tl: add some implication-based rewritings for "<->", "->", and "xor"
This prevents an exception from being raised if NNF is not performed on Boolean properties and implication-based checks are used. * NEWS: Mention the issue. * spot/tl/simplify.cc, doc/tl/tl.tex: Add some rules. * tests/python/ltlsimple.py: Test them.
This commit is contained in:
parent
d8419db618
commit
126d392355
4 changed files with 113 additions and 58 deletions
7
NEWS
7
NEWS
|
|
@ -10,6 +10,13 @@ New in spot 2.6.0.dev (not yet released)
|
|||
- scc_info::split_on_sets() did not correctly register the
|
||||
atomic propositions of the returned automata.
|
||||
|
||||
- The spot::tl_simplifier class could raise an exception while
|
||||
attempting to reduce formulas containing unsimplified <->, -> or
|
||||
xor, if options nenoform_stop_on_boolean and synt_impl are both
|
||||
set. (This combinations of options is not available from
|
||||
command-line tools.)
|
||||
|
||||
|
||||
New in spot 2.6 (2018-07-04)
|
||||
|
||||
Command-line tools:
|
||||
|
|
|
|||
108
doc/tl/tl.tex
108
doc/tl/tl.tex
|
|
@ -1744,58 +1744,62 @@ are counted as one.
|
|||
\begingroup
|
||||
\allowdisplaybreaks
|
||||
\begin{alignat*}{3}
|
||||
\text{if~} & f\simp \NOT g && \text{~then~} & f\OR g & \equiv \1 \\
|
||||
\text{if~} & f\simp \NOT g && \text{~then~} & f\AND g & \equiv \0 \\
|
||||
\text{if~} & \flessg && \text{~then~} & f\OR g & \equiv f \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\OR g & \equiv g \\
|
||||
\text{if~} & \glessf && \text{~then~} & f\AND g & \equiv g \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\AND g & \equiv f \\
|
||||
\text{if~} & \flessg && \text{~then~} & f\U g & \equiv f \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\U g & \equiv g \\
|
||||
\text{if~} & (f\U g)\Simp g && \text{~then~} & f\U g & \equiv g \\
|
||||
\text{if~} & (\NOT f)\simp g && \text{~then~} & f\U g & \equiv \F g \\
|
||||
\text{if~} & g\simp e && \text{~then~} & e\U g & \equiv \F g \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\U (g \U h) & \equiv g \U h \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\U (g \W h) & \equiv g \W h \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\U (g \U h) & \equiv f \U h \\
|
||||
\text{if~} & f\simp h && \text{~then~} & f\U (g \R (h \U k)) & \equiv g \R (h \U k) \\
|
||||
\text{if~} & f\simp h && \text{~then~} & f\U (g \R (h \W k)) & \equiv g \R (h \W k) \\
|
||||
\text{if~} & f\simp h && \text{~then~} & f\U (g \M (h \U k)) & \equiv g \M (h \U k) \\
|
||||
\text{if~} & f\simp h && \text{~then~} & f\U (g \M (h \W k)) & \equiv g \M (h \W k) \\
|
||||
\text{if~} & f\simp h && \text{~then~} & (f\U g) \U h & \equiv g \U h \\
|
||||
\text{if~} & f\simp h && \text{~then~} & (f\W g) \U h & \equiv g \U h \\
|
||||
\text{if~} & g\simp h && \text{~then~} & (f\U g) \U h & \equiv (f \U g) \OR h \\
|
||||
\text{if~} & (\NOT f)\simp g && \text{~then~} & f\W g & \equiv \1 \\
|
||||
\text{if~} & \flessg && \text{~then~} & f\W g & \equiv f \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\W g & \equiv g \\
|
||||
\text{if~} & (f\W g)\Simp g && \text{~then~} & f\W g & \equiv g \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\W (g \W h) & \equiv g \W h \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\W (g \U h) & \equiv f \W h \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\W (g \W h) & \equiv f \W h \\
|
||||
\text{if~} & f\simp h && \text{~then~} & (f\U g) \W h & \equiv g \W h \\
|
||||
\text{if~} & f\simp h && \text{~then~} & (f\W g) \W h & \equiv g \W h \\
|
||||
\text{if~} & g\simp h && \text{~then~} & (f\W g) \W h & \equiv (f \W g) \OR h \\
|
||||
\text{if~} & g\simp h && \text{~then~} & (f\U g) \W h & \equiv (f \U g) \OR h \\
|
||||
\text{if~} & \flessg && \text{~then~} & f\R g & \equiv f \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\R g & \equiv g \\
|
||||
\text{if~} & g\simp \NOT f && \text{~then~} & f\R g & \equiv \G g \\
|
||||
\text{if~} & u\simp g && \text{~then~} & u\R g & \equiv \G g \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\R (g \R h) & \equiv g \R h \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\R (g \M h) & \equiv g \M h \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\R (g \R h) & \equiv f \R h \\
|
||||
\text{if~} & h\simp f && \text{~then~} & (f\R g) \R h & \equiv g \R h \\
|
||||
\text{if~} & h\simp f && \text{~then~} & (f\M g) \R h & \equiv g \R h \\
|
||||
\text{if~} & g\simp h && \text{~then~} & (f\R g) \R h & \equiv (f \AND g) \R h \\
|
||||
\text{if~} & g\simp h && \text{~then~} & (f\M g) \R h & \equiv (f \AND g) \R h \\
|
||||
\text{if~} & \flessg && \text{~then~} & f\M g & \equiv f \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\M g & \equiv g \\
|
||||
\text{if~} & g\simp \NOT f && \text{~then~} & f\M g & \equiv \0 \\
|
||||
\text{if~} & g\simp f && \text{~then~} & f\M (g \M h) & \equiv g \M h \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\M (g \M h) & \equiv f \M h \\
|
||||
\text{if~} & f\simp g && \text{~then~} & f\M (g \R h) & \equiv f \M h \\
|
||||
\text{if~} & h\simp f && \text{~then~} & (f\M g) \M h & \equiv g \M h \\
|
||||
\text{if~} & h\simp f && \text{~then~} & (f\R g) \M h & \equiv g \M h \\
|
||||
\text{if~} & g\simp h && \text{~then~} & (f\M g) \M h & \equiv (f \AND g) \M h \\
|
||||
\text{if~} & f\simp \NOT g & & \text{~then~} & f\OR g & \equiv \1 \\
|
||||
\text{if~} & f\simp \NOT g & & \text{~then~} & f\AND g & \equiv \0 \\
|
||||
\text{if~} & \flessg & & \text{~then~} & f\OR g & \equiv f \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\OR g & \equiv g \\
|
||||
\text{if~} & \glessf & & \text{~then~} & f\AND g & \equiv g \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\AND g & \equiv f \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\EQUIV g & \equiv g\IMPLIES f \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\IMPLIES g & \equiv \1 \\
|
||||
\text{if~} & (\NOT f)\simp g & & \text{~then~} & f\XOR g & \equiv g\IMPLIES \NOT f \\
|
||||
\text{if~} & f\simp\NOT g & & \text{~then~} & f\XOR g & \equiv (\NOT g)\IMPLIES f \\
|
||||
\text{if~} & \flessg & & \text{~then~} & f\U g & \equiv f \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\U g & \equiv g \\
|
||||
\text{if~} & (f\U g)\Simp g & & \text{~then~} & f\U g & \equiv g \\
|
||||
\text{if~} & (\NOT f)\simp g & & \text{~then~} & f\U g & \equiv \F g \\
|
||||
\text{if~} & g\simp e & & \text{~then~} & e\U g & \equiv \F g \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\U (g \U h) & \equiv g \U h \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\U (g \W h) & \equiv g \W h \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\U (g \U h) & \equiv f \U h \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & f\U (g \R (h \U k)) & \equiv g \R (h \U k) \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & f\U (g \R (h \W k)) & \equiv g \R (h \W k) \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & f\U (g \M (h \U k)) & \equiv g \M (h \U k) \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & f\U (g \M (h \W k)) & \equiv g \M (h \W k) \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & (f\U g) \U h & \equiv g \U h \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & (f\W g) \U h & \equiv g \U h \\
|
||||
\text{if~} & g\simp h & & \text{~then~} & (f\U g) \U h & \equiv (f \U g) \OR h \\
|
||||
\text{if~} & (\NOT f)\simp g & & \text{~then~} & f\W g & \equiv \1 \\
|
||||
\text{if~} & \flessg & & \text{~then~} & f\W g & \equiv f \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\W g & \equiv g \\
|
||||
\text{if~} & (f\W g)\Simp g & & \text{~then~} & f\W g & \equiv g \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\W (g \W h) & \equiv g \W h \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\W (g \U h) & \equiv f \W h \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\W (g \W h) & \equiv f \W h \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & (f\U g) \W h & \equiv g \W h \\
|
||||
\text{if~} & f\simp h & & \text{~then~} & (f\W g) \W h & \equiv g \W h \\
|
||||
\text{if~} & g\simp h & & \text{~then~} & (f\W g) \W h & \equiv (f \W g) \OR h \\
|
||||
\text{if~} & g\simp h & & \text{~then~} & (f\U g) \W h & \equiv (f \U g) \OR h \\
|
||||
\text{if~} & \flessg & & \text{~then~} & f\R g & \equiv f \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\R g & \equiv g \\
|
||||
\text{if~} & g\simp \NOT f & & \text{~then~} & f\R g & \equiv \G g \\
|
||||
\text{if~} & u\simp g & & \text{~then~} & u\R g & \equiv \G g \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\R (g \R h) & \equiv g \R h \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\R (g \M h) & \equiv g \M h \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\R (g \R h) & \equiv f \R h \\
|
||||
\text{if~} & h\simp f & & \text{~then~} & (f\R g) \R h & \equiv g \R h \\
|
||||
\text{if~} & h\simp f & & \text{~then~} & (f\M g) \R h & \equiv g \R h \\
|
||||
\text{if~} & g\simp h & & \text{~then~} & (f\R g) \R h & \equiv (f \AND g) \R h \\
|
||||
\text{if~} & g\simp h & & \text{~then~} & (f\M g) \R h & \equiv (f \AND g) \R h \\
|
||||
\text{if~} & \flessg & & \text{~then~} & f\M g & \equiv f \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\M g & \equiv g \\
|
||||
\text{if~} & g\simp \NOT f & & \text{~then~} & f\M g & \equiv \0 \\
|
||||
\text{if~} & g\simp f & & \text{~then~} & f\M (g \M h) & \equiv g \M h \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\M (g \M h) & \equiv f \M h \\
|
||||
\text{if~} & f\simp g & & \text{~then~} & f\M (g \R h) & \equiv f \M h \\
|
||||
\text{if~} & h\simp f & & \text{~then~} & (f\M g) \M h & \equiv g \M h \\
|
||||
\text{if~} & h\simp f & & \text{~then~} & (f\R g) \M h & \equiv g \M h \\
|
||||
\text{if~} & g\simp h & & \text{~then~} & (f\M g) \M h & \equiv (f \AND g) \M h \\
|
||||
\end{alignat*}
|
||||
\endgroup
|
||||
|
||||
|
|
|
|||
|
|
@ -1775,12 +1775,38 @@ namespace spot
|
|||
trace << "bo: trying inclusion-based rules" << std::endl;
|
||||
switch (o)
|
||||
{
|
||||
case op::Xor:
|
||||
case op::Equiv:
|
||||
{
|
||||
if (c_->implication(a, b))
|
||||
return recurse(formula::Implies(b, a));
|
||||
if (c_->implication(b, a))
|
||||
return recurse(formula::Implies(a, b));
|
||||
break;
|
||||
}
|
||||
case op::Implies:
|
||||
SPOT_UNIMPLEMENTED();
|
||||
break;
|
||||
|
||||
{
|
||||
if (c_->implication(a, b))
|
||||
return formula::tt();
|
||||
break;
|
||||
}
|
||||
case op::Xor:
|
||||
{
|
||||
// if (!a)->b then a xor b = b->!a = a->!b
|
||||
if (c_->implication_neg(a, b, false))
|
||||
{
|
||||
if (b.is(op::Not))
|
||||
return recurse(formula::Implies(a, b[0]));
|
||||
return recurse(formula::Implies(b, formula::Not(a)));
|
||||
}
|
||||
// if a->!b then a xor b = (!b)->a = (!a)->b
|
||||
if (c_->implication_neg(a, b, true))
|
||||
{
|
||||
if (b.is(op::Not))
|
||||
return recurse(formula::Implies(b[0], a));
|
||||
return recurse(formula::Implies(formula::Not(a), b));
|
||||
}
|
||||
break;
|
||||
}
|
||||
case op::U:
|
||||
// if a => b, then a U b = b
|
||||
if (c_->implication(a, b))
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# -*- mode: python; coding: utf-8 -*-
|
||||
# Copyright (C) 2009, 2010, 2012, 2015 Laboratoire de Recherche et Développement
|
||||
# de l'Epita (LRDE).
|
||||
# Copyright (C) 2009, 2010, 2012, 2015, 2018 Laboratoire de Recherche et
|
||||
# Développement de l'Epita (LRDE).
|
||||
# Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
|
||||
# département Systemes Répartis Coopératifs (SRC), Université Pierre
|
||||
# et Marie Curie.
|
||||
|
|
@ -116,3 +116,21 @@ Default for shell: echo 'a U (b U "$strange[0]=name")' | ...
|
|||
LBT for shell: echo 'U "a" U "b" "$strange[0]=name"' | ...
|
||||
Default for CSV: ...,"a U (b U ""$strange[0]=name"")",...
|
||||
Wring, centered: ~~~~~(a=1) U ((b=1) U ("$strange[0]=name"=1))~~~~~"""
|
||||
|
||||
|
||||
opt = spot.tl_simplifier_options(False, True, True,
|
||||
True, True, True,
|
||||
False, False, False)
|
||||
|
||||
for (input, output) in [('(a&b)<->b', 'b->(a&b)'),
|
||||
('b<->(a&b)', 'b->(a&b)'),
|
||||
('(a&b)->b', '1'),
|
||||
('b->(a&b)', 'b->(a&b)'),
|
||||
('(!(a&b)) xor b', 'b->(a&b)'),
|
||||
('(a&b) xor !b', 'b->(a&b)'),
|
||||
('b xor (!(a&b))', 'b->(a&b)'),
|
||||
('!b xor (a&b)', 'b->(a&b)')]:
|
||||
f = spot.tl_simplifier(opt).simplify(input)
|
||||
print(input, f, output)
|
||||
assert(f == output)
|
||||
assert(spot.are_equivalent(input, output))
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue