split: factor the code common to both split_edges() versions
* spot/twaalgos/split.cc: The two split_edges() versions only differ by the way they split a label. Let's define all the rest of the algorithm in split_edges_aux().
This commit is contained in:
parent
ef10be047c
commit
0a045e5f76
1 changed files with 197 additions and 252 deletions
|
|
@ -51,276 +51,221 @@ namespace std
|
|||
|
||||
namespace spot
|
||||
{
|
||||
// We attempt to add a potentially new set of symbols defined as "value" to
|
||||
// our current set of edge partitions, "current_set". We also specify a set
|
||||
// of valid symbols considered
|
||||
static void add_to_lower_bound_set_helper(
|
||||
std::unordered_set<bdd>& current_set,
|
||||
bdd valid_symbol_set,
|
||||
bdd value)
|
||||
namespace
|
||||
{
|
||||
// This function's correctness is defined by the invariant, that we never
|
||||
// add a bdd to our current set unless the bdd is disjoint from every other
|
||||
// element in the current_set. In other words, we will only reach the final
|
||||
// set.insert(value), if we can iterate over the whole of current_set
|
||||
// without finding some set intersections
|
||||
if (value == bddfalse) // Don't add empty sets, as they subsume everything
|
||||
{
|
||||
return;
|
||||
}
|
||||
for (auto sym : current_set)
|
||||
{
|
||||
// If a sym is a subset of value, recursively add the set of symbols
|
||||
// defined in value, but not in sym. This ensures the two elements
|
||||
// are disjoint.
|
||||
if (bdd_implies(sym, value))
|
||||
{
|
||||
add_to_lower_bound_set_helper(
|
||||
current_set, valid_symbol_set, (value - sym) & valid_symbol_set);
|
||||
return;
|
||||
}
|
||||
// If a sym is a subset of the value we're trying to add, then we
|
||||
// remove the symbol and add the two symbols created by partitioning
|
||||
// the sym with value.
|
||||
else if (bdd_implies(value, sym))
|
||||
{
|
||||
current_set.erase(sym);
|
||||
add_to_lower_bound_set_helper(current_set,
|
||||
valid_symbol_set,
|
||||
sym & value);
|
||||
add_to_lower_bound_set_helper(current_set,
|
||||
valid_symbol_set,
|
||||
sym - value);
|
||||
return;
|
||||
}
|
||||
// We attempt to add a potentially new set of symbols defined as "value" to
|
||||
// our current set of edge partitions, "current_set". We also specify a set
|
||||
// of valid symbols considered
|
||||
static void
|
||||
add_to_lower_bound_set_helper(std::unordered_set<bdd>& current_set,
|
||||
bdd valid_symbol_set, bdd value)
|
||||
{
|
||||
// This function's correctness is defined by the invariant, that
|
||||
// we never add a bdd to our current set unless the bdd is
|
||||
// disjoint from every other element in the current_set. In
|
||||
// other words, we will only reach the final set.insert(value),
|
||||
// if we can iterate over the whole of current_set without
|
||||
// finding some set intersections
|
||||
if (value == bddfalse) // Don't add empty sets, as they subsume everything
|
||||
{
|
||||
return;
|
||||
}
|
||||
for (auto sym : current_set)
|
||||
{
|
||||
// If a sym is a subset of value, recursively add the set of symbols
|
||||
// defined in value, but not in sym. This ensures the two elements
|
||||
// are disjoint.
|
||||
if (bdd_implies(sym, value))
|
||||
{
|
||||
add_to_lower_bound_set_helper(current_set,
|
||||
valid_symbol_set,
|
||||
(value - sym) & valid_symbol_set);
|
||||
return;
|
||||
}
|
||||
// If a sym is a subset of the value we're trying to add, then we
|
||||
// remove the symbol and add the two symbols created by partitioning
|
||||
// the sym with value.
|
||||
else if (bdd_implies(value, sym))
|
||||
{
|
||||
current_set.erase(sym);
|
||||
add_to_lower_bound_set_helper(current_set,
|
||||
valid_symbol_set,
|
||||
sym & value);
|
||||
add_to_lower_bound_set_helper(current_set,
|
||||
valid_symbol_set,
|
||||
sym - value);
|
||||
return;
|
||||
}
|
||||
}
|
||||
// This line is only reachable if value is not a subset and doesn't
|
||||
// subsume any element currently in our set
|
||||
current_set.insert(value);
|
||||
}
|
||||
// This line is only reachable if value is not a subset and doesn't
|
||||
// subsume any element currently in our set
|
||||
current_set.insert(value);
|
||||
}
|
||||
|
||||
static std::array<bdd, 4> create_possible_intersections(
|
||||
bdd valid_symbol_set,
|
||||
std::pair<bdd, bdd> const& first,
|
||||
std::pair<bdd, bdd> const& second)
|
||||
{
|
||||
auto intermediate = second.first & valid_symbol_set;
|
||||
auto intermediate2 = second.second & valid_symbol_set;
|
||||
return {
|
||||
first.first & intermediate,
|
||||
first.second & intermediate,
|
||||
first.first & intermediate2,
|
||||
first.second & intermediate2,
|
||||
};
|
||||
}
|
||||
using bdd_set = std::unordered_set<bdd>;
|
||||
using bdd_pair_set = std::unordered_set<std::pair<bdd, bdd>>;
|
||||
|
||||
using bdd_set = std::unordered_set<bdd>;
|
||||
using bdd_pair_set = std::unordered_set<std::pair<bdd, bdd>>;
|
||||
// Transforms each element of the basis into a complement pair,
|
||||
// with a valid symbol set specified
|
||||
static bdd_pair_set create_complement_pairs(std::vector<bdd> const& basis,
|
||||
bdd valid_symbol_set)
|
||||
{
|
||||
bdd_pair_set intersections;
|
||||
for (bdd sym: basis)
|
||||
{
|
||||
bdd intersection = sym & valid_symbol_set;
|
||||
if (intersection != bddfalse)
|
||||
{
|
||||
bdd negation = valid_symbol_set - intersection;
|
||||
intersections.insert(std::make_pair(intersection, negation));
|
||||
}
|
||||
}
|
||||
return intersections;
|
||||
}
|
||||
|
||||
// Transforms each element of the basis into a complement pair,
|
||||
// with a valid symbol set specified
|
||||
static bdd_pair_set create_complement_pairs(std::vector<bdd> const& basis,
|
||||
bdd valid_symbol_set)
|
||||
{
|
||||
bdd_pair_set intersections;
|
||||
for (auto& sym : basis)
|
||||
{
|
||||
auto intersection = sym & valid_symbol_set;
|
||||
if (intersection != bddfalse)
|
||||
{
|
||||
auto negation = valid_symbol_set - intersection;
|
||||
intersections.insert(std::make_pair(intersection, negation));
|
||||
}
|
||||
}
|
||||
return intersections;
|
||||
}
|
||||
|
||||
template<typename Callable>
|
||||
void iterate_possible_intersections(bdd_pair_set const& complement_pairs,
|
||||
bdd valid_symbol_set,
|
||||
Callable callable)
|
||||
{
|
||||
for (auto it = complement_pairs.begin(); it != complement_pairs.end(); ++it)
|
||||
{
|
||||
template<typename Callable>
|
||||
void iterate_possible_intersections(bdd_pair_set const& complement_pairs,
|
||||
bdd valid_symbol_set,
|
||||
Callable callable)
|
||||
{
|
||||
for (auto it = complement_pairs.begin();
|
||||
it != complement_pairs.end(); ++it)
|
||||
for (auto it2 = std::next(it); it2 != complement_pairs.end(); ++it2)
|
||||
{
|
||||
auto intersections = create_possible_intersections(
|
||||
valid_symbol_set, *it, *it2);
|
||||
for (auto& intersection : intersections)
|
||||
{
|
||||
callable(intersection);
|
||||
}
|
||||
auto intermediate = it2->first & valid_symbol_set;
|
||||
auto intermediate2 = it2->second & valid_symbol_set;
|
||||
callable(it->first & intermediate);
|
||||
callable(it->second & intermediate);
|
||||
callable(it->first & intermediate2);
|
||||
callable(it->second & intermediate2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the lower set bound of a set. A valid symbol set is also
|
||||
// provided to make sure that no symbol exists in the output if it is
|
||||
// not also included in the valid symbol set
|
||||
static bdd_set lower_set_bound(std::vector<bdd> const& basis,
|
||||
bdd valid_symbol_set)
|
||||
{
|
||||
auto complement_pairs = create_complement_pairs(basis, valid_symbol_set);
|
||||
if (complement_pairs.size() == 1)
|
||||
{
|
||||
bdd_set lower_bound;
|
||||
auto& pair = *complement_pairs.begin();
|
||||
if (pair.first != bddfalse
|
||||
&& bdd_implies(pair.first, valid_symbol_set))
|
||||
{
|
||||
lower_bound.insert(pair.first);
|
||||
}
|
||||
if (pair.second != bddfalse
|
||||
&& bdd_implies(pair.second, valid_symbol_set))
|
||||
{
|
||||
lower_bound.insert(pair.second);
|
||||
}
|
||||
return lower_bound;
|
||||
}
|
||||
else
|
||||
{
|
||||
bdd_set lower_bound;
|
||||
iterate_possible_intersections(complement_pairs, valid_symbol_set,
|
||||
[&](auto intersection)
|
||||
{
|
||||
add_to_lower_bound_set_helper(lower_bound,
|
||||
valid_symbol_set,
|
||||
intersection);
|
||||
});
|
||||
|
||||
return lower_bound;
|
||||
}
|
||||
}
|
||||
|
||||
// Partitions a symbol based on a list of other bdds called the basis.
|
||||
// The resulting partition will have the property that for any paritioned
|
||||
// element and any element element in the basis, the partitioned element will
|
||||
// either by completely contained by that element of the basis, or completely
|
||||
// disjoint.
|
||||
static bdd_set generate_contained_or_disjoint_symbols(bdd sym,
|
||||
std::vector<bdd> const& basis)
|
||||
{
|
||||
auto lower_bound = lower_set_bound(basis, sym);
|
||||
// If the sym was disjoint from everything in the basis, we'll be left with
|
||||
// an empty lower_bound. To fix this, we will simply return a singleton,
|
||||
// with sym as the only element. Notice, this singleton will satisfy the
|
||||
// requirements of a return value from this function. Additionally, if the
|
||||
// sym is false, that means nothing can traverse it, so we simply are left
|
||||
// with no edges.
|
||||
if (lower_bound.empty() && sym != bddfalse)
|
||||
{
|
||||
lower_bound.insert(sym);
|
||||
}
|
||||
return lower_bound;
|
||||
|
||||
// Compute the lower set bound of a set. A valid symbol set is also
|
||||
// provided to make sure that no symbol exists in the output if it is
|
||||
// not also included in the valid symbol set
|
||||
static bdd_set lower_set_bound(std::vector<bdd> const& basis,
|
||||
bdd valid_symbol_set)
|
||||
{
|
||||
auto complement_pairs = create_complement_pairs(basis, valid_symbol_set);
|
||||
if (complement_pairs.size() == 1)
|
||||
{
|
||||
bdd_set lower_bound;
|
||||
auto& pair = *complement_pairs.begin();
|
||||
if (pair.first != bddfalse
|
||||
&& bdd_implies(pair.first, valid_symbol_set))
|
||||
lower_bound.insert(pair.first);
|
||||
if (pair.second != bddfalse
|
||||
&& bdd_implies(pair.second, valid_symbol_set))
|
||||
lower_bound.insert(pair.second);
|
||||
return lower_bound;
|
||||
}
|
||||
else
|
||||
{
|
||||
bdd_set lower_bound;
|
||||
iterate_possible_intersections(complement_pairs, valid_symbol_set,
|
||||
[&](auto intersection)
|
||||
{
|
||||
add_to_lower_bound_set_helper(lower_bound,
|
||||
valid_symbol_set,
|
||||
intersection);
|
||||
});
|
||||
return lower_bound;
|
||||
}
|
||||
}
|
||||
|
||||
// Partitions a symbol based on a list of other bdds called the
|
||||
// basis. The resulting partition will have the property that for
|
||||
// any partitioned element and any element element in the basis,
|
||||
// the partitioned element will either by completely contained by
|
||||
// that element of the basis, or completely disjoint.
|
||||
static bdd_set
|
||||
generate_contained_or_disjoint_symbols(bdd sym,
|
||||
std::vector<bdd> const& basis)
|
||||
{
|
||||
auto lower_bound = lower_set_bound(basis, sym);
|
||||
// If the sym was disjoint from everything in the basis, we'll
|
||||
// be left with an empty lower_bound. To fix this, we will
|
||||
// simply return a singleton, with sym as the only
|
||||
// element. Notice, this singleton will satisfy the requirements
|
||||
// of a return value from this function. Additionally, if the
|
||||
// sym is false, that means nothing can traverse it, so we
|
||||
// simply are left with no edges.
|
||||
if (lower_bound.empty() && sym != bddfalse)
|
||||
lower_bound.insert(sym);
|
||||
return lower_bound;
|
||||
}
|
||||
|
||||
template<typename genlabels>
|
||||
twa_graph_ptr split_edges_aux(const const_twa_graph_ptr& aut,
|
||||
genlabels gen)
|
||||
{
|
||||
twa_graph_ptr out = make_twa_graph(aut->get_dict());
|
||||
out->copy_acceptance_of(aut);
|
||||
out->copy_ap_of(aut);
|
||||
out->prop_copy(aut, twa::prop_set::all());
|
||||
out->new_states(aut->num_states());
|
||||
out->set_init_state(aut->get_init_state_number());
|
||||
|
||||
// We use a cache to avoid the costly loop around minterms_of().
|
||||
// Cache entries have the form (id, [begin, end]) where id is the
|
||||
// number of a BDD that as been (or will be) split, and begin/end
|
||||
// denotes a range of existing transition numbers that cover the
|
||||
// split.
|
||||
//
|
||||
// std::pair causes some noexcept warnings when used in
|
||||
// robin_hood::unordered_map with GCC 9.4. Use robin_hood::pair
|
||||
// instead.
|
||||
typedef robin_hood::pair<unsigned, unsigned> cached_t;
|
||||
robin_hood::unordered_map<unsigned, cached_t> split_cond;
|
||||
|
||||
internal::univ_dest_mapper<twa_graph::graph_t> uniq(out->get_graph());
|
||||
|
||||
for (auto& e: aut->edges())
|
||||
{
|
||||
bdd cond = e.cond;
|
||||
if (cond == bddfalse)
|
||||
continue;
|
||||
unsigned dst = e.dst;
|
||||
if (aut->is_univ_dest(dst))
|
||||
{
|
||||
auto d = aut->univ_dests(dst);
|
||||
dst = uniq.new_univ_dests(d.begin(), d.end());
|
||||
}
|
||||
|
||||
auto& [begin, end] = split_cond[cond.id()];
|
||||
if (begin == end)
|
||||
{
|
||||
begin = out->num_edges() + 1;
|
||||
for (bdd minterm: gen(cond))
|
||||
out->new_edge(e.src, dst, minterm, e.acc);
|
||||
end = out->num_edges() + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
auto& g = out->get_graph();
|
||||
for (unsigned i = begin; i < end; ++i)
|
||||
out->new_edge(e.src, dst, g.edge_storage(i).cond, e.acc);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
}
|
||||
|
||||
twa_graph_ptr split_edges(const const_twa_graph_ptr& aut)
|
||||
{
|
||||
twa_graph_ptr out = make_twa_graph(aut->get_dict());
|
||||
out->copy_acceptance_of(aut);
|
||||
out->copy_ap_of(aut);
|
||||
out->prop_copy(aut, twa::prop_set::all());
|
||||
out->new_states(aut->num_states());
|
||||
out->set_init_state(aut->get_init_state_number());
|
||||
|
||||
// We use a cache to avoid the costly loop around minterms_of().
|
||||
// Cache entries have the form (id, [begin, end]) where id is the
|
||||
// number of a BDD that as been (or will be) split, and begin/end
|
||||
// denotes a range of existing transition numbers that cover the
|
||||
// split.
|
||||
//
|
||||
// std::pair causes some noexcept warnings when used in
|
||||
// robin_hood::unordered_map with GCC 9.4. Use robin_hood::pair
|
||||
// instead.
|
||||
typedef robin_hood::pair<unsigned, unsigned> cached_t;
|
||||
robin_hood::unordered_map<unsigned, cached_t> split_cond;
|
||||
|
||||
bdd all = aut->ap_vars();
|
||||
internal::univ_dest_mapper<twa_graph::graph_t> uniq(out->get_graph());
|
||||
|
||||
for (auto& e: aut->edges())
|
||||
{
|
||||
bdd cond = e.cond;
|
||||
if (cond == bddfalse)
|
||||
continue;
|
||||
unsigned dst = e.dst;
|
||||
if (aut->is_univ_dest(dst))
|
||||
{
|
||||
auto d = aut->univ_dests(dst);
|
||||
dst = uniq.new_univ_dests(d.begin(), d.end());
|
||||
}
|
||||
|
||||
auto& [begin, end] = split_cond[cond.id()];
|
||||
if (begin == end)
|
||||
{
|
||||
begin = out->num_edges() + 1;
|
||||
for (bdd minterm: minterms_of(cond, all))
|
||||
out->new_edge(e.src, dst, minterm, e.acc);
|
||||
end = out->num_edges() + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
auto& g = out->get_graph();
|
||||
for (unsigned i = begin; i < end; ++i)
|
||||
out->new_edge(e.src, dst, g.edge_storage(i).cond, e.acc);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
return split_edges_aux(aut, [&](bdd cond) {
|
||||
return minterms_of(cond, all);
|
||||
});
|
||||
}
|
||||
|
||||
twa_graph_ptr split_edges(const const_twa_graph_ptr& aut,
|
||||
std::vector<bdd> const& basis)
|
||||
{
|
||||
twa_graph_ptr out = make_twa_graph(aut->get_dict());
|
||||
out->copy_acceptance_of(aut);
|
||||
out->copy_ap_of(aut);
|
||||
out->prop_copy(aut, twa::prop_set::all());
|
||||
out->new_states(aut->num_states());
|
||||
out->set_init_state(aut->get_init_state_number());
|
||||
|
||||
// We use a cache to avoid the costly loop around minterms_of().
|
||||
// Cache entries have the form (id, [begin, end]) where id is the
|
||||
// number of a BDD that as been (or will be) split, and begin/end
|
||||
// denotes a range of existing transition numbers that cover the
|
||||
// split.
|
||||
using cached_t = std::pair<unsigned, unsigned>;
|
||||
std::unordered_map<unsigned, cached_t> split_cond;
|
||||
internal::univ_dest_mapper<twa_graph::graph_t> uniq(out->get_graph());
|
||||
|
||||
for (auto& e: aut->edges())
|
||||
{
|
||||
bdd const& cond = e.cond;
|
||||
unsigned dst = e.dst;
|
||||
|
||||
if (cond == bddfalse)
|
||||
continue;
|
||||
if (aut->is_univ_dest(dst))
|
||||
{
|
||||
auto d = aut->univ_dests(dst);
|
||||
dst = uniq.new_univ_dests(d.begin(), d.end());
|
||||
}
|
||||
|
||||
auto& [begin, end] = split_cond[cond.id()];
|
||||
if (begin == end)
|
||||
{
|
||||
begin = out->num_edges() + 1;
|
||||
auto split = generate_contained_or_disjoint_symbols(cond,
|
||||
basis);
|
||||
for (bdd minterm : split)
|
||||
{
|
||||
out->new_edge(e.src, dst, minterm, e.acc);
|
||||
}
|
||||
end = out->num_edges() + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
auto& g = out->get_graph();
|
||||
for (unsigned i = begin; i < end; ++i)
|
||||
{
|
||||
out->new_edge(e.src, dst, g.edge_storage(i).cond, e.acc);
|
||||
}
|
||||
}
|
||||
}
|
||||
return out;
|
||||
bdd all = aut->ap_vars();
|
||||
return split_edges_aux(aut, [&](bdd cond) {
|
||||
return generate_contained_or_disjoint_symbols(cond, basis);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue