* doc/tl/tl.tex: Fix footnote the the property table.
This commit is contained in:
parent
775438422d
commit
2a4f181737
1 changed files with 7 additions and 7 deletions
|
|
@ -939,9 +939,9 @@ instance using the following methods:
|
||||||
|
|
||||||
\noindent
|
\noindent
|
||||||
\begin{tabulary}{\textwidth}{lL}
|
\begin{tabulary}{\textwidth}{lL}
|
||||||
\texttt{is\_boolean()}& Whether the formula use only Boolean
|
\texttt{is\_boolean()}& Whether the formula uses only Boolean
|
||||||
operators.
|
operators.
|
||||||
\\\texttt{is\_sugar\_free\_boolean()}& Whether the formula use
|
\\\texttt{is\_sugar\_free\_boolean()}& Whether the formula uses
|
||||||
only $\AND$, $\OR$, and $\NOT$ operators. (Especially, no
|
only $\AND$, $\OR$, and $\NOT$ operators. (Especially, no
|
||||||
$\IMPLIES$ or $\EQUIV$ are allowed.)
|
$\IMPLIES$ or $\EQUIV$ are allowed.)
|
||||||
\\\texttt{is\_in\_nenoform()}& Whether the formula is in negative
|
\\\texttt{is\_in\_nenoform()}& Whether the formula is in negative
|
||||||
|
|
@ -972,14 +972,14 @@ instance using the following methods:
|
||||||
\\\texttt{is\_syntactic\_persistence()}& Whether the formula is a syntactic
|
\\\texttt{is\_syntactic\_persistence()}& Whether the formula is a syntactic
|
||||||
persistence property.
|
persistence property.
|
||||||
\\\texttt{is\_marked()}& Whether the formula contains a special
|
\\\texttt{is\_marked()}& Whether the formula contains a special
|
||||||
``marked'' version of the $\Esuffix$ operator.\footnote{This special
|
``marked'' version of the $\Esuffix$ operator.\footnotemark
|
||||||
operator is used when translating recurring $\Esuffix$, it is
|
|
||||||
rendered as $\EsuffixMarked$ and it obeys the same simplification
|
|
||||||
rules and properties as $\Esuffix$ (except for the
|
|
||||||
\texttt{is\_marked()} property).}
|
|
||||||
\\\texttt{accepts\_eword()}& Whether the formula accept
|
\\\texttt{accepts\_eword()}& Whether the formula accept
|
||||||
$\eword$. (This can only be true for a rational formula.)
|
$\eword$. (This can only be true for a rational formula.)
|
||||||
\end{tabulary}
|
\end{tabulary}
|
||||||
|
\footnotetext{This special operator is used when translating recurring
|
||||||
|
$\Esuffix$, it is rendered as $\EsuffixMarked$ and it obeys the same
|
||||||
|
simplification rules and properties as $\Esuffix$ (except for the
|
||||||
|
\texttt{is\_marked()} property).}
|
||||||
|
|
||||||
\section{Pure Eventualities and Purely Universal Formul\ae{}}
|
\section{Pure Eventualities and Purely Universal Formul\ae{}}
|
||||||
\label{sec:eventuniv}
|
\label{sec:eventuniv}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue