split: factor the code common to both split_edges() versions

* spot/twaalgos/split.cc: The two split_edges() versions only differ
by the way they split a label.  Let's define all the rest of the
algorithm in split_edges_aux().
This commit is contained in:
Alexandre Duret-Lutz 2024-03-18 11:01:24 +01:00
parent ef10be047c
commit 0a045e5f76

View file

@ -51,276 +51,221 @@ namespace std
namespace spot
{
// We attempt to add a potentially new set of symbols defined as "value" to
// our current set of edge partitions, "current_set". We also specify a set
// of valid symbols considered
static void add_to_lower_bound_set_helper(
std::unordered_set<bdd>& current_set,
bdd valid_symbol_set,
bdd value)
namespace
{
// This function's correctness is defined by the invariant, that we never
// add a bdd to our current set unless the bdd is disjoint from every other
// element in the current_set. In other words, we will only reach the final
// set.insert(value), if we can iterate over the whole of current_set
// without finding some set intersections
if (value == bddfalse) // Don't add empty sets, as they subsume everything
{
return;
}
for (auto sym : current_set)
{
// If a sym is a subset of value, recursively add the set of symbols
// defined in value, but not in sym. This ensures the two elements
// are disjoint.
if (bdd_implies(sym, value))
{
add_to_lower_bound_set_helper(
current_set, valid_symbol_set, (value - sym) & valid_symbol_set);
return;
}
// If a sym is a subset of the value we're trying to add, then we
// remove the symbol and add the two symbols created by partitioning
// the sym with value.
else if (bdd_implies(value, sym))
{
current_set.erase(sym);
add_to_lower_bound_set_helper(current_set,
valid_symbol_set,
sym & value);
add_to_lower_bound_set_helper(current_set,
valid_symbol_set,
sym - value);
return;
}
// We attempt to add a potentially new set of symbols defined as "value" to
// our current set of edge partitions, "current_set". We also specify a set
// of valid symbols considered
static void
add_to_lower_bound_set_helper(std::unordered_set<bdd>& current_set,
bdd valid_symbol_set, bdd value)
{
// This function's correctness is defined by the invariant, that
// we never add a bdd to our current set unless the bdd is
// disjoint from every other element in the current_set. In
// other words, we will only reach the final set.insert(value),
// if we can iterate over the whole of current_set without
// finding some set intersections
if (value == bddfalse) // Don't add empty sets, as they subsume everything
{
return;
}
for (auto sym : current_set)
{
// If a sym is a subset of value, recursively add the set of symbols
// defined in value, but not in sym. This ensures the two elements
// are disjoint.
if (bdd_implies(sym, value))
{
add_to_lower_bound_set_helper(current_set,
valid_symbol_set,
(value - sym) & valid_symbol_set);
return;
}
// If a sym is a subset of the value we're trying to add, then we
// remove the symbol and add the two symbols created by partitioning
// the sym with value.
else if (bdd_implies(value, sym))
{
current_set.erase(sym);
add_to_lower_bound_set_helper(current_set,
valid_symbol_set,
sym & value);
add_to_lower_bound_set_helper(current_set,
valid_symbol_set,
sym - value);
return;
}
}
// This line is only reachable if value is not a subset and doesn't
// subsume any element currently in our set
current_set.insert(value);
}
// This line is only reachable if value is not a subset and doesn't
// subsume any element currently in our set
current_set.insert(value);
}
static std::array<bdd, 4> create_possible_intersections(
bdd valid_symbol_set,
std::pair<bdd, bdd> const& first,
std::pair<bdd, bdd> const& second)
{
auto intermediate = second.first & valid_symbol_set;
auto intermediate2 = second.second & valid_symbol_set;
return {
first.first & intermediate,
first.second & intermediate,
first.first & intermediate2,
first.second & intermediate2,
};
}
using bdd_set = std::unordered_set<bdd>;
using bdd_pair_set = std::unordered_set<std::pair<bdd, bdd>>;
using bdd_set = std::unordered_set<bdd>;
using bdd_pair_set = std::unordered_set<std::pair<bdd, bdd>>;
// Transforms each element of the basis into a complement pair,
// with a valid symbol set specified
static bdd_pair_set create_complement_pairs(std::vector<bdd> const& basis,
bdd valid_symbol_set)
{
bdd_pair_set intersections;
for (bdd sym: basis)
{
bdd intersection = sym & valid_symbol_set;
if (intersection != bddfalse)
{
bdd negation = valid_symbol_set - intersection;
intersections.insert(std::make_pair(intersection, negation));
}
}
return intersections;
}
// Transforms each element of the basis into a complement pair,
// with a valid symbol set specified
static bdd_pair_set create_complement_pairs(std::vector<bdd> const& basis,
bdd valid_symbol_set)
{
bdd_pair_set intersections;
for (auto& sym : basis)
{
auto intersection = sym & valid_symbol_set;
if (intersection != bddfalse)
{
auto negation = valid_symbol_set - intersection;
intersections.insert(std::make_pair(intersection, negation));
}
