spot/spot/twaalgos/tau03opt.cc
Alexandre Duret-Lutz a86925e20e work around gcc 8.2.1+ bug #89303
Do not call std::make_shared on classes inheriting from
std::enable_shared_from_this when compiling with g++ 8.2.

* NEWS: Mention the bug.
* spot/misc/common.hh (SPOT_make_shared_enabled__): New macro.
* spot/twa/twagraph.cc, spot/twa/twagraph.hh, spot/twa/twaproduct.hh,
spot/twa/taatgba.hh, spot/twaalgos/couvreurnew.cc,
spot/twaalgos/magic.cc, spot/twaalgos/se05.cc, spot/twaalgos/tau03.cc,
spot/twaalgos/tau03opt.cc, spot/twaalgos/gv04.cc,
spot/ltsmin/ltsmin.cc, spot/twaalgos/gtec/gtec.cc: Use it.
2019-02-13 16:11:21 +01:00

570 lines
19 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2013-2019 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// FIXME:
/// * Test some heuristics on the order of visit of the successors in the blue
/// dfs:
/// - favorize the arcs conducting to the blue stack (the states of color
/// cyan)
/// - in this category, favorize the labelled arcs
/// - for the remaining ones, favorize the arcs labelled by the greatest
/// number of new acceptance conditions (notice that this number may evolve
/// after the visit of previous successors).
///
/// * Add a bit-state hashing version.
//#define TRACE
#include "config.h"
#include <iostream>
#ifdef TRACE
#define trace std::cerr
#else
#define trace while (0) std::cerr
#endif
#include <cassert>
#include <vector>
#include <stack>
#include <spot/misc/hash.hh>
#include <spot/twa/twa.hh>
#include <spot/twaalgos/emptiness.hh>
#include <spot/twaalgos/emptiness_stats.hh>
#include <spot/twaalgos/tau03opt.hh>
#include <spot/priv/weight.hh>
#include <spot/twaalgos/ndfs_result.hxx>
namespace spot
{
namespace
{
enum color {WHITE, CYAN, BLUE};
/// \brief Emptiness checker on spot::tgba automata having a finite number
/// of acceptance conditions (i.e. a TGBA).
template <typename heap>
class tau03_opt_search : public emptiness_check, public ec_statistics
{
public:
/// \brief Initialize the search algorithm on the automaton \a a
tau03_opt_search(const const_twa_ptr& a, size_t size, option_map o)
: emptiness_check(a, o),
current_weight(a->acc()),
h(size),
use_condition_stack(o.get("condstack")),
use_ordering(use_condition_stack && o.get("ordering")),
use_weights(o.get("weights", 1)),
use_red_weights(use_weights && o.get("redweights", 1))
{
if (a->acc().uses_fin_acceptance())
throw std::runtime_error("tau03opt requires Fin-less acceptance");
}
virtual ~tau03_opt_search()
{
// Release all iterators on the stacks.
while (!st_blue.empty())
{
h.pop_notify(st_blue.front().s);
a_->release_iter(st_blue.front().it);
st_blue.pop_front();
}
while (!st_red.empty())
{
h.pop_notify(st_red.front().s);
a_->release_iter(st_red.front().it);
st_red.pop_front();
}
}
/// \brief Perform an emptiness check.
///
/// \return non null pointer iff the algorithm has found an
/// accepting path.
virtual emptiness_check_result_ptr check() override
{
if (!st_blue.empty())
return nullptr;
assert(st_red.empty());
const state* s0 = a_->get_init_state();
inc_states();
h.add_new_state(s0, CYAN, current_weight);
push(st_blue, s0, bddfalse, {});
auto t = std::static_pointer_cast<tau03_opt_search>
(this->emptiness_check::shared_from_this());
if (dfs_blue())
return std::make_shared<ndfs_result<tau03_opt_search<heap>, heap>>(t);
return nullptr;
}
virtual std::ostream& print_stats(std::ostream &os) const override
{
os << states() << " distinct nodes visited" << std::endl;
os << transitions() << " transitions explored" << std::endl;
os << max_depth() << " nodes for the maximal stack depth" << std::endl;
return os;
}
const heap& get_heap() const
{
return h;
}
const stack_type& get_st_blue() const
{
return st_blue;
}
const stack_type& get_st_red() const
{
return st_red;
}
private:
void push(stack_type& st, const state* s,
const bdd& label, acc_cond::mark_t acc)
{
inc_depth();
twa_succ_iterator* i = a_->succ_iter(s);
i->first();
st.emplace_front(s, i, label, acc);
}
void pop(stack_type& st)
{
dec_depth();
a_->release_iter(st.front().it);
st.pop_front();
}
acc_cond::mark_t project_acc(acc_cond::mark_t acc) const
{
if (!use_ordering)
return acc;
// FIXME: This should be improved.
std::vector<unsigned> res;
unsigned max = a_->num_sets();
for (unsigned n = 0; n < max && acc.has(n); ++n)
res.emplace_back(n);
return acc_cond::mark_t(res.begin(), res.end());
}
/// \brief weight of the state on top of the blue stack.
weight current_weight;
/// \brief Stack of the blue dfs.
stack_type st_blue;
/// \brief Stack of the red dfs.
stack_type st_red;
/// \brief Map where each visited state is colored
/// by the last dfs visiting it.
heap h;
/// Whether to use the "condition stack".
bool use_condition_stack;
/// Whether to use an ordering between the acceptance conditions.
/// Effective only if using the condition stack.
bool use_ordering;
/// Whether to use weights to abort earlier.
bool use_weights;
/// Whether to use weights in the red dfs.
bool use_red_weights;
bool dfs_blue()
{
while (!st_blue.empty())
{
stack_item& f = st_blue.front();
trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl;
if (!f.it->done())
{
const state *s_prime = f.it->dst();
trace << " Visit the successor: "
<< a_->format_state(s_prime) << std::endl;
bdd label = f.it->cond();
auto acc = f.it->acc();
// Go down the edge (f.s, <label, acc>, s_prime)
f.it->next();
inc_transitions();
typename heap::color_ref c_prime = h.get_color_ref(s_prime);
if (c_prime.is_white())
{
trace << " It is white, go down" << std::endl;
if (use_weights)
current_weight.add(acc);
inc_states();
h.add_new_state(s_prime, CYAN, current_weight);
push(st_blue, s_prime, label, acc);
}
else
{
typename heap::color_ref c = h.get_color_ref(f.s);
assert(!c.is_white());
if (c_prime.get_color() == CYAN
&& a_->acc().accepting
(current_weight.diff(a_->acc(), c_prime. get_weight())
| c.get_acc() | acc | c_prime.get_acc()))
{
trace << " It is cyan and acceptance condition "
<< "is reached, report cycle" << std::endl;
c_prime.cumulate_acc(a_->acc().all_sets());
push(st_red, s_prime, label, acc);
return true;
}
else
{
trace << " It is cyan or blue and";
auto acu = acc | c.get_acc();
auto acp = project_acc(acu);
if ((c_prime.get_acc() & acp) != acp)
{
trace << " a propagation is needed, "
<< "start a red dfs" << std::endl;
c_prime.cumulate_acc(acp);
push(st_red, s_prime, label, acc);
if (dfs_red(acu))
return true;
}
else
{
trace << " no propagation is needed, pop it."
<< std::endl;
h.pop_notify(s_prime);
}
}
}
}
else
// Backtrack the edge
// (predecessor of f.s in st_blue, <f.label, f.acc>, f.s)
{
trace << " All the successors have been visited" << std::endl;
stack_item f_dest(f);
pop(st_blue);
if (use_weights)
current_weight.sub(f_dest.acc);
typename heap::color_ref c_prime = h.get_color_ref(f_dest.s);
assert(!c_prime.is_white());
c_prime.set_color(BLUE);
if (!st_blue.empty())
{
typename heap::color_ref c =
h.get_color_ref(st_blue.front().s);
assert(!c.is_white());
auto acu = f_dest.acc | c.get_acc();
auto acp = project_acc(acu);
if ((c_prime.get_acc() & acp) != acp)
{
trace << " The arc from "
<< a_->format_state(st_blue.front().s)
<< " to the current state implies to "
<< " start a red dfs" << std::endl;
c_prime.cumulate_acc(acp);
push(st_red, f_dest.s, f_dest.label, f_dest.acc);
if (dfs_red(acu))
return true;
}
else
{
trace << " Pop it" << std::endl;
h.pop_notify(f_dest.s);
}
}
else
{
trace << " Pop it" << std::endl;
h.pop_notify(f_dest.s);
}
}
}
return false;
}
bool
dfs_red(acc_cond::mark_t acu)
{
assert(!st_red.empty());
// These are useful only when USE_CONDITION_STACK is set.
typedef std::pair<acc_cond::mark_t, unsigned> cond_level;
std::stack<cond_level> condition_stack;
unsigned depth = 1;
condition_stack.emplace(acc_cond::mark_t({}), 0);
while (!st_red.empty())
{
stack_item& f = st_red.front();
trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl;
if (!f.it->done())
{
const state *s_prime = f.it->dst();
trace << " Visit the successor: "
<< a_->format_state(s_prime) << std::endl;
bdd label = f.it->cond();
auto acc = f.it->acc();
// Go down the edge (f.s, <label, acc>, s_prime)
f.it->next();
inc_transitions();
typename heap::color_ref c_prime = h.get_color_ref(s_prime);
if (c_prime.is_white())
{
trace << " It is white, pop it" << std::endl;
s_prime->destroy();
continue;
}
else if (c_prime.get_color() == CYAN &&
a_->acc().accepting
(acc | acu | c_prime.get_acc() |
(use_red_weights ?
current_weight.diff(a_->acc(),
c_prime.
get_weight())
: acc_cond::mark_t({}))))
{
trace << " It is cyan and acceptance condition "
<< "is reached, report cycle" << std::endl;
c_prime.cumulate_acc(a_->acc().all_sets());
push(st_red, s_prime, label, acc);
return true;
}
acc_cond::mark_t acp;
if (use_ordering)
acp = project_acc(acu | acc | c_prime.get_acc());
else if (use_condition_stack)
acp = acu | acc;
else
acp = acu;
if ((c_prime.get_acc() & acp) != acp)
{
trace << " It is cyan or blue and propagation "
<< "is needed, go down"
<< std::endl;
c_prime.cumulate_acc(acp);
push(st_red, s_prime, label, acc);
if (use_condition_stack)
{
auto old = acu;
acu |= acc;
condition_stack.emplace(acu - old, depth);
}
++depth;
}
else
{
trace << " It is cyan or blue and no propagation "
<< "is needed , pop it" << std::endl;
h.pop_notify(s_prime);
}
}
else // Backtrack
{
trace << " All the successors have been visited, pop it"
<< std::endl;
h.pop_notify(f.s);
pop(st_red);
--depth;
if (condition_stack.top().second == depth)
{
acu -= condition_stack.top().first;
condition_stack.pop();
}
}
}
assert(depth == 0);
assert(condition_stack.empty());
return false;
}
};
class explicit_tau03_opt_search_heap final
{
typedef state_map<std::pair<weight, acc_cond::mark_t>> hcyan_type;
typedef state_map<std::pair<color, acc_cond::mark_t>> hash_type;
public:
class color_ref final
{
public:
color_ref(hash_type* h, hcyan_type* hc, const state* s,
const weight* w, acc_cond::mark_t* a)
: is_cyan(true), w(w), ph(h), phc(hc), ps(s), pc(nullptr), acc(a)
{
}
color_ref(color* c, acc_cond::mark_t* a)
: is_cyan(false), pc(c), acc(a)
{
}
color get_color() const
{
if (is_cyan)
return CYAN;
return *pc;
}
const weight& get_weight() const
{
assert(is_cyan);
return *w;
}
void set_color(color c)
{
assert(!is_white());
if (is_cyan)
{
assert(c != CYAN);
std::pair<hash_type::iterator, bool> p;
p = ph->emplace(ps, std::make_pair(c, *acc));
assert(p.second);
acc = &(p.first->second.second);
int i = phc->erase(ps);
assert(i == 1);
(void)i;
}
else
{
*pc=c;
}
}
acc_cond::mark_t get_acc() const
{
assert(!is_white());
return *acc;
}
void cumulate_acc(acc_cond::mark_t a)
{
assert(!is_white());
*acc |= a;
}
bool is_white() const
{
return !is_cyan && !pc;
}
private:
bool is_cyan;
const weight* w; // point to the weight of a state in hcyan
hash_type* ph; //point to the main hash table
hcyan_type* phc; // point to the hash table hcyan
const state* ps; // point to the state in hcyan
color *pc; // point to the color of a state stored in main hash table
acc_cond::mark_t* acc; // point to the acc set of a state stored
// in main hash table or hcyan
};
explicit_tau03_opt_search_heap(size_t)
{
}
~explicit_tau03_opt_search_heap()
{
hcyan_type::const_iterator sc = hc.begin();
while (sc != hc.end())
{
const state* ptr = sc->first;
++sc;
ptr->destroy();
}
hash_type::const_iterator s = h.begin();
while (s != h.end())
{
const state* ptr = s->first;
++s;
ptr->destroy();
}
}
color_ref get_color_ref(const state*& s)
{
hcyan_type::iterator ic = hc.find(s);
if (ic == hc.end())
{
hash_type::iterator it = h.find(s);
if (it == h.end())
// white state
return color_ref(nullptr, nullptr);
if (s != it->first)
{
s->destroy();
s = it->first;
}
// blue or red state
return color_ref(&it->second.first, &it->second.second);
}
if (s != ic->first)
{
s->destroy();
s = ic->first;
}
// cyan state
return color_ref(&h, &hc, ic->first,
&ic->second.first, &ic->second.second);
}
void add_new_state(const state* s, color c, const weight& w)
{
assert(hc.find(s) == hc.end() && h.find(s) == h.end());
assert(c == CYAN);
(void)c;
hc.emplace(std::piecewise_construct,
std::forward_as_tuple(s),
std::forward_as_tuple(w, acc_cond::mark_t({})));
}
void pop_notify(const state*) const
{
}
bool has_been_visited(const state* s) const
{
hcyan_type::const_iterator ic = hc.find(s);
if (ic == hc.end())
{
hash_type::const_iterator it = h.find(s);
return (it != h.end());
}
return true;
}
enum { Has_Size = 1 };
int size() const
{
return h.size() + hc.size();
}
private:
// associate to each blue and red state its color and its acceptance set
hash_type h;
// associate to each cyan state its weight and its acceptance set
hcyan_type hc;
};
} // anonymous
emptiness_check_ptr
explicit_tau03_opt_search(const const_twa_ptr& a, option_map o)
{
return SPOT_make_shared_enabled__
(tau03_opt_search<explicit_tau03_opt_search_heap>, a, 0, o);
}
}