org: document SAT-based minimization
* doc/org/satmin.org, doc/org/satmin.tex: New files. * doc/Makefile.am: Add them. * doc/org/tools.org: Point to satmin.org. * NEWS: Mention satmin.html.
This commit is contained in:
parent
cda847e207
commit
3076c3da4e
5 changed files with 519 additions and 1 deletions
2
NEWS
2
NEWS
|
|
@ -68,6 +68,8 @@ New in spot 1.1.4a (not relased)
|
||||||
deterministic automaton more efficiently) and is disabled by
|
deterministic automaton more efficiently) and is disabled by
|
||||||
default. See the spot-x(7) man page for documentation about the
|
default. See the spot-x(7) man page for documentation about the
|
||||||
related options: sat-minimize, sat-states, sat-acc, state-based.
|
related options: sat-minimize, sat-states, sat-acc, state-based.
|
||||||
|
See also http://spot.lip6.fr/userdoc/satmin.html for some
|
||||||
|
examples.
|
||||||
|
|
||||||
- ltlfilt, genltl, and randltl now have a --latex option to output
|
- ltlfilt, genltl, and randltl now have a --latex option to output
|
||||||
formulas in a way that its easier to embed in a LaTeX document.
|
formulas in a way that its easier to embed in a LaTeX document.
|
||||||
|
|
|
||||||
|
|
@ -68,7 +68,15 @@ ORG_FILES = \
|
||||||
org/ltlcross.org \
|
org/ltlcross.org \
|
||||||
org/ltlfilt.org \
|
org/ltlfilt.org \
|
||||||
org/randltl.org \
|
org/randltl.org \
|
||||||
org/tools.org
|
org/tools.org \
|
||||||
|
org/satmin.org \
|
||||||
|
org/satmin.tex \
|
||||||
|
$(srcdir)/org/satmin.png
|
||||||
|
|
||||||
|
$(srcdir)/org/satmin.png: org/satmin.tex
|
||||||
|
cd $(srcdir)/org && \
|
||||||
|
pdflatex -shell-escape satmin.tex && \
|
||||||
|
rm -f satmin.pdf satmin.aux satmin.log
|
||||||
|
|
||||||
$(srcdir)/org-stamp: $(ORG_FILES) $(configure_ac)
|
$(srcdir)/org-stamp: $(ORG_FILES) $(configure_ac)
|
||||||
make org && touch $@
|
make org && touch $@
|
||||||
|
|
|
||||||
403
doc/org/satmin.org
Normal file
403
doc/org/satmin.org
Normal file
|
|
@ -0,0 +1,403 @@
|
||||||
|
#+TITLE: SAT-based Minimization of Deterministic (Generalized) Büchi Automata
|
||||||
|
#+EMAIL spot@lrde.epita.fr
|
||||||
|
#+OPTIONS: H:2 num:nil toc:t
|
||||||
|
#+LINK_UP: file:tools.html
|
||||||
|
|
||||||
|
This page explains how to use [[file:ltl2tgba.org][=ltl2tgba=]] or [[file:dstar2tgba.org][=dstar2tgba=]] to minimize
|
||||||
|
deterministic automata using a SAT solver.
|
||||||
|
|
||||||
|
Let us first state a few facts about this minimization procedure.
|
||||||
|
|
||||||
|
1) The procedure works only on *deterministic* Büchi automata: any
|
||||||
|
recurrence property can be converted into a deterministic Büchi
|
||||||
|
automaton, and sometimes there are several ways of doing so.
|
||||||
|
2) Spot actually implement two SAT-based minimization procedures: one
|
||||||
|
that builds a deterministic transition-based Büchi automaton
|
||||||
|
(DTBA), and one the builds a deterministic transition-based
|
||||||
|
generalized Büchi automaton (DTGBA). For the latter, we can supply
|
||||||
|
the number $m$ of acceptance sets to use.
|
||||||
|
3) These two procedures can optionally constrain their output to
|
||||||
|
use state-based acceptance. (They simply restrict all the outgoing
|
||||||
|
transitions of a state to belong to the same acceptance sets.)
|
||||||
|
4) A SAT solver should be installed for this to work. (Spot does not
|
||||||
|
distribute any SAT solver.)
|
||||||
|
5) [[file:ltl2tgba.org][=ltl2tgba=]] and [[file:dstar2tgba.org][=dstar2tgba=]] will always try to output an automaton
|
||||||
|
If they fail to determinize the property, they will simply output a
|
||||||
|
nondeterministic automaton, if they managed to obtain a
|
||||||
|
deterministic automaton but failed to minimize it (e.g., the
|
||||||
|
requested number of states in the final automaton is too low), they
|
||||||
|
will return that "unminimized" deterministic automaton. There are
|
||||||
|
only two cases where these tool will abort without returning an
|
||||||
|
automaton: when the number of clauses output by Spot (and to be fed
|
||||||
|
to the SAT solver) exceeds $2^{31}$, or when the SAT-solver was
|
||||||
|
killed by a signal.
|
||||||
|
|
||||||
|
* How change the SAT solver used
|
||||||
|
|
||||||
|
The environment variable =SPOT_SATSOLVER= can be used to change the
|
||||||
|
SAT solver used by Spot. The default is "=glucose %I >%O=", therefore
|
||||||
|
if you have installed [[https://www.lri.fr/~simon/?page=glucose][=glucose=]] in your =$PATH=, it should work right
|
||||||
|
away. Otherwise you may redefine this variable to point the correct
|
||||||
|
location or to another SAT solver. The =%I= and =%O= sequences will be
|
||||||
|
replaced by the names of temporary files containing the input for the
|
||||||
|
SAT solver and receiving its output. We assume that the SAT solver
|
||||||
|
should follow the conventions of the [[http://www.satcompetition.org/][SAT competition]] for input and
|
||||||
|
output.
|
||||||
|
|
||||||
|
* Enabling SAT-based minimization for deterministic automata
|
||||||
|
|
||||||
|
Both tools follow the same interface, because they use the same
|
||||||
|
post-processing steps internally (i.e., the =spot::postprocessor=
|
||||||
|
class).
|
||||||
|
|
||||||
|
First, option =-D= should be used to declare that you are looking for
|
||||||
|
more determinism. This will tweak the translation algorithm used by
|
||||||
|
=ltl2tgba= to improve determinism, and will also instruct the
|
||||||
|
post-processing routine used by both tools to prefer a
|
||||||
|
deterministic automaton over a smaller equivalent nondeterministic
|
||||||
|
automaton.
|
||||||
|
|
||||||
|
However =-D= is not a guarantee to obtain a deterministic automaton,
|
||||||
|
even if one exists. For instance, =-D= fails to produce a
|
||||||
|
deterministic automaton for =GF(a <-> XXb)=. Instead we get a 9-state
|
||||||
|
non-deterministic automaton.
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltl2tgba -D "GF(a <-> XXb)" --stats='states=%s, det=%d'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: states=9, det=0
|
||||||
|
|
||||||
|
Option =-x tba-det= enables an additional
|
||||||
|
determinization procedure, that would otherwise not be used by =-D=
|
||||||
|
alone. This procedure will work on any automaton that can be
|
||||||
|
represented by a DTBA; if the automaton to process use multiple
|
||||||
|
acceptance conditions, it will be degeneralized first.
|
||||||
|
|
||||||
|
On our example, =-x tba-det= successfully produces a deterministic
|
||||||
|
TBA, but a non-minimal one:
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltl2tgba -D -x tba-det "GF(a <-> XXb)" --stats='states=%s, det=%d'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: states=7, det=1
|
||||||
|
|
||||||
|
Option =-x sat-minimize= will turn-on SAT-based minimization. It also
|
||||||
|
implies =-x tba-det=, so there is no need to supply both options.
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltl2tgba -D -x sat-minimize "GF(a <-> XXb)" --stats='states=%s, det=%d'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: states=4, det=1
|
||||||
|
|
||||||
|
We can draw it:
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports code
|
||||||
|
ltl2tgba -D -x sat-minimize "GF(a <-> XXb)"
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
#+begin_example
|
||||||
|
digraph G {
|
||||||
|
0 [label="", style=invis, height=0]
|
||||||
|
0 -> 1
|
||||||
|
1 [label="1"]
|
||||||
|
1 -> 1 [label="a & !b\n"]
|
||||||
|
1 -> 2 [label="!b & !a\n"]
|
||||||
|
1 -> 2 [label="b & !a\n{Acc[1]}"]
|
||||||
|
1 -> 3 [label="a & b\n{Acc[1]}"]
|
||||||
|
2 [label="2"]
|
||||||
|
2 -> 4 [label="!b & !a\n"]
|
||||||
|
2 -> 4 [label="b & !a\n{Acc[1]}"]
|
||||||
|
2 -> 3 [label="a & !b\n"]
|
||||||
|
2 -> 3 [label="a & b\n{Acc[1]}"]
|
||||||
|
3 [label="4"]
|
||||||
|
3 -> 1 [label="a & !b\n{Acc[1]}"]
|
||||||
|
3 -> 1 [label="a & b\n"]
|
||||||
|
3 -> 2 [label="!b & !a\n{Acc[1]}"]
|
||||||
|
3 -> 2 [label="b & !a\n"]
|
||||||
|
4 [label="3"]
|
||||||
|
4 -> 2 [label="!b & !a\n{Acc[1]}"]
|
||||||
|
4 -> 4 [label="b & !a\n"]
|
||||||
|
4 -> 3 [label="a & !b\n{Acc[1]}"]
|
||||||
|
4 -> 3 [label="a & b\n"]
|
||||||
|
}
|
||||||
|
#+end_example
|
||||||
|
|
||||||
|
#+NAME: gfaexxb3
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports none
|
||||||
|
ltl2tgba -D -x sat-minimize "GF(a <-> XXb)" | sed 's/\\/\\\\/'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS: gfaexxb3
|
||||||
|
#+begin_example
|
||||||
|
digraph G {
|
||||||
|
0 [label="", style=invis, height=0]
|
||||||
|
0 -> 1
|
||||||
|
1 [label="1"]
|
||||||
|
1 -> 1 [label="a & !b\\n"]
|
||||||
|
1 -> 1 [label="a & b\\n{Acc[1]}"]
|
||||||
|
1 -> 2 [label="!b & !a\\n"]
|
||||||
|
1 -> 2 [label="b & !a\\n{Acc[1]}"]
|
||||||
|
2 [label="2"]
|
||||||
|
2 -> 3 [label="!b & !a\\n"]
|
||||||
|
2 -> 3 [label="b & !a\\n{Acc[1]}"]
|
||||||
|
2 -> 4 [label="a & !b\\n"]
|
||||||
|
2 -> 4 [label="a & b\\n{Acc[1]}"]
|
||||||
|
3 [label="3"]
|
||||||
|
3 -> 1 [label="a & !b\\n{Acc[1]}"]
|
||||||
|
3 -> 3 [label="b & !a\\n"]
|
||||||
|
3 -> 4 [label="!b & !a\\n{Acc[1]}"]
|
||||||
|
3 -> 4 [label="a & b\\n"]
|
||||||
|
4 [label="4"]
|
||||||
|
4 -> 1 [label="a & !b\\n{Acc[1]}"]
|
||||||
|
4 -> 1 [label="a & b\\n"]
|
||||||
|
4 -> 2 [label="!b & !a\\n{Acc[1]}"]
|
||||||
|
4 -> 2 [label="b & !a\\n"]
|
||||||
|
}
|
||||||
|
#+end_example
|
||||||
|
|
||||||
|
#+BEGIN_SRC dot :file gfaexxb3.png :cmdline -Tpng :var txt=gfaexxb3 :exports results
|
||||||
|
$txt
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:gfaexxb3.png]]
|
||||||
|
|
||||||
|
Clearly this is automaton benefit from the transition-based
|
||||||
|
acceptance. If we want a traditional Büchi automaton, with
|
||||||
|
state-based acceptance, we only need to add the =-B= option. The
|
||||||
|
result will of course be slightly bigger.
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports code
|
||||||
|
ltl2tgba -BD -x sat-minimize "GF(a <-> XXb)"
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
#+begin_example
|
||||||
|
digraph G {
|
||||||
|
0 [label="", style=invis, height=0]
|
||||||
|
0 -> 1
|
||||||
|
1 [label="1", peripheries=2]
|
||||||
|
1 -> 2 [label="!a\n{Acc[1]}"]
|
||||||
|
1 -> 3 [label="a & !b\n{Acc[1]}"]
|
||||||
|
1 -> 4 [label="a & b\n{Acc[1]}"]
|
||||||
|
2 [label="2", peripheries=2]
|
||||||
|
2 -> 1 [label="!b & !a\n{Acc[1]}"]
|
||||||
|
2 -> 4 [label="a\n{Acc[1]}"]
|
||||||
|
2 -> 5 [label="b & !a\n{Acc[1]}"]
|
||||||
|
3 [label="4"]
|
||||||
|
3 -> 1 [label="a & b\n"]
|
||||||
|
3 -> 2 [label="b & !a\n"]
|
||||||
|
3 -> 3 [label="a & !b\n"]
|
||||||
|
3 -> 6 [label="!b & !a\n"]
|
||||||
|
4 [label="3"]
|
||||||
|
4 -> 1 [label="!b\n"]
|
||||||
|
4 -> 3 [label="a & b\n"]
|
||||||
|
4 -> 6 [label="b & !a\n"]
|
||||||
|
5 [label="6"]
|
||||||
|
5 -> 1 [label="!b\n"]
|
||||||
|
5 -> 4 [label="a & b\n"]
|
||||||
|
5 -> 5 [label="b & !a\n"]
|
||||||
|
6 [label="5"]
|
||||||
|
6 -> 1 [label="a & b\n"]
|
||||||
|
6 -> 2 [label="b & !a\n"]
|
||||||
|
6 -> 4 [label="a & !b\n"]
|
||||||
|
6 -> 5 [label="!b & !a\n"]
|
||||||
|
}
|
||||||
|
#+end_example
|
||||||
|
|
||||||
|
#+NAME: gfaexxb4
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports none
|
||||||
|
ltl2tgba -BD -x sat-minimize "GF(a <-> XXb)" | sed 's/\\/\\\\/'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS: gfaexxb4
|
||||||
|
#+begin_example
|
||||||
|
digraph G {
|
||||||
|
0 [label="", style=invis, height=0]
|
||||||
|
0 -> 1
|
||||||
|
1 [label="1", peripheries=2]
|
||||||
|
1 -> 1 [label="!b & !a\\n{Acc[1]}"]
|
||||||
|
1 -> 2 [label="b & !a\\n{Acc[1]}"]
|
||||||
|
1 -> 3 [label="a\\n{Acc[1]}"]
|
||||||
|
2 [label="2"]
|
||||||
|
2 -> 1 [label="!b & !a\\n"]
|
||||||
|
2 -> 2 [label="b & !a\\n"]
|
||||||
|
2 -> 3 [label="a & !b\\n"]
|
||||||
|
2 -> 4 [label="a & b\\n"]
|
||||||
|
3 [label="3", peripheries=2]
|
||||||
|
3 -> 5 [label="!a\\n{Acc[1]}"]
|
||||||
|
3 -> 6 [label="a\\n{Acc[1]}"]
|
||||||
|
4 [label="5"]
|
||||||
|
4 -> 1 [label="!b & !a\\n"]
|
||||||
|
4 -> 5 [label="b & !a\\n"]
|
||||||
|
4 -> 3 [label="a & !b\\n"]
|
||||||
|
4 -> 6 [label="a & b\\n"]
|
||||||
|
5 [label="4"]
|
||||||
|
5 -> 1 [label="b & !a\\n"]
|
||||||
|
5 -> 2 [label="!b & !a\\n"]
|
||||||
|
5 -> 3 [label="a & b\\n"]
|
||||||
|
5 -> 4 [label="a & !b\\n"]
|
||||||
|
6 [label="6"]
|
||||||
|
6 -> 1 [label="b & !a\\n"]
|
||||||
|
6 -> 5 [label="!b & !a\\n"]
|
||||||
|
6 -> 3 [label="a & b\\n"]
|
||||||
|
6 -> 6 [label="a & !b\\n"]
|
||||||
|
}
|
||||||
|
#+end_example
|
||||||
|
|
||||||
|
#+BEGIN_SRC dot :file gfaexxb4.png :cmdline -Tpng :var txt=gfaexxb4 :exports results
|
||||||
|
$txt
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
[[file:gfaexxb4.png]]
|
||||||
|
|
||||||
|
|
||||||
|
There are cases where =ltl2tgba='s =tba-det= algorithm fails to produce a deterministic automaton.
|
||||||
|
In that case, SAT-based minimization is simply skipped. For instance:
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltl2tgba -D -x sat-minimize "Ga R (F!b & (c U b))" --stats='states=%s, det=%d'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: states=4, det=0
|
||||||
|
|
||||||
|
The question, of course, is whether there exist a deterministic
|
||||||
|
automaton for this formula, in other words: is this a recurrence
|
||||||
|
property? There are two ways to answer this question using Spot (and
|
||||||
|
some help from [[http://www.ltl2dstar.de/][=ltl2dstar=]]).
|
||||||
|
|
||||||
|
The first is purely syntactic. If a formula belongs to the class of
|
||||||
|
"syntactic recurrence formulas", it expresses a syntactic property.
|
||||||
|
(Of course there are formulas that expresses a syntactic properties
|
||||||
|
without being syntactic recurrences.) [[file:ltlfilt.org][=ltlfilt=]] can be instructed to
|
||||||
|
print only formulas that are syntactic recurrences:
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltlfilt --syntactic-recurrence -f "Ga R (F!b & (c U b))"
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: Ga R (F!b & (c U b))
|
||||||
|
|
||||||
|
Since our input formula was output, it expresses a recurrence property.
|
||||||
|
|
||||||
|
The second way to check whether a formula is a recurrence is by
|
||||||
|
converting a deterministic Rabin automaton using [[file:dstar2tgba.org][=dstar2tgba=]]. The
|
||||||
|
output is guaranteed to be deterministic if and only if the input DRA
|
||||||
|
expresses a recurrence property.
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltlfilt -f "Ga R (F!b & (c U b))" -l |
|
||||||
|
ltl2dstar --ltl2nba=spin:../../src/bin/ltl2tgba@-Ds - - |
|
||||||
|
dstar2tgba -D --stats='input(states=%S) output(states=%s, acc-sets=%a, det=%d)'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: input(states=11) output(states=9, acc-sets=1, det=1)
|
||||||
|
|
||||||
|
In the above command, =ltlfilt= is used to convert the LTL formula
|
||||||
|
into =ltl2dstar='s syntax. Then =ltl2dstar= creates a deterministic
|
||||||
|
Rabin automaton (using =ltl2tgba= as an LTL to BA translator), and the
|
||||||
|
resulting 11-state DRA is converted into a 9-state DTBA by
|
||||||
|
=dstar2tgba=. Since that result is deterministic, we can conclude
|
||||||
|
that the formula was a recurrence.
|
||||||
|
|
||||||
|
As far as SAT-based minimization goes, =dstar2tgba= will take the same
|
||||||
|
options as =ltl2tgba=, so we for instance check that the smallest DTBA
|
||||||
|
has 6 states:
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltlfilt -f "Ga R (F!b & (c U b))" -l |
|
||||||
|
ltl2dstar --ltl2nba=spin:../../src/bin/ltl2tgba@-Ds - - |
|
||||||
|
dstar2tgba -D -x sat-minimize --stats='input(states=%S) output(states=%s, acc-sets=%a, det=%d)'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: input(states=11) output(states=6, acc-sets=1, det=1)
|
||||||
|
|
||||||
|
* More acceptance sets
|
||||||
|
|
||||||
|
The formula "=Ga R (F!b & (c U b))=" can in fact be minimized into an
|
||||||
|
even smaller automaton if we use multiple acceptance sets.
|
||||||
|
|
||||||
|
Unfortunately because =dstar2tgba= does not know the formula being
|
||||||
|
translated, and it always convert a DRA into a DBA (with a single
|
||||||
|
acceptance set) before further processing, it does not know if using
|
||||||
|
more acceptance sets could be useful to further minimize it. This
|
||||||
|
number of acceptance sets can however be specified on the command-line
|
||||||
|
with option =-x sat-acc=M=. For instance:
|
||||||
|
|
||||||
|
#+BEGIN_SRC sh :results verbatim :exports both
|
||||||
|
ltlfilt -f "Ga R (F!b & (c U b))" -l |
|
||||||
|
ltl2dstar --ltl2nba=spin:../../src/bin/ltl2tgba@-Ds - - |
|
||||||
|
dstar2tgba -D -x sat-minimize,sat-acc=2 --stats='input(states=%S) output(states=%s, acc-sets=%a, det=%d)'
|
||||||
|
#+END_SRC
|
||||||
|
#+RESULTS:
|
||||||
|
: input(states=11) output(states=5, acc-sets=2, det=1)
|
||||||
|
|
||||||
|
Beware that the size of the SAT problem is exponential in the number of acceptance sets.
|
||||||
|
|
||||||
|
The case of =ltl2tgba= is slightly different because it can remember
|
||||||
|
the number of acceptance sets used by the translation algorithm, and
|
||||||
|
reuse that for SAT-minimization even if the automaton had to be
|
||||||
|
degeneralized in the meantime for the purpose of determinization.
|
||||||
|
|
||||||
|
* Low-level details
|
||||||
|
|
||||||
|
The following figure gives an overview of the processing chains that
|
||||||
|
can be used to turn an LTL formula into a minimal DBA/DTBA/DTGBA. The
|
||||||
|
blue area at the top describes =ltl2tgba -D -x sat-minimize=, while
|
||||||
|
the purple area at the bottom corresponds to =dstar2tgba -D -x
|
||||||
|
stat-minimize=.
|
||||||
|
|
||||||
|
[[file:satmin.png]]
|
||||||
|
|
||||||
|
The picture is slightly inaccurate in the sense that both =ltl2tgba=
|
||||||
|
and =dstar2tgba= are actually using the same post-processing chain:
|
||||||
|
only the initial translation to TGBA or conversion to DBA differs, the
|
||||||
|
rest is the same. However in the case of =dstar2tgba=, no
|
||||||
|
degeneration or determinization are needed.
|
||||||
|
|
||||||
|
Also the picture does not show what happens when =-B= is used: any
|
||||||
|
DTBA is degeneralized into a DBA, before being sent to "DTBA SAT
|
||||||
|
minimization", with a special option to request state-based output.
|
||||||
|
|
||||||
|
The WDBA-minimization boxes are able to produce minimal Weak DBA from
|
||||||
|
any TGBA representing an obligation property. In that case using
|
||||||
|
transition-based or generalized acceptance will not allow further
|
||||||
|
reduction. This minimal WDBA is always used when =-D= is given
|
||||||
|
(otherwise, for the default =--small= option, the minimal WDBA is only
|
||||||
|
used if it is smaller than the nondeterministic automaton it has been
|
||||||
|
built from).
|
||||||
|
|
||||||
|
The "simplify" boxes are actually simulation-based reductions, and
|
||||||
|
SCC-based simplifications.
|
||||||
|
|
||||||
|
The red boxes "not in TCONG" or "not a recurrence" correspond to
|
||||||
|
situations where the tools will produce non-deterministic automata.
|
||||||
|
|
||||||
|
The following options can be used to fine-tune this procedure:
|
||||||
|
|
||||||
|
- =-x tba-det= :: attempt a powerset construction and check if
|
||||||
|
there exists a acceptance set such that the
|
||||||
|
resulting DTBA is equivalent to the input
|
||||||
|
- =-x sat-minimize= :: enable SAT-based minimization. By default it
|
||||||
|
tries to reduce the size of the automaton one state at a time.
|
||||||
|
This option implies =-x tba-det=.
|
||||||
|
- =-x sat-minimize=2= :: enabled SAT-based minimization, but perform a
|
||||||
|
dichotomy to locate the correct automaton size. Use this only if
|
||||||
|
you suspect that the optimal size is far away from the input
|
||||||
|
size. This option implies =-x tba-det=.
|
||||||
|
- =-x sat-acc=$m$= :: attempt to build a minimal DTGBA with $m$ acceptance sets.
|
||||||
|
This options implies =-x sat-minimize=.
|
||||||
|
- =-x sat-states=$n$= :: attempt to build an equivalent DTGBA with $n$
|
||||||
|
states. This also implies =-x sat-minimize= but won't perform
|
||||||
|
any loop to lower the number of states. Note that $n$ should be
|
||||||
|
the number of states in a complete automaton, while =ltl2tgba=
|
||||||
|
and =dstar2tgba= both remove sink states in their output by
|
||||||
|
default (use option =--complete=) to output a complete automaton.
|
||||||
|
Also note that even with the =--complete= option, the output
|
||||||
|
automaton may have appear to have less states because the other
|
||||||
|
are unreachable.
|
||||||
|
- =-x state-based= :: for all outgoing transition of each state
|
||||||
|
to belong to the same acceptance sets.
|
||||||
|
- =-x !wdba-minimize= :: disable WDBA minimization.
|
||||||
|
|
||||||
|
When options =-B= and =-x sat-minimize= both used, =-x state-based= and
|
||||||
|
=-x sat-acc=1= are implied.
|
||||||
101
doc/org/satmin.tex
Normal file
101
doc/org/satmin.tex
Normal file
|
|
@ -0,0 +1,101 @@
|
||||||
|
\documentclass[convert={size=640}]{standalone}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usetikzlibrary{arrows}
|
||||||
|
\usetikzlibrary{shadows}
|
||||||
|
\usetikzlibrary{positioning}
|
||||||
|
\usetikzlibrary{calc}
|
||||||
|
\usetikzlibrary{shapes}
|
||||||
|
\usetikzlibrary{patterns}
|
||||||
|
\usetikzlibrary{backgrounds}
|
||||||
|
\usetikzlibrary{shapes.callouts}
|
||||||
|
\newcommand{\CF}{\ensuremath{\mathcal{F}}}
|
||||||
|
|
||||||
|
\newcommand{\pin}[1]{\tikz[baseline=0]\node[fill=yellow,draw,circle,thin,inner sep=0.5pt,above left] {\footnotesize #1};}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\tikzstyle{dstep}=[align=center,minimum height=3em]
|
||||||
|
\tikzstyle{pstep}=[draw,dstep,drop shadow,fill=white]
|
||||||
|
\tikzstyle{iostep}=[dstep,rounded corners=1mm]
|
||||||
|
\tikzstyle{instep}=[iostep,fill=yellow!20]
|
||||||
|
\tikzstyle{outstep}=[iostep,fill=green!20]
|
||||||
|
\tikzstyle{errstep}=[iostep,fill=red!20]
|
||||||
|
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,>=stealth',semithick,node distance=5.5mm]
|
||||||
|
%\tikzset{callout/.style={ellipse callout, callout pointer arc=30,
|
||||||
|
% callout absolute pointer={#1},fill=blue!30,draw}}
|
||||||
|
%\tikzstyle{
|
||||||
|
|
||||||
|
\node[pstep] (trans) {translate\\to TGBA};
|
||||||
|
\node[pstep,right=of trans.0,xshift=-2mm] (wdba) {attempt\\WDBA\\minim.};
|
||||||
|
\draw[->] (trans) -- (wdba);
|
||||||
|
\node[pstep,right=of wdba.0] (simp) {simplify\\TGBA};
|
||||||
|
\draw[->] (wdba) -- node[above]{fail} (simp);
|
||||||
|
\node[instep,below=of trans,yshift=-2mm] (ltl1) {LTL\\formula};
|
||||||
|
\draw[->] (ltl1) -- (trans);
|
||||||
|
|
||||||
|
\node[pstep,right=of simp,yshift=8mm,xshift=1mm] (degen) {degen\\to TBA};
|
||||||
|
\draw[->] (simp) -- ($(simp.east)+(2mm,0mm)$) |- node[above left,align=right,at end]{nondet. or\\$|\CF|>m=1$} (degen);
|
||||||
|
\coordinate[pstep,right=of degen,yshift=-8mm,xshift=-1mm] (isdet);
|
||||||
|
%\coordinate[pstep,right=of degen,yshift=-2em] (isdet2);
|
||||||
|
\draw[->] (simp) -- ($(simp.east)+(2mm,0mm)$) -- node[below right,at start]{else} (isdet);
|
||||||
|
\coordinate (degen2) at ($(degen.east)+(2mm,0mm)$);
|
||||||
|
\draw[->] (degen) -- (degen2) -- ($(simp.east -| degen2)$);
|
||||||
|
\node[pstep,right=of degen,xshift=2.5em] (tbadet) {attempt\\ powerset\\to DTBA};
|
||||||
|
\draw[->] (isdet) |- node[at end,above left]{nondet.} (tbadet);
|
||||||
|
\coordinate (tbadet2) at ($(tbadet.east)+(2mm,0mm)$);
|
||||||
|
\node[errstep,right=of tbadet.0,xshift=2mm,yshift=2mm] (nottcong) {not in\\$\mathsf{TCONG}$};
|
||||||
|
\draw[->] (tbadet) -- node[at end,above left,align=center]{fail} ($(nottcong.180 |- tbadet)$);
|
||||||
|
\coordinate (turn) at ($(nottcong.-130 |- simp.0)$);
|
||||||
|
\draw[->] (isdet) -- node[below right,at start]{det.} (turn);
|
||||||
|
\draw[->] (tbadet2) -- node[right,pos=.6]{success} ($(tbadet2 |- turn)$);
|
||||||
|
\node[pstep,below=of tbadet.-125,yshift=-3mm] (dtbasat) {DTBA SAT\\minimization};
|
||||||
|
\node[pstep,below=of dtbasat,yshift=5mm] (dtgbasat) {DTGBA SAT\\minimization};
|
||||||
|
\draw[->] (turn) |- node[above left]{$m=1$} (dtbasat);
|
||||||
|
\draw[->] (turn) |- node[above left]{$m>1$} (dtgbasat);
|
||||||
|
\node[outstep,left=of dtgbasat] (mindtgba) {minimal\\DTGBA};
|
||||||
|
\node[outstep] at ($(mindtgba |- dtbasat)$) (mindtba) {minimal\\DTBA};
|
||||||
|
\node[outstep,left=of mindtba,xshift=5mm] (wdbaok) {minimal\\WDBA};
|
||||||
|
\draw[->] (wdba) |- coordinate(c1) node[above right]{success} (wdbaok);
|
||||||
|
|
||||||
|
\draw[->] (dtgbasat) -- (mindtgba);
|
||||||
|
\draw[->] (dtbasat) -- (mindtba);
|
||||||
|
\node[pstep,below=of ltl1,yshift=-2mm,xshift=1mm] (ltl2dstar) {\texttt{ltl2dstar}\\(DRA)};
|
||||||
|
\draw[->] (ltl1) -- ($(ltl1 |- ltl2dstar.90)$);
|
||||||
|
\node[pstep,right=of ltl2dstar] (dra2dba) {attempt\\conversion\\to DBA};
|
||||||
|
\draw[->] (ltl2dstar) -- (dra2dba);
|
||||||
|
\node[pstep,right=of dra2dba,xshift=3em] (wdba2) {attempt\\WDBA\\minim.};
|
||||||
|
\node[pstep,right=of wdba2,xshift=2em] (simp2) {simplify as\\DBA or DTBA};
|
||||||
|
\draw[->] (dra2dba) -- node[at start,below right]{success} (wdba2);
|
||||||
|
\draw[->] (wdba2) -- node[at start,below right]{fail} (simp2);
|
||||||
|
\coordinate (turn2) at ($(turn |- simp2)$);
|
||||||
|
\draw[->] (simp2) -- (turn2);
|
||||||
|
\draw[] (turn2) -- (turn);
|
||||||
|
\node[errstep] (notrec) at ($(ltl1 -| dra2dba)$) {not a\\ recurrence};
|
||||||
|
\draw[->] (dra2dba) -- node[right]{fail} (notrec);
|
||||||
|
\draw[->] (wdba2.160) -| node[below right,sloped]{success} (wdbaok);
|
||||||
|
|
||||||
|
\begin{scope}[on background layer]
|
||||||
|
\coordinate (pt1) at ($(tbadet.north east)+(3mm,2mm)$);
|
||||||
|
\coordinate (pt2) at ($(mindtba.north east)+(3mm,0mm)$);
|
||||||
|
\coordinate (pt3) at ($(mindtgba.south east)+(0mm,-1mm)$);
|
||||||
|
\coordinate[xshift=1mm,yshift=1mm] (turn3) at (turn);
|
||||||
|
\path[pattern color=blue!30,pattern=north west lines] ($(trans.west |- pt1)$) |- (pt2) |- (pt3) -| (turn3) -| (pt1) -- cycle;
|
||||||
|
\node[below right] at ($(trans.west |- pt1)$) {\texttt{ltl2tgba}};
|
||||||
|
|
||||||
|
|
||||||
|
\coordinate[yshift=1mm,xshift=1mm] (pt4) at ($(pt2 -| turn3)$);
|
||||||
|
\coordinate[yshift=-3mm,xshift=-1mm] (pt5) at ($(dra2dba.south west)$);
|
||||||
|
\coordinate[yshift=1mm,xshift=-1mm] (pt6) at ($(dra2dba.north west)$);
|
||||||
|
\path[pattern color=blue!30!red!30,pattern=north east lines] (pt5) -| (pt4) -- ($(pt2) + (1mm,1mm)$) |- (pt6) -- cycle;
|
||||||
|
\node[above left,yshift=-1mm] at ($(pt5 -| pt4)$) {\texttt{dstar2tgba}};
|
||||||
|
\end{scope}
|
||||||
|
|
||||||
|
%\node[fill=yellow,draw,ellipse callout,thin,inner sep=0.5pt,callout pointer arc=30,,yshift=6mm,callout absolute pointer={(c1)}] at (c1) {\footnotesize 1};
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{document}
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: t
|
||||||
|
%%% End:
|
||||||
|
|
@ -44,6 +44,10 @@ corresponding commands are hidden.
|
||||||
- [[file:dstar2tgba.org][=dstar2tgba=]] Convert deterministic Rabin or Streett automata into
|
- [[file:dstar2tgba.org][=dstar2tgba=]] Convert deterministic Rabin or Streett automata into
|
||||||
Büchi automata.
|
Büchi automata.
|
||||||
|
|
||||||
|
* Advanced uses
|
||||||
|
|
||||||
|
- [[file:satmin.org][SAT-based minimization of Deterministic (Generalized) Büchi automata]]
|
||||||
|
|
||||||
# LocalWords: num toc helloworld SRC LTL PSL randltl ltlfilt genltl
|
# LocalWords: num toc helloworld SRC LTL PSL randltl ltlfilt genltl
|
||||||
# LocalWords: scalable ltl tgba Büchi automata tgta ltlcross eval
|
# LocalWords: scalable ltl tgba Büchi automata tgta ltlcross eval
|
||||||
# LocalWords: setenv concat getenv setq
|
# LocalWords: setenv concat getenv setq
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue