advent-of-code/aoc2020/src/day07.rs
Antoine Martin e25bc47f8f fix some pedantic clippy lints that make sense
- clippy::redundant-closure-for-method-calls
- clippy::explicit-iter-loop
2020-12-17 01:59:01 +01:00

257 lines
7.2 KiB
Rust

use std::collections::HashMap;
use std::fmt::Write;
use std::str::FromStr;
use anyhow::{Context, Result};
const INPUT: &str = include_str!("../input/day07.txt");
pub fn run() -> Result<String> {
let mut res = String::with_capacity(128);
writeln!(res, "part 1: {}", part1(INPUT)?)?;
writeln!(res, "part 2: {}", part2(INPUT)?)?;
Ok(res)
}
fn part1(input: &str) -> Result<usize> {
let bag_rules = input
.lines()
.map(str::parse)
.collect::<Result<Vec<BagRule>>>()
.unwrap();
// create map with Key = color, Value = BagRule
let bag_rules_map = bag_rules
.iter()
.map(|bag_rule| (bag_rule.color.clone(), bag_rule.clone()))
.collect();
let mut memoized = HashMap::new();
// NOTE: part 1 can also be solved efficiently by using a graph where a bag has its parents as
// neighbours, and then by computing the size of the sub graph accessible from 'shiny
// gold'
Ok(bag_rules
.iter()
.filter(|bag| bag.can_contain("shiny gold", &bag_rules_map, &mut memoized))
.count())
}
fn part2(input: &str) -> Result<usize> {
let bag_rules = input
.lines()
.map(str::parse)
.collect::<Result<Vec<BagRule>>>()
.unwrap();
// create map with Key = color, Value = BagRule
let bag_rules_map: HashMap<String, BagRule> = bag_rules
.iter()
.map(|bag_rule| (bag_rule.color.clone(), bag_rule.clone()))
.collect();
let shiny_gold = &bag_rules_map["shiny gold"];
Ok(shiny_gold.num_inner_bags(&bag_rules_map))
}
#[derive(Debug, PartialEq, Eq, Clone)]
struct BagRule {
color: String,
contains: Vec<(usize, String)>,
}
impl BagRule {
fn can_contain(
&self,
color: &str,
all_bags: &HashMap<String, BagRule>,
memoized: &mut HashMap<String, bool>,
) -> bool {
return match memoized.get(&self.color) {
Some(value) => *value,
None => {
let value = self.contains.iter().any(|(_, c)| c == color)
|| self.contains.iter().any(|(_, c)| {
// fetch rules for this bag in map
let bag_rule = &all_bags[c];
bag_rule.can_contain(color, all_bags, memoized)
});
memoized.insert(self.color.clone(), value);
value
}
};
}
fn num_inner_bags(&self, all_bags: &HashMap<String, BagRule>) -> usize {
self.contains
.iter()
.map(|(count, c)| {
// fetch rules for this bag in map
let bag_rule = &all_bags[c];
count + count * bag_rule.num_inner_bags(all_bags)
})
.sum()
}
}
impl FromStr for BagRule {
type Err = anyhow::Error;
fn from_str(s: &str) -> Result<Self> {
let words: Vec<&str> = s.split(' ').collect();
// let's assume our input is always valid for now
let adjective = words[0];
let color = words[1];
debug_assert!(words[2] == "bags");
debug_assert!(words[3] == "contain");
let mut words = &words[4..];
let mut contains = Vec::new();
loop {
match words[0] {
// this bag doesn't contain any other bag, we can stop
"no" => {
debug_assert!(words[1] == "other");
debug_assert!(words[2] == "bags.");
break;
}
// this is a list of bags that should be contained, parse the first one then loop
// again
number => {
let n = number
.parse()
.context("couldn't parse number in bag rule")?;
let adjective = words[1];
let color = words[2];
contains.push((n, format!("{} {}", adjective, color)));
match words[3] {
// there are other bags in this one
"bag," | "bags," => {
words = &words[4..];
}
// this was the last bag
"bag." | "bags." => break,
_ => todo!("handle this with error"),
}
}
}
}
Ok(Self {
color: format!("{} {}", adjective, color),
contains,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
const PROVIDED1: &str = include_str!("../input/day07_provided1.txt");
const PROVIDED2: &str = include_str!("../input/day07_provided2.txt");
#[test]
fn part1_provided_parse() {
let bag_rules = PROVIDED1
.lines()
.map(str::parse)
.collect::<Result<Vec<BagRule>>>()
.unwrap();
let expected = vec![
BagRule {
color: "light red".to_string(),
contains: vec![
(1, "bright white".to_string()),
(2, "muted yellow".to_string()),
],
},
BagRule {
color: "dark orange".to_string(),
contains: vec![
(3, "bright white".to_string()),
(4, "muted yellow".to_string()),
],
},
BagRule {
color: "bright white".to_string(),
contains: vec![(1, "shiny gold".to_string())],
},
BagRule {
color: "muted yellow".to_string(),
contains: vec![(2, "shiny gold".to_string()), (9, "faded blue".to_string())],
},
BagRule {
color: "shiny gold".to_string(),
contains: vec![
(1, "dark olive".to_string()),
(2, "vibrant plum".to_string()),
],
},
BagRule {
color: "dark olive".to_string(),
contains: vec![
(3, "faded blue".to_string()),
(4, "dotted black".to_string()),
],
},
BagRule {
color: "vibrant plum".to_string(),
contains: vec![
(5, "faded blue".to_string()),
(6, "dotted black".to_string()),
],
},
BagRule {
color: "faded blue".to_string(),
contains: vec![],
},
BagRule {
color: "dotted black".to_string(),
contains: vec![],
},
];
assert_eq!(bag_rules.len(), expected.len());
for (parsed, expected) in expected.into_iter().zip(bag_rules) {
assert_eq!(parsed, expected);
}
}
#[test]
fn part1_provided_compute() {
assert_eq!(part1(PROVIDED1).unwrap(), 4);
}
#[test]
fn part1_real() {
assert_eq!(part1(INPUT).unwrap(), 272);
}
#[test]
fn part2_provided() {
assert_eq!(part2(PROVIDED1).unwrap(), 32);
assert_eq!(part2(PROVIDED2).unwrap(), 126);
}
#[test]
fn part2_real() {
assert_eq!(part2(INPUT).unwrap(), 172246);
}
}