zlktree: implement ACD and its transform

A quick and dirty implementation of the Alternating Cycle
Decomposition of the casares.21.icalp paper.

* spot/twaalgos/genem.cc, spot/twaalgos/genem.hh
(maximal_accepting_loops_for_scc): New function.
* spot/twaalgos/sccinfo.cc,
spot/twaalgos/sccinfo.hh (scc_and_mark_filter): Add a possibility to
specify a mask of transition to filter.
* spot/twaalgos/zlktree.hh, spot/twaalgos/zlktree.cc (acd): New class.
(acd_transform): New function.
* python/spot/__init__.py: Add SVG rendering for acd.
* tests/python/_zlktree.ipynb: Play with acd and acd_transform.
* tests/python/toparity.py: Add more tests to compare the
sizes of acd_transform and to_parity.
* NEWS: Mention this new feature.
This commit is contained in:
Alexandre Duret-Lutz 2021-08-09 15:22:17 +02:00
parent 8c5bb6c2eb
commit 26f2179805
10 changed files with 4657 additions and 144 deletions

View file

@ -19,9 +19,9 @@
#include "config.h"
#include <iostream>
#include <spot/twaalgos/zlktree.hh>
#include <spot/twaalgos/sccinfo.hh>
#include <deque>
#include <spot/twaalgos/zlktree.hh>
#include <spot/twaalgos/genem.hh>
#include "spot/priv/bddalloc.hh"
namespace spot
@ -168,7 +168,7 @@ namespace spot
else
has_streett_shape_ = false;
}
};
}
}
void zielonka_tree::dot(std::ostream& os) const
@ -203,7 +203,7 @@ namespace spot
{
if (SPOT_UNLIKELY(nodes_.size() < branch || nodes_[branch].first_child))
throw std::runtime_error
("zielonka_tree::next_branch(): incorrect branch number");
("zielonka_tree::step(): incorrect branch number");
if (!colors)
return {branch, nodes_[branch].level + 1};
@ -230,8 +230,9 @@ namespace spot
namespace
{
// A state in the zielonka_tree_transform output corresponds to a
// state in the input associated to a branch of the tree.
// A state in the zielonka_tree_transform or acd_transform outputs
// corresponds to a state in the input associated to a branch of
// the tree.
typedef std::pair<unsigned, unsigned> zlk_state;
struct zlk_state_hash
@ -347,4 +348,433 @@ namespace spot
return res;
}
void acd::report_invalid_scc_number(unsigned num, const char* fn)
{
throw std::runtime_error(std::string(fn) +
"(): SCC number " + std::to_string(num)
+ " is too large");
}
std::pair<unsigned, unsigned>
acd::step(unsigned branch, unsigned edge) const
{
if (SPOT_UNLIKELY(nodes_.size() < branch || nodes_[branch].first_child))
throw std::runtime_error
("acd::next_branch(): incorrect branch number");
// FIXME
(void)edge;
return {branch, 0};
}
acd::acd(const const_twa_graph_ptr& aut)
: acd(scc_info(aut))
{
}
acd::acd(const scc_info& si)
: trees_(si.scc_count())
{
unsigned scc_count = scc_count_ = si.scc_count();
const_twa_graph_ptr aut = aut_ = si.get_aut();
unsigned nedges = aut->get_graph().edge_vector().size();
unsigned nstates = aut->num_states();
acc_cond posacc = aut->acc();
acc_cond negacc(posacc.num_sets(), posacc.get_acceptance().complement());
// Remember the max level since of each tree of different parity.
// We will use that to decide if the output should have parity
// "min even" or "min odd" so as to minimize the number of colors
// used.
int max_level_of_even_tree = -1;
int max_level_of_odd_tree = -1;
for (unsigned scc = 0; scc < scc_count; ++scc)
{
if ((trees_[scc].trivial = si.is_trivial(scc)))
continue;
unsigned root = nodes_.size();
trees_[scc].root = root;
bool is_even = si.is_maximally_accepting_scc(scc);
trees_[scc].is_even = is_even;
nodes_.emplace_back();
auto& n = nodes_.back();
n.parent = root;
n.level = 0;
n.scc = scc;
n.edges.resize(nedges);
n.states.resize(nstates);
for (auto& e: si.inner_edges_of(scc))
{
n.edges[aut->edge_number(e)] = true;
n.states[e.src] = true;
}
}
// This loop is a BFS over the increasing set of nodes.
for (unsigned node = 0; node < nodes_.size(); ++node)
{
unsigned scc = nodes_[node].scc;
unsigned lvl = nodes_[node].level;
bool accepting_node = (lvl & 1) != trees_[scc].is_even;
auto callback = [&](scc_info si, unsigned siscc)
{
nodes_.emplace_back();
auto& n = nodes_.back();
n.parent = node;
n.level = lvl + 1;
n.scc = scc;
n.edges.resize(nedges);
n.states.resize(nstates);
for (auto& e: si.inner_edges_of(siscc))
{
n.edges[aut->edge_number(e)] = true;
n.states[e.src] = true;
}
};
unsigned before_size = nodes_.size();
maximal_accepting_loops_for_scc(si, scc,
accepting_node ? negacc : posacc,
nodes_[node].edges, callback);
unsigned after_size = nodes_.size();
unsigned children = after_size - before_size;
// Chain the children together, and connect them to the parent
for (unsigned child = before_size; child < after_size; ++child)
{
unsigned next = child + 1;
if (next == after_size)
{
next = before_size;
nodes_[node].first_child = before_size;
}
nodes_[child].next_sibling = next;
}
if (children == 0)
{
// this node is a leaf.
if (trees_[scc].is_even)
max_level_of_even_tree = lvl;
else
max_level_of_odd_tree = lvl;
}
else if (children > 1)
{
if (accepting_node)
has_rabin_shape_ = false;
else
has_streett_shape_ = false;
}
}
// Now we decide if the ACD corresponds to a "min even" or "max
// even" parity. We want to minimize the number of colors
// introduced (because of Spot's limitation to a fixed number of
// those), so the parity of the tallest tree will give the parity
// of the ACD.
bool is_even = is_even_ = max_level_of_even_tree >= max_level_of_odd_tree;
// add one to the level of each node belonging to a tree of the
// opposite parity
for (auto& node: nodes_)
{
unsigned scc = node.scc;
if (trees_[scc].is_even != is_even)
++node.level;
trees_[scc].max_level = std::max(trees_[scc].max_level, node.level);
}
}
unsigned acd::leftmost_branch_(unsigned n, unsigned state)
{
loop:
unsigned first_child = nodes_[n].first_child;
if (first_child == 0) // no children
return n;
unsigned child = first_child;
do
{
if (nodes_[child].states[state])
{
n = child;
goto loop;
}
child = nodes_[child].next_sibling;
}
while (child != first_child);
return n;
}
unsigned acd::first_branch(unsigned s, unsigned scc)
{
if (scc > trees_.size())
report_invalid_scc_number(scc, "first_branch");
if (trees_[scc].trivial) // the branch is irrelevant for transiant SCCs
return 0;
unsigned n = trees_[scc].root;
if (SPOT_UNLIKELY(!nodes_[n].states[s]))
throw std::runtime_error("first_branch(): state " +
std::to_string(s) + " not found in SCC " +
std::to_string(scc));
return leftmost_branch_(n, s);
}
std::pair<unsigned, unsigned>
acd::step(unsigned branch, unsigned edge)
{
if (SPOT_UNLIKELY(nodes_.size() < branch))
throw std::runtime_error("acd::step(): incorrect branch number");
unsigned child = 0;
unsigned obranch = branch;
while (!nodes_[branch].edges[edge])
{
unsigned parent = nodes_[branch].parent;
if (SPOT_UNLIKELY(branch == parent))
throw std::runtime_error("acd::step(): edge " +
std::to_string(edge) +
" is not on branch " +
std::to_string(obranch));
child = branch;
branch = parent;
}
unsigned lvl = nodes_[branch].level;
unsigned dst = aut_->edge_storage(edge).dst;
if (child != 0)
{
unsigned start_child = child;
// find the next children that contains dst.
do
{
child = nodes_[child].next_sibling;
if (nodes_[child].states[dst])
return {leftmost_branch_(child, dst), lvl};
}
while (child != start_child);
return { branch, lvl };
}
else
{
return { leftmost_branch_(branch, dst), lvl };
}
}
void acd::dot(std::ostream& os) const
{
os << "digraph acd {\n labelloc=\"t\"\n label=\"\n"
<< (is_even_ ? "min even\"" : "min odd\"\n");
unsigned ns = nodes_.size();
for (unsigned n = 0; n < ns; ++n)
{
acc_cond::mark_t m = {};
os << " " << n << " [label=\"";
unsigned scc = nodes_[n].scc;
// The top of each tree has level 0 or 1, depending on whether
// the tree's parity matches the overall ACD parity.
if (nodes_[n].level == (trees_[scc].is_even != is_even_))
os << "SCC #" << scc << '\n';
// Prints the indices that are true in edges. To save space,
// we print span of 3 or more elements as start-end.
auto& edges = nodes_[n].edges;
unsigned nedges = edges.size();
bool lastval = false;
unsigned lastchange = 0;
const char* sep = "T: ";
for (unsigned n = 1; n <= nedges; ++n)
{
bool val = n < nedges ? edges[n] : false;
if (val != lastval)
{
if (lastval)
switch (n - lastchange)
{
case 1:
break;
case 2:
os << ',' << n - 1;
break;
default:
os << '-' << n - 1;
break;
}
else
os << sep << n;
lastval = val;
lastchange = n;
sep = ",";
}
if (val)
m |= aut_->edge_data(n).acc;
}
unsigned first_child = nodes_[n].first_child;
os << '\n' << m;
auto& states = nodes_[n].states;
unsigned nstates = states.size();
sep = "\nQ: ";
for (unsigned n = 0; n <= nstates; ++n)
{
bool val = n < nstates ? states[n] : false;
if (val != lastval)
{
if (lastval)
switch (n - lastchange)
{
case 1:
break;
case 2:
os << ',' << n - 1;
break;
default:
os << '-' << n - 1;
break;
}
else
os << sep << n;
lastval = val;
lastchange = n;
sep = ",";
}
}
os << "\nlvl: " << nodes_[n].level;
if (!first_child)
os << "\n<" << n << '>';
os << "\", shape="
<< (((nodes_[n].level & 1) ^ is_even_) ? "ellipse" : "box")
<< "]\n";
if (first_child)
{
unsigned child = first_child;
do
{
os << " " << n << " -> " << child << '\n';
child = nodes_[child].next_sibling;
}
while (child != first_child);
}
}
os << "}\n";
}
twa_graph_ptr
acd_transform(const const_twa_graph_ptr& a, bool colored)
{
auto res = make_twa_graph(a->get_dict());
res->copy_ap_of(a);
scc_info si(a, scc_info_options::TRACK_STATES);
acd theacd(si);
// If we desire non-colored output, we can omit the maximal
// color of each SCC if it has the same parity as max_level.
unsigned max_level = 0;
if (!colored)
{
unsigned ns = si.scc_count();
for (unsigned n = 0; n < ns; ++n)
max_level = std::max(max_level, theacd.scc_max_level(n));
}
bool max_level_is_odd = max_level & 1;
// Preserve determinism, and stutter-invariance.
// state-based acceptance is lost,
// inherently-weak automata become weak.
res->prop_copy(a, { false, false, true, true, true, true });
auto orig_states = new std::vector<unsigned>();
auto branches = new std::vector<unsigned>();
unsigned ns = a->num_states();
orig_states->reserve(ns); // likely more are needed.
res->set_named_prop("original-states", orig_states);
res->set_named_prop("degen-levels", branches);
// Associate each zlk_state to its number.
typedef std::unordered_map<zlk_state, unsigned, zlk_state_hash> zs2num_map;
zs2num_map zs2num;
// Queue of states to be processed.
std::deque<zlk_state> todo;
auto new_state = [&](zlk_state zs)
{
if (auto i = zs2num.find(zs); i != zs2num.end())
return i->second;
unsigned ns = res->new_state();
zs2num[zs] = ns;
todo.emplace_back(zs);
unsigned orig = zs.first;
assert(ns == orig_states->size());
orig_states->emplace_back(orig);
branches->emplace_back(zs.second);
return ns;
};
unsigned init = a->get_init_state_number();
zlk_state s(init, theacd.first_branch(init, si.scc_of(init)));
new_state(s);
unsigned max_color = 0;
bool is_even = theacd.is_even();
while (!todo.empty())
{
s = todo.front();
todo.pop_front();
int src = zs2num[s];
unsigned branch = s.second;
unsigned src_scc = si.scc_of(s.first);
unsigned scc_max_lvl = theacd.scc_max_level(src_scc);
bool scc_max_lvl_can_be_omitted = (scc_max_lvl & 1) == max_level_is_odd;
for (auto& i: a->out(s.first))
{
unsigned newbranch;
unsigned prio;
unsigned dst_scc = si.scc_of(i.dst);
if (dst_scc != src_scc)
{
newbranch = theacd.first_branch(i.dst, dst_scc);
prio = 0;
}
else
{
std::tie(newbranch, prio) =
theacd.step(branch, a->edge_number(i));
}
zlk_state d(i.dst, newbranch);
unsigned dst = new_state(d);
if (!colored && ((dst_scc != src_scc)
|| (scc_max_lvl_can_be_omitted
&& scc_max_lvl == prio)))
{
res->new_edge(src, dst, i.cond);
}
else
{
max_color = std::max(max_color, prio);
res->new_edge(src, dst, i.cond, {prio});
}
}
}
if (!colored && max_level == 0)
res->set_acceptance(0, acc_cond::acc_code::t());
else
res->set_acceptance(max_color + 1,
acc_cond::acc_code::parity_min(!is_even,
max_color + 1));
// compose original-states with the any previously existing one.
if (auto old_orig_states =
a->get_named_prop<std::vector<unsigned>>("original-states"))
for (auto& s: *orig_states)
s = (*old_orig_states)[s];
// An inherently-weak input necessarily becomes weak.
if (a->prop_inherently_weak())
res->prop_weak(true);
return res;
}
}