move spot/bin/ and spot/tests/ up by one level
* spot/bin/: Move... * bin/: ... here. * spot/tests/: Move... * tests/: ... here. * Makefile.am, README, bench/stutter/Makefile.am, bench/stutter/stutter_invariance_formulas.cc, doc/Makefile.am, configure.ac, debian/rules, spot/Makefile.am, spot/ltsmin/Makefile.am, spot/ltsmin/kripke.test, spot/sanity/style.test, python/tests/run.in: Adjust.
This commit is contained in:
parent
ff4837f4f2
commit
134dfc73de
220 changed files with 35 additions and 30 deletions
834
bin/genltl.cc
Normal file
834
bin/genltl.cc
Normal file
|
|
@ -0,0 +1,834 @@
|
|||
// -*- coding: utf-8 -*-
|
||||
// Copyright (C) 2012, 2013, 2015 Laboratoire de Recherche et Développement
|
||||
// de l'Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
//
|
||||
// Spot is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation; either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||||
// License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// Families defined here come from the following papers:
|
||||
//
|
||||
// @InProceedings{cichon.09.depcos,
|
||||
// author = {Jacek Cicho{\'n} and Adam Czubak and Andrzej Jasi{\'n}ski},
|
||||
// title = {Minimal {B\"uchi} Automata for Certain Classes of {LTL} Formulas},
|
||||
// booktitle = {Proceedings of the Fourth International Conference on
|
||||
// Dependability of Computer Systems},
|
||||
// pages = {17--24},
|
||||
// year = 2009,
|
||||
// publisher = {IEEE Computer Society},
|
||||
// }
|
||||
//
|
||||
// @InProceedings{geldenhuys.06.spin,
|
||||
// author = {Jaco Geldenhuys and Henri Hansen},
|
||||
// title = {Larger Automata and Less Work for LTL Model Checking},
|
||||
// booktitle = {Proceedings of the 13th International SPIN Workshop},
|
||||
// year = {2006},
|
||||
// pages = {53--70},
|
||||
// series = {Lecture Notes in Computer Science},
|
||||
// volume = {3925},
|
||||
// publisher = {Springer}
|
||||
// }
|
||||
//
|
||||
// @InProceedings{gastin.01.cav,
|
||||
// author = {Paul Gastin and Denis Oddoux},
|
||||
// title = {Fast {LTL} to {B\"u}chi Automata Translation},
|
||||
// booktitle = {Proceedings of the 13th International Conference on
|
||||
// Computer Aided Verification (CAV'01)},
|
||||
// pages = {53--65},
|
||||
// year = 2001,
|
||||
// editor = {G. Berry and H. Comon and A. Finkel},
|
||||
// volume = {2102},
|
||||
// series = {Lecture Notes in Computer Science},
|
||||
// address = {Paris, France},
|
||||
// publisher = {Springer-Verlag}
|
||||
// }
|
||||
//
|
||||
// @InProceedings{rozier.07.spin,
|
||||
// author = {Kristin Y. Rozier and Moshe Y. Vardi},
|
||||
// title = {LTL Satisfiability Checking},
|
||||
// booktitle = {Proceedings of the 12th International SPIN Workshop on
|
||||
// Model Checking of Software (SPIN'07)},
|
||||
// pages = {149--167},
|
||||
// year = {2007},
|
||||
// volume = {4595},
|
||||
// series = {Lecture Notes in Computer Science},
|
||||
// publisher = {Springer-Verlag}
|
||||
// }
|
||||
|
||||
#include "common_sys.hh"
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <argp.h>
|
||||
#include <cstdlib>
|
||||
#include "error.h"
|
||||
#include <vector>
|
||||
|
||||
#include "common_setup.hh"
|
||||
#include "common_output.hh"
|
||||
#include "common_range.hh"
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <spot/tl/formula.hh>
|
||||
#include <spot/tl/relabel.hh>
|
||||
|
||||
using namespace spot;
|
||||
|
||||
const char argp_program_doc[] ="\
|
||||
Generate temporal logic formulas from predefined scalable patterns.";
|
||||
|
||||
enum {
|
||||
OPT_AND_F = 1,
|
||||
OPT_AND_FG,
|
||||
OPT_AND_GF,
|
||||
OPT_CCJ_ALPHA,
|
||||
OPT_CCJ_BETA,
|
||||
OPT_CCJ_BETA_PRIME,
|
||||
OPT_GH_Q,
|
||||
OPT_GH_R,
|
||||
OPT_GO_THETA,
|
||||
OPT_OR_FG,
|
||||
OPT_OR_G,
|
||||
OPT_OR_GF,
|
||||
OPT_R_LEFT,
|
||||
OPT_R_RIGHT,
|
||||
OPT_RV_COUNTER,
|
||||
OPT_RV_COUNTER_CARRY,
|
||||
OPT_RV_COUNTER_CARRY_LINEAR,
|
||||
OPT_RV_COUNTER_LINEAR,
|
||||
OPT_U_LEFT,
|
||||
OPT_U_RIGHT,
|
||||
LAST_CLASS,
|
||||
};
|
||||
|
||||
const char* const class_name[LAST_CLASS] =
|
||||
{
|
||||
"and-f",
|
||||
"and-fg",
|
||||
"and-gf",
|
||||
"ccj-alpha",
|
||||
"ccj-beta",
|
||||
"ccj-beta-prime",
|
||||
"gh-q",
|
||||
"gh-r",
|
||||
"go-theta",
|
||||
"or-fg",
|
||||
"or-g",
|
||||
"or-gf",
|
||||
"or-r-left",
|
||||
"or-r-right",
|
||||
"rv-counter",
|
||||
"rv-counter-carry",
|
||||
"rv-counter-carry-linear",
|
||||
"rv-counter-linear",
|
||||
"u-left",
|
||||
"u-right",
|
||||
};
|
||||
|
||||
|
||||
#define OPT_ALIAS(o) { #o, 0, nullptr, OPTION_ALIAS, nullptr, 0 }
|
||||
|
||||
static const argp_option options[] =
|
||||
{
|
||||
/**************************************************/
|
||||
// Keep this alphabetically sorted (expect for aliases).
|
||||
{ nullptr, 0, nullptr, 0, "Pattern selection:", 1},
|
||||
// J. Geldenhuys and H. Hansen (Spin'06): Larger automata and less
|
||||
// work for LTL model checking.
|
||||
{ "and-f", OPT_AND_F, "RANGE", 0, "F(p1)&F(p2)&...&F(pn)", 0 },
|
||||
OPT_ALIAS(gh-e),
|
||||
{ "and-fg", OPT_AND_FG, "RANGE", 0, "FG(p1)&FG(p2)&...&FG(pn)", 0 },
|
||||
{ "and-gf", OPT_AND_GF, "RANGE", 0, "GF(p1)&GF(p2)&...&GF(pn)", 0 },
|
||||
OPT_ALIAS(ccj-phi),
|
||||
OPT_ALIAS(gh-c2),
|
||||
{ "ccj-alpha", OPT_CCJ_ALPHA, "RANGE", 0,
|
||||
"F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn))))", 0 },
|
||||
{ "ccj-beta", OPT_CCJ_BETA, "RANGE", 0,
|
||||
"F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))", 0 },
|
||||
{ "ccj-beta-prime", OPT_CCJ_BETA_PRIME, "RANGE", 0,
|
||||
"F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q)))", 0 },
|
||||
{ "gh-q", OPT_GH_Q, "RANGE", 0,
|
||||
"(F(p1)|G(p2))&(F(p2)|G(p3))&... &(F(pn)|G(p{n+1}))", 0 },
|
||||
{ "gh-r", OPT_GH_R, "RANGE", 0,
|
||||
"(GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1}))", 0},
|
||||
{ "go-theta", OPT_GO_THETA, "RANGE", 0,
|
||||
"!((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))", 0 },
|
||||
{ "or-fg", OPT_OR_FG, "RANGE", 0, "FG(p1)|FG(p2)|...|FG(pn)", 0 },
|
||||
OPT_ALIAS(ccj-xi),
|
||||
{ "or-g", OPT_OR_G, "RANGE", 0, "G(p1)|G(p2)|...|G(pn)", 0 },
|
||||
OPT_ALIAS(gh-s),
|
||||
{ "or-gf", OPT_OR_GF, "RANGE", 0, "GF(p1)|GF(p2)|...|GF(pn)", 0 },
|
||||
OPT_ALIAS(gh-c1),
|
||||
{ "r-left", OPT_R_LEFT, "RANGE", 0, "(((p1 R p2) R p3) ... R pn)", 0 },
|
||||
{ "r-right", OPT_R_RIGHT, "RANGE", 0, "(p1 R (p2 R (... R pn)))", 0 },
|
||||
{ "rv-counter", OPT_RV_COUNTER, "RANGE", 0,
|
||||
"n-bit counter", 0 },
|
||||
{ "rv-counter-carry", OPT_RV_COUNTER_CARRY, "RANGE", 0,
|
||||
"n-bit counter w/ carry", 0 },
|
||||
{ "rv-counter-carry-linear", OPT_RV_COUNTER_CARRY_LINEAR, "RANGE", 0,
|
||||
"n-bit counter w/ carry (linear size)", 0 },
|
||||
{ "rv-counter-linear", OPT_RV_COUNTER_LINEAR, "RANGE", 0,
|
||||
"n-bit counter (linear size)", 0 },
|
||||
{ "u-left", OPT_U_LEFT, "RANGE", 0, "(((p1 U p2) U p3) ... U pn)", 0 },
|
||||
OPT_ALIAS(gh-u),
|
||||
{ "u-right", OPT_U_RIGHT, "RANGE", 0, "(p1 U (p2 U (... U pn)))", 0 },
|
||||
OPT_ALIAS(gh-u2),
|
||||
OPT_ALIAS(go-phi),
|
||||
RANGE_DOC,
|
||||
/**************************************************/
|
||||
{ nullptr, 0, nullptr, 0, "Output options:", -20 },
|
||||
{ nullptr, 0, nullptr, 0, "The FORMAT string passed to --format may use "
|
||||
"the following interpreted sequences:", -19 },
|
||||
{ "%f", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
||||
"the formula (in the selected syntax)", 0 },
|
||||
{ "%F", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
||||
"the name of the pattern", 0 },
|
||||
{ "%L", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
||||
"the argument of the pattern", 0 },
|
||||
{ "%%", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
||||
"a single %", 0 },
|
||||
{ nullptr, 0, nullptr, 0, "Miscellaneous options:", -1 },
|
||||
{ nullptr, 0, nullptr, 0, nullptr, 0 }
|
||||
};
|
||||
|
||||
struct job
|
||||
{
|
||||
int pattern;
|
||||
struct range range;
|
||||
};
|
||||
|
||||
typedef std::vector<job> jobs_t;
|
||||
static jobs_t jobs;
|
||||
|
||||
|
||||
const struct argp_child children[] =
|
||||
{
|
||||
{ &output_argp, 0, nullptr, -20 },
|
||||
{ &misc_argp, 0, nullptr, -1 },
|
||||
{ nullptr, 0, nullptr, 0 }
|
||||
};
|
||||
|
||||
static void
|
||||
enqueue_job(int pattern, const char* range_str)
|
||||
{
|
||||
job j;
|
||||
j.pattern = pattern;
|
||||
j.range = parse_range(range_str);
|
||||
jobs.push_back(j);
|
||||
}
|
||||
|
||||
static int
|
||||
parse_opt(int key, char* arg, struct argp_state*)
|
||||
{
|
||||
// This switch is alphabetically-ordered.
|
||||
switch (key)
|
||||
{
|
||||
case OPT_AND_F:
|
||||
case OPT_AND_FG:
|
||||
case OPT_AND_GF:
|
||||
case OPT_CCJ_ALPHA:
|
||||
case OPT_CCJ_BETA:
|
||||
case OPT_CCJ_BETA_PRIME:
|
||||
case OPT_GH_Q:
|
||||
case OPT_GH_R:
|
||||
case OPT_GO_THETA:
|
||||
case OPT_OR_FG:
|
||||
case OPT_OR_G:
|
||||
case OPT_OR_GF:
|
||||
case OPT_R_LEFT:
|
||||
case OPT_R_RIGHT:
|
||||
case OPT_RV_COUNTER:
|
||||
case OPT_RV_COUNTER_CARRY:
|
||||
case OPT_RV_COUNTER_CARRY_LINEAR:
|
||||
case OPT_RV_COUNTER_LINEAR:
|
||||
case OPT_U_LEFT:
|
||||
case OPT_U_RIGHT:
|
||||
enqueue_job(key, arg);
|
||||
break;
|
||||
default:
|
||||
return ARGP_ERR_UNKNOWN;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define G_(x) formula::G(x)
|
||||
#define F_(x) formula::F(x)
|
||||
#define X_(x) formula::X(x)
|
||||
#define Not_(x) formula::Not(x)
|
||||
|
||||
#define Implies_(x, y) formula::Implies((x), (y))
|
||||
#define Equiv_(x, y) formula::Equiv((x), (y))
|
||||
#define And_(x, y) formula::And({(x), (y)})
|
||||
#define Or_(x, y) formula::Or({(x), (y)})
|
||||
#define U_(x, y) formula::U((x), (y))
|
||||
|
||||
// F(p_1 & F(p_2 & F(p_3 & ... F(p_n))))
|
||||
static formula
|
||||
E_n(std::string name, int n)
|
||||
{
|
||||
if (n <= 0)
|
||||
return formula::tt();
|
||||
|
||||
formula result = nullptr;
|
||||
|
||||
for (; n > 0; --n)
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << name << n;
|
||||
formula f = formula::ap(p.str());
|
||||
if (result)
|
||||
result = And_(f, result);
|
||||
else
|
||||
result = f;
|
||||
result = F_(result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// p & X(p & X(p & ... X(p)))
|
||||
static formula
|
||||
phi_n(std::string name, int n)
|
||||
{
|
||||
if (n <= 0)
|
||||
return formula::tt();
|
||||
|
||||
formula result = nullptr;
|
||||
formula p = formula::ap(name);
|
||||
for (; n > 0; --n)
|
||||
{
|
||||
if (result)
|
||||
result = And_(p, X_(result));
|
||||
else
|
||||
result = p;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static formula
|
||||
N_n(std::string name, int n)
|
||||
{
|
||||
return formula::F(phi_n(name, n));
|
||||
}
|
||||
|
||||
// p & X(p) & XX(p) & XXX(p) & ... X^n(p)
|
||||
static formula
|
||||
phi_prime_n(std::string name, int n)
|
||||
{
|
||||
if (n <= 0)
|
||||
return formula::tt();
|
||||
|
||||
formula result = nullptr;
|
||||
formula p = formula::ap(name);
|
||||
for (; n > 0; --n)
|
||||
{
|
||||
if (result)
|
||||
{
|
||||
p = X_(p);
|
||||
result = And_(result, p);
|
||||
}
|
||||
else
|
||||
{
|
||||
result = p;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static formula
|
||||
N_prime_n(std::string name, int n)
|
||||
{
|
||||
return F_(phi_prime_n(name, n));
|
||||
}
|
||||
|
||||
|
||||
// GF(p_1) & GF(p_2) & ... & GF(p_n) if conj == true
|
||||
// GF(p_1) | GF(p_2) | ... | GF(p_n) if conj == false
|
||||
static formula
|
||||
GF_n(std::string name, int n, bool conj = true)
|
||||
{
|
||||
if (n <= 0)
|
||||
return conj ? formula::tt() : formula::ff();
|
||||
|
||||
formula result = nullptr;
|
||||
|
||||
op o = conj ? op::And : op::Or;
|
||||
|
||||
for (int i = 1; i <= n; ++i)
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << name << i;
|
||||
formula f = G_(F_(formula::ap(p.str())));
|
||||
|
||||
if (result)
|
||||
result = formula::multop(o, {f, result});
|
||||
else
|
||||
result = f;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// FG(p_1) | FG(p_2) | ... | FG(p_n) if conj == false
|
||||
// FG(p_1) & FG(p_2) & ... & FG(p_n) if conj == true
|
||||
static formula
|
||||
FG_n(std::string name, int n, bool conj = false)
|
||||
{
|
||||
if (n <= 0)
|
||||
return conj ? formula::tt() : formula::ff();
|
||||
|
||||
formula result = nullptr;
|
||||
|
||||
op o = conj ? op::And : op::Or;
|
||||
|
||||
for (int i = 1; i <= n; ++i)
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << name << i;
|
||||
formula f = F_(G_(formula::ap(p.str())));
|
||||
|
||||
if (result)
|
||||
result = formula::multop(o, {f, result});
|
||||
else
|
||||
result = f;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// (((p1 OP p2) OP p3)...OP pn) if right_assoc == false
|
||||
// (p1 OP (p2 OP (p3 OP (... pn) if right_assoc == true
|
||||
static formula
|
||||
bin_n(std::string name, int n, op o, bool right_assoc = false)
|
||||
{
|
||||
if (n <= 0)
|
||||
n = 1;
|
||||
|
||||
formula result = nullptr;
|
||||
|
||||
for (int i = 1; i <= n; ++i)
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << name << (right_assoc ? (n + 1 - i) : i);
|
||||
formula f = formula::ap(p.str());
|
||||
if (!result)
|
||||
result = f;
|
||||
else if (right_assoc)
|
||||
result = formula::binop(o, f, result);
|
||||
else
|
||||
result = formula::binop(o, result, f);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))"
|
||||
static formula
|
||||
R_n(std::string name, int n)
|
||||
{
|
||||
if (n <= 0)
|
||||
return formula::tt();
|
||||
|
||||
formula pi;
|
||||
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << name << 1;
|
||||
pi = formula::ap(p.str());
|
||||
}
|
||||
|
||||
formula result = nullptr;
|
||||
|
||||
for (int i = 1; i <= n; ++i)
|
||||
{
|
||||
formula gf = G_(F_(pi));
|
||||
std::ostringstream p;
|
||||
p << name << i + 1;
|
||||
pi = formula::ap(p.str());
|
||||
|
||||
formula fg = F_(G_(pi));
|
||||
|
||||
formula f = Or_(gf, fg);
|
||||
|
||||
if (result)
|
||||
result = And_(f, result);
|
||||
else
|
||||
result = f;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))"
|
||||
static formula
|
||||
Q_n(std::string name, int n)
|
||||
{
|
||||
if (n <= 0)
|
||||
return formula::tt();
|
||||
|
||||
formula pi;
|
||||
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << name << 1;
|
||||
pi = formula::ap(p.str());
|
||||
}
|
||||
|
||||
formula result = nullptr;
|
||||
|
||||
for (int i = 1; i <= n; ++i)
|
||||
{
|
||||
formula f = F_(pi);
|
||||
|
||||
std::ostringstream p;
|
||||
p << name << i + 1;
|
||||
pi = formula::ap(p.str());
|
||||
|
||||
formula g = G_(pi);
|
||||
|
||||
f = Or_(f, g);
|
||||
|
||||
if (result)
|
||||
result = And_(f, result);
|
||||
else
|
||||
result = f;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// OP(p1) | OP(p2) | ... | OP(Pn) if conj == false
|
||||
// OP(p1) & OP(p2) & ... & OP(Pn) if conj == true
|
||||
static formula
|
||||
combunop_n(std::string name, int n, op o, bool conj = false)
|
||||
{
|
||||
if (n <= 0)
|
||||
return conj ? formula::tt() : formula::ff();
|
||||
|
||||
formula result = nullptr;
|
||||
|
||||
op cop = conj ? op::And : op::Or;
|
||||
|
||||
for (int i = 1; i <= n; ++i)
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << name << i;
|
||||
formula f = formula::unop(o, formula::ap(p.str()));
|
||||
|
||||
if (result)
|
||||
result = formula::multop(cop, {f, result});
|
||||
else
|
||||
result = f;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r)))
|
||||
// From "Fast LTL to Büchi Automata Translation" [gastin.01.cav]
|
||||
static formula
|
||||
fair_response(std::string p, std::string q, std::string r, int n)
|
||||
{
|
||||
formula fair = GF_n(p, n);
|
||||
formula resp = G_(Implies_(formula::ap(q), F_(formula::ap(r))));
|
||||
return Not_(Implies_(fair, resp));
|
||||
}
|
||||
|
||||
|
||||
// Builds X(X(...X(p))) with n occurrences of X.
|
||||
static formula
|
||||
X_n(formula p, int n)
|
||||
{
|
||||
assert(n >= 0);
|
||||
formula res = p;
|
||||
while (n--)
|
||||
res = X_(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
// Based on LTLcounter.pl from Kristin Rozier.
|
||||
// http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/
|
||||
static formula
|
||||
ltl_counter(std::string bit, std::string marker, int n, bool linear)
|
||||
{
|
||||
formula b = formula::ap(bit);
|
||||
formula neg_b = Not_(b);
|
||||
formula m = formula::ap(marker);
|
||||
formula neg_m = Not_(m);
|
||||
|
||||
std::vector<formula> res(4);
|
||||
|
||||
// The marker starts with "1", followed by n-1 "0", then "1" again,
|
||||
// n-1 "0", etc.
|
||||
if (!linear)
|
||||
{
|
||||
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
|
||||
std::vector<formula> v(n);
|
||||
for (int i = 0; i + 1 < n; ++i)
|
||||
v[i] = X_n(neg_m, i + 1);
|
||||
v[n - 1] = X_n(m, n);
|
||||
res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
|
||||
}
|
||||
else
|
||||
{
|
||||
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
|
||||
formula p = m;
|
||||
for (int i = n - 1; i > 0; --i)
|
||||
p = And_(neg_m, X_(p));
|
||||
res[0] = And_(m, G_(Implies_(m, X_(p))));
|
||||
}
|
||||
|
||||
// All bits are initially zero.
|
||||
if (!linear)
|
||||
{
|
||||
// !b & X(!b) & XX(!b) [if n = 3]
|
||||
std::vector<formula> v2(n);
|
||||
for (int i = 0; i < n; ++i)
|
||||
v2[i] = X_n(neg_b, i);
|
||||
res[1] = formula::And(std::move(v2));
|
||||
}
|
||||
else
|
||||
{
|
||||
// !b & X(!b & X(!b)) [if n = 3]
|
||||
formula p = neg_b;
|
||||
for (int i = n - 1; i > 0; --i)
|
||||
p = And_(neg_b, X_(p));
|
||||
res[1] = p;
|
||||
}
|
||||
|
||||
#define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y)))
|
||||
|
||||
// If the least significant bit is 0, it will be 1 at the next time,
|
||||
// and other bits stay the same.
|
||||
formula Xnm1_b = X_n(b, n - 1);
|
||||
formula Xn_b = X_(Xnm1_b);
|
||||
res[2] = G_(Implies_(And_(m, neg_b),
|
||||
AndX_(Xnm1_b, U_(And_(Not_(m), Equiv_(b, Xn_b)), m))));
|
||||
|
||||
// From the least significant bit to the first 0, all the bits
|
||||
// are flipped on the next value. Remaining bits are identical.
