasecmp(mode, "ITE") == 0)
|
|
{
|
|
std::vector<bdd> latch(log2n, bddfalse);
|
|
std::vector<bdd> out(num_outputs, bddfalse);
|
|
bdd all_latches = bddtrue;
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
all_latches &= bdd_ithvar(st0 + i);
|
|
|
|
for (unsigned s = 0; s < aut->num_states(); ++s)
|
|
{
|
|
// Convert state to bdd
|
|
unsigned src = encode_init_0(s, init);
|
|
bdd src_bdd = state_to_bdd(src, all_latches);
|
|
|
|
for (const auto& e : aut->out(src))
|
|
{
|
|
unsigned dst = encode_init_0(e.dst, init);
|
|
state_to_vec(next_state_vec, dst);
|
|
// edges have the form
|
|
// f(ins) & f(outs)
|
|
// one specific truth assignment has been selected above
|
|
// and stored in used_outc
|
|
output_to_vec(out_vec, used_outc[aut->edge_number(e)],
|
|
bddvar_to_num);
|
|
// The condition that joins in_cond and src
|
|
bdd tot_cond = src_bdd & bdd_exist(e.cond, all_outputs);
|
|
|
|
// Add to existing cond
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
if (next_state_vec[i])
|
|
latch[i] |= tot_cond;
|
|
for (unsigned i = 0; i < num_outputs; ++i)
|
|
if (out_vec[i])
|
|
out[i] |= tot_cond;
|
|
} // e
|
|
} // src
|
|
// Create the vars
|
|
for (unsigned i = 0; i < num_outputs; ++i)
|
|
circuit.set_output(i, circuit.bdd2INFvar(out[i]));
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
circuit.set_latch(i, circuit.bdd2INFvar(latch[i]));
|
|
}
|
|
else
|
|
{
|
|
throw std::runtime_error
|
|
("print_aiger(): mode must be \"ISOP\" or \"ITE\"");
|
|
}
|
|
|
|
return circuit;
|
|
} // aut_to_aiger_isop
|
|
}
|
|
|
|
std::ostream&
|
|
print_aiger(std::ostream& os, const const_twa_ptr& aut, const char* mode)
|
|
{
|
|
auto a = down_cast<const_twa_graph_ptr>(aut);
|
|
if (!a)
|
|
throw std::runtime_error("aiger output is only for twa_graph");
|
|
|
|
bdd* all_outputs = aut->get_named_prop<bdd>("synthesis-outputs");
|
|
|
|
aig circuit =
|
|
aut_to_aiger(a, all_outputs ? *all_outputs : bdd(bddfalse), mode);
|
|
circuit.print(os);
|
|
return os;
|
|
}
|
|
}
|