}
return intersections;
}
template<typename Callable>
void iterate_possible_intersections(bdd_pair_set const& complement_pairs,
bdd valid_symbol_set,
Callable callable)
{
for (auto it = complement_pairs.begin(); it != complement_pairs.end(); ++it)
{
template<typename Callable>
void iterate_possible_intersections(bdd_pair_set const& complement_pairs,
bdd valid_symbol_set,
Callable callable)
{
for (auto it = complement_pairs.begin();
it != complement_pairs.end(); ++it)
for (auto it2 = std::next(it); it2 != complement_pairs.end(); ++it2)
{
auto intersections = create_possible_intersections(
valid_symbol_set, *it, *it2);
for (auto& intersection : intersections)
{
callable(intersection);
}
auto intermediate = it2->first & valid_symbol_set;
auto intermediate2 = it2->second & valid_symbol_set;
callable(it->first & intermediate);
callable(it->second & intermediate);
callable(it->first & intermediate2);
callable(it->second & intermediate2);
}
}
}
// Compute the lower set bound of a set. A valid symbol set is also
// provided to make sure that no symbol exists in the output if it is
// not also included in the valid symbol set
static bdd_set lower_set_bound(std::vector<bdd> const& basis,
bdd valid_symbol_set)
{
auto complement_pairs = create_complement_pairs(basis, valid_symbol_set);
if (complement_pairs.size() == 1)
{
bdd_set lower_bound;
auto& pair = *complement_pairs.begin();
if (pair.first != bddfalse
&& bdd_implies(pair.first, valid_symbol_set))
{
lower_bound.insert(pair.first);
}
if (pair.second != bddfalse
&& bdd_implies(pair.second, valid_symbol_set))
{
lower_bound.insert(pair.second);
}
return lower_bound;
}
else
{
bdd_set lower_bound;
iterate_possible_intersections(complement_pairs, valid_symbol_set,
[&](auto intersection)
{
add_to_lower_bound_set_helper(lower_bound,
valid_symbol_set,
intersection);
});
return lower_bound;
}
}
// Partitions a symbol based on a list of other bdds called the basis.
// The resulting partition will have the property that for any paritioned
// element and any element element in the basis, the partitioned element will
// either by completely contained by that element of the basis, or completely
// disjoint.
static bdd_set generate_contained_or_disjoint_symbols(bdd sym,
std::vector<bdd> const& basis)
{
auto lower_bound = lower_set_bound(basis, sym);
// If the sym was disjoint from everything in the basis, we'll be left with
// an empty lower_bound. To fix this, we will simply return a singleton,
// with sym as the only element. Notice, this singleton will satisfy the
// requirements of a return value from this function. Additionally, if the
// sym is false, that means nothing can traverse it, so we simply are left
// with no edges.
if (lower_bound.empty() && sym != bddfalse)
{
lower_bound.insert(sym);
}
return lower_bound;
// Compute the lower set bound of a set. A valid symbol set is also
// provided to make sure that no symbol exists in the output if it is
// not also included in the valid symbol set
static bdd_set lower_set_bound(std::vector<bdd> const& basis,
bdd valid_symbol_set)
{
auto complement_pairs = create_complement_pairs(basis, valid_symbol_set);
if (complement_pairs.size() == 1)
{
bdd_set lower_bound;
auto& pair = *complement_pairs.begin();
if (pair.first != bddfalse
&& bdd_implies(pair.first, valid_symbol_set))
lower_bound.insert(pair.first);
if (pair.second != bddfalse
&& bdd_implies(pair.second, valid_symbol_set))
lower_bound.insert(pair.second);
return lower_bound;
}
else
{
bdd_set lower_bound;
iterate_possible_intersections(complement_pairs, valid_symbol_set,
[&](auto intersection)
{
add_to_lower_bound_set_helper(lower_bound,
valid_symbol_set,
intersection);
});
return lower_bound;
}
}
// Partitions a symbol based on a list of other bdds called the
// basis. The resulting partition will have the property that for
// any partitioned element and any element element in the basis,
// the partitioned element will either by completely contained by
// that element of the basis, or completely disjoint.
static bdd_set
generate_contained_or_disjoint_symbols(bdd sym,
std::vector<bdd> const& basis)
{
auto lower_bound = lower_set_bound(basis, sym);
// If the sym was disjoint from everything in the basis, we'll
// be left with an empty lower_bound. To fix this, we will
// simply return a singleton, with sym as the only
// element. Notice, this singleton will satisfy the requirements
// of a return value from this function. Additionally, if the
// sym is false, that means nothing can traverse it, so we
// simply are left with no edges.
if (lower_bound.empty() && sym != bddfalse)
lower_bound.insert(sym);
return lower_bound;
}
template<typename genlabels>
twa_graph_ptr split_edges_aux(const const_twa_graph_ptr& aut,
genlabels gen)
{
twa_graph_ptr out = make_twa_graph(aut->get_dict());
out->copy_acceptance_of(aut);
out->copy_ap_of(aut);
out->prop_copy(aut, twa::prop_set::all());
out->new_states(aut->num_states());
out->set_init_state(aut->get_init_state_number());
// We use a cache to avoid the costly loop around minterms_of().
// Cache entries have the form (id, [begin, end]) where id is the
// number of a BDD that as been (or will be) split, and begin/end
// denotes a range of existing transition numbers that cover the
// split.
//
// std::pair causes some noexcept warnings when used in
// robin_hood::unordered_map with GCC 9.4. Use robin_hood::pair
// instead.
typedef robin_hood::pair<unsigned, unsigned> cached_t;
robin_hood::unordered_map<unsigned, cached_t> split_cond;
internal::univ_dest_mapper<twa_graph::graph_t> uniq(out->get_graph());
for (auto& e: aut->edges())
{
bdd cond = e.cond;
if (cond == bddfalse)
continue;
unsigned dst = e.dst;
if (aut->is_univ_dest(dst))
{
auto d = aut->univ_dests(dst);
dst = uniq.new_univ_dests(d.begin(), d.end());
}
auto& [begin, end] = split_cond[cond.id()];
if (begin == end)
{
begin = out->num_edges() + 1;
for (bdd minterm: gen(cond))
out->new_edge(e.src, dst, minterm, e.acc);
end = out->num_edges() + 1;
}
else
{
auto& g = out->get_graph();
for (unsigned i = begin; i < end; ++i)
out->new_edge(e.src, dst, g.edge_storage(i).cond, e.acc);
}
}
return out;
}
}
twa_graph_ptr split_edges(const const_twa_graph_ptr& aut)
{
twa_graph_ptr out = make_twa_graph(aut->get_dict());
out->copy_acceptance_of(aut);
out->copy_ap_of(aut);
out->prop_copy(aut, twa::prop_set::all());
out->new_states(aut->num_states());
out->set_init_state(aut->get_init_state_number());
// We use a cache to avoid the costly loop around minterms_of().
// Cache entries have the form (id, [begin, end]) where id is the
// number of a BDD that as been (or will be) split, and begin/end
// denotes a range of existing transition numbers that cover the
// split.
//
// std::pair causes some noexcept warnings when used in
// robin_hood::unordered_map with GCC 9.4. Use robin_hood::pair
// instead.
typedef robin_hood::pair<unsigned, unsigned> cached_t;
robin_hood::unordered_map<unsigned, cached_t> split_cond;
bdd all = aut->ap_vars();
internal::univ_dest_mapper<twa_graph::graph_t> uniq(out->get_graph());
for (auto& e: aut->edges())
{
bdd cond = e.cond;
if (cond == bddfalse)
continue;
unsigned dst = e.dst;
if (aut->is_univ_dest(dst))
{
auto d = aut->univ_dests(dst);
dst = uniq.new_univ_dests(d.begin(), d.end());
}
auto& [begin, end] = split_cond[cond.id()];
if (begin == end)
{
begin = out->num_edges() + 1;
for (bdd minterm: minterms_of(cond, all))
out->new_edge(e.src, dst, minterm, e.acc);
end = out->num_edges() + 1;
}
else
{
auto& g = out->get_graph();
for (unsigned i = begin; i < end; ++i)
out->new_edge(e.src, dst, g.edge_storage(i).cond, e.acc);
}
}
return out;
return split_edges_aux(aut, [&](bdd cond) {
return minterms_of(cond, all);
});
}
twa_graph_ptr split_edges(const const_twa_graph_ptr& aut,
std::vector<bdd> const& basis)
{
twa_graph_ptr out = make_twa_graph(aut->get_dict());
out->copy_acceptance_of(aut);
out->copy_ap_of(aut);
out->prop_copy(aut, twa::prop_set::all());
out->new_states(aut->num_states());
out->set_init_state(aut->get_init_state_number());
// We use a cache to avoid the costly loop around minterms_of().
// Cache entries have the form (id, [begin, end]) where id is the
// number of a BDD that as been (or will be) split, and begin/end
// denotes a range of existing transition numbers that cover the
// split.
using cached_t = std::pair<unsigned, unsigned>;
std::unordered_map<unsigned, cached_t> split_cond;
internal::univ_dest_mapper<twa_graph::graph_t> uniq(out->get_graph());
for (auto& e: aut->edges())
{
bdd const& cond = e.cond;
unsigned dst = e.dst;
if (cond == bddfalse)
continue;
if (aut->is_univ_dest(dst))
{
auto d = aut->univ_dests(dst);
dst = uniq.new_univ_dests(d.begin(), d.end());
}
auto& [begin, end] = split_cond[cond.id()];
if (begin == end)
{
begin = out->num_edges() + 1;
auto split = generate_contained_or_disjoint_symbols(cond,
basis);
for (bdd minterm : split)
{
out->new_edge(e.src, dst, minterm, e.acc);
}
end = out->num_edges() + 1;
}
else
{
auto& g = out->get_graph();
for (unsigned i = begin; i < end; ++i)
{
out->new_edge(e.src, dst, g.edge_storage(i).cond, e.acc);
}
}
}
return out;
bdd all = aut->ap_vars();
return split_edges_aux(aut, [&](bdd cond) {
return generate_contained_or_disjoint_symbols(cond, basis);
});
}
}