|
||||
formula Xnm1_negb = X_n(neg_b, n - 1);
|
||||
formula Xn_negb = X_(Xnm1_negb);
|
||||
res[3] = G_(Implies_(And_(m, b),
|
||||
AndX_(Xnm1_negb,
|
||||
U_(And_(And_(b, neg_m), Xn_negb),
|
||||
Or_(m, And_(And_(neg_m, neg_b),
|
||||
AndX_(Xnm1_b,
|
||||
U_(And_(neg_m,
|
||||
Equiv_(b, Xn_b)),
|
||||
m))))))));
|
||||
return formula::And(std::move(res));
|
||||
}
|
||||
|
||||
static formula
|
||||
ltl_counter_carry(std::string bit, std::string marker,
|
||||
std::string carry, int n, bool linear)
|
||||
{
|
||||
formula b = formula::ap(bit);
|
||||
formula neg_b = Not_(b);
|
||||
formula m = formula::ap(marker);
|
||||
formula neg_m = Not_(m);
|
||||
formula c = formula::ap(carry);
|
||||
formula neg_c = Not_(c);
|
||||
|
||||
std::vector<formula> res(6);
|
||||
|
||||
// The marker starts with "1", followed by n-1 "0", then "1" again,
|
||||
// n-1 "0", etc.
|
||||
if (!linear)
|
||||
{
|
||||
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
|
||||
std::vector<formula> v(n);
|
||||
for (int i = 0; i + 1 < n; ++i)
|
||||
v[i] = X_n(neg_m, i + 1);
|
||||
v[n - 1] = X_n(m, n);
|
||||
res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
|
||||
}
|
||||
else
|
||||
{
|
||||
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
|
||||
formula p = m;
|
||||
for (int i = n - 1; i > 0; --i)
|
||||
p = And_(neg_m, X_(p));
|
||||
res[0] = And_(m, G_(Implies_(m, X_(p))));
|
||||
}
|
||||
|
||||
// All bits are initially zero.
|
||||
if (!linear)
|
||||
{
|
||||
// !b & X(!b) & XX(!b) [if n = 3]
|
||||
std::vector<formula> v2(n);
|
||||
for (int i = 0; i < n; ++i)
|
||||
v2[i] = X_n(neg_b, i);
|
||||
res[1] = formula::And(std::move(v2));
|
||||
}
|
||||
else
|
||||
{
|
||||
// !b & X(!b & X(!b)) [if n = 3]
|
||||
formula p = neg_b;
|
||||
for (int i = n - 1; i > 0; --i)
|
||||
p = And_(neg_b, X_(p));
|
||||
res[1] = p;
|
||||
}
|
||||
|
||||
formula Xn_b = X_n(b, n);
|
||||
formula Xn_negb = X_n(neg_b, n);
|
||||
|
||||
// If m is 1 and b is 0 then c is 0 and n steps later b is 1.
|
||||
res[2] = G_(Implies_(And_(m, neg_b), And_(neg_c, Xn_b)));
|
||||
|
||||
// If m is 1 and b is 1 then c is 1 and n steps later b is 0.
|
||||
res[3] = G_(Implies_(And_(m, b), And_(c, Xn_negb)));
|
||||
|
||||
if (!linear)
|
||||
{
|
||||
// If there's no carry, then all of the bits stay the same n steps later.
|
||||
res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
|
||||
And_(X_(Not_(c)), Equiv_(X_(b), X_(Xn_b)))));
|
||||
|
||||
// If there's a carry, then add one: flip the bits of b and
|
||||
// adjust the carry.
|
||||
res[5] = G_(Implies_(c, And_(Implies_(X_(neg_b),
|
||||
And_(X_(neg_c), X_(Xn_b))),
|
||||
Implies_(X_(b),
|
||||
And_(X_(c), X_(Xn_negb))))));
|
||||
}
|
||||
else
|
||||
{
|
||||
// If there's no carry, then all of the bits stay the same n steps later.
|
||||
res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
|
||||
X_(And_(Not_(c), Equiv_(b, Xn_b)))));
|
||||
// If there's a carry, then add one: flip the bits of b and
|
||||
// adjust the carry.
|
||||
res[5] = G_(Implies_(c, X_(And_(Implies_(neg_b, And_(neg_c, Xn_b)),
|
||||
Implies_(b, And_(c, Xn_negb))))));
|
||||
}
|
||||
return formula::And(std::move(res));
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
output_pattern(int pattern, int n)
|
||||
{
|
||||
formula f = nullptr;
|
||||
switch (pattern)
|
||||
{
|
||||
// Keep this alphabetically-ordered!
|
||||
case OPT_AND_F:
|
||||
f = combunop_n("p", n, op::F, true);
|
||||
break;
|
||||
case OPT_AND_FG:
|
||||
f = FG_n("p", n, true);
|
||||
break;
|
||||
case OPT_AND_GF:
|
||||
f = GF_n("p", n, true);
|
||||
break;
|
||||
case OPT_CCJ_ALPHA:
|
||||
f = formula::And({E_n("p", n), E_n("q", n)});
|
||||
break;
|
||||
case OPT_CCJ_BETA:
|
||||
f = formula::And({N_n("p", n), N_n("q", n)});
|
||||
break;
|
||||
case OPT_CCJ_BETA_PRIME:
|
||||
f = formula::And({N_prime_n("p", n), N_prime_n("q", n)});
|
||||
break;
|
||||
case OPT_GH_Q:
|
||||
f = Q_n("p", n);
|
||||
break;
|
||||
case OPT_GH_R:
|
||||
f = R_n("p", n);
|
||||
break;
|
||||
case OPT_GO_THETA:
|
||||
f = fair_response("p", "q", "r", n);
|
||||
break;
|
||||
case OPT_OR_FG:
|
||||
f = FG_n("p", n, false);
|
||||
break;
|
||||
case OPT_OR_G:
|
||||
f = combunop_n("p", n, op::G, false);
|
||||
break;
|
||||
case OPT_OR_GF:
|
||||
f = GF_n("p", n, false);
|
||||
break;
|
||||
case OPT_R_LEFT:
|
||||
f = bin_n("p", n, op::R, false);
|
||||
break;
|
||||
case OPT_R_RIGHT:
|
||||
f = bin_n("p", n, op::R, true);
|
||||
break;
|
||||
case OPT_RV_COUNTER_CARRY:
|
||||
f = ltl_counter_carry("b", "m", "c", n, false);
|
||||
break;
|
||||
case OPT_RV_COUNTER_CARRY_LINEAR:
|
||||
f = ltl_counter_carry("b", "m", "c", n, true);
|
||||
break;
|
||||
case OPT_RV_COUNTER:
|
||||
f = ltl_counter("b", "m", n, false);
|
||||
break;
|
||||
case OPT_RV_COUNTER_LINEAR:
|
||||
f = ltl_counter("b", "m", n, true);
|
||||
break;
|
||||
case OPT_U_LEFT:
|
||||
f = bin_n("p", n, op::U, false);
|
||||
break;
|
||||
case OPT_U_RIGHT:
|
||||
f = bin_n("p", n, op::U, true);
|
||||
break;
|
||||
default:
|
||||
error(100, 0, "internal error: pattern not implemented");
|
||||
}
|
||||
|
||||
// Make sure we use only "p42"-style of atomic propositions
|
||||
// in lbt's output.
|
||||
if (output_format == lbt_output && !f.has_lbt_atomic_props())
|
||||
f = relabel(f, Pnn);
|
||||
|
||||
output_formula_checked(f, class_name[pattern - 1], n);
|
||||
}
|
||||
|
||||
static void
|
||||
run_jobs()
|
||||
{
|
||||
for (auto& j: jobs)
|
||||
{
|
||||
int inc = (j.range.max < j.range.min) ? -1 : 1;
|
||||
int n = j.range.min;
|
||||
for (;;)
|
||||
{
|
||||
output_pattern(j.pattern, n);
|
||||
if (n == j.range.max)
|
||||
break;
|
||||
n += inc;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main(int argc, char** argv)
|
||||
{
|
||||
setup(argv);
|
||||
|
||||
const argp ap = { options, parse_opt, nullptr, argp_program_doc,
|
||||
children, nullptr, nullptr };
|
||||
|
||||
if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
|
||||
exit(err);
|
||||
|
||||
if (jobs.empty())
|
||||
error(1, 0, "Nothing to do. Try '%s --help' for more information.",
|
||||
program_name);
|
||||
|
||||
run_jobs();
|
||||
return 0;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue