unabbreviate: enable removal of R
This implies learning alternative rules for G, and W as well, since those would use R. Fixes #103. Suggested by Joachim Klein. * src/ltlvisit/unabbrev.cc, src/ltlvisit/unabbrev.hh: Implement the new rules. * doc/tl/tl.tex: Document the rules. * src/tests/unabbrevwm.test: Test them. * src/bin/ltlfilt.cc, NEWS: Mention that --unabbreviate accepts R.
This commit is contained in:
parent
0b8c418c94
commit
308833788b
6 changed files with 110 additions and 22 deletions
5
NEWS
5
NEWS
|
|
@ -13,8 +13,9 @@ New in spot 1.99.2a (not yet released)
|
|||
* All the unabbreviation functions (unabbreviate_ltl(),
|
||||
unabbreviate_logic(), unabbreviate_wm()) have been merged into a
|
||||
single unabbreviate() function that takes a string representing
|
||||
the list of rewritting rules to enable. This function is also
|
||||
available via ltlfilt --unabbreviate.
|
||||
the list of operators to remove among "eFGiMRW^" where 'e', 'i',
|
||||
and '^' stand respectively for <->, ->, and xor.
|
||||
This feature is also available via ltlfilt --unabbreviate.
|
||||
|
||||
* In LTL formulas, atomic propositions specified using double-quotes
|
||||
can now include \" and \\. (This is more consistent with the HOA
|
||||
|
|
|
|||
|
|
@ -1262,19 +1262,25 @@ occurrences of $\XOR$, $\EQUIV$ and $\IMPLIES$.
|
|||
``\texttt{\^{}e}" & f\XOR g &\equiv& (f\AND\NOT g)\OR (g\AND\NOT f)\\
|
||||
``\texttt{\^{}}"\text{~without~}``\texttt{e}" & f\XOR g &\equiv& \NOT(f\EQUIV g)\\
|
||||
``\texttt{F}" & \F f&\equiv& \1\U f\\
|
||||
``\texttt{G}" & \G f&\equiv& \0\R f \\
|
||||
``\texttt{W}" & f \W g&\equiv& g \R (g \OR f)\\
|
||||
``\texttt{M}" & f \M g&\equiv& g \U (g \AND f)
|
||||
``\texttt{G}"\text{~without~}``\texttt{R}" & \G f&\equiv& \0\R f \\
|
||||
``\texttt{GR}"\text{~without~}``\texttt{W}" & \G f&\equiv& f \W \0 \\
|
||||
``\texttt{GRW}" & \G f&\equiv& \NOT\F\NOT f \\
|
||||
``\texttt{M}" & f \M g&\equiv& g \U (g \AND f) \\
|
||||
``\texttt{R}"\text{~without~}``\texttt{W}" & f \R g&\equiv& g\W (f \AND g)\\
|
||||
``\texttt{RW}" & f \R g&\equiv& g\U ((f \AND g) \OR \G g) \\
|
||||
``\texttt{W}"\text{~without~}``\texttt{R}" & f \W g&\equiv& g \R (g \OR f)\\
|
||||
``\texttt{WR}" & f \W g&\equiv& f \U (g \OR \G f)\\
|
||||
\end{array}
|
||||
\]
|
||||
|
||||
Among all the possible rewritings (see Appendix~\ref{sec:ltl-equiv})
|
||||
for $\W$ and $\M$, those two were chosen because they are easier to
|
||||
translate in a tableau construction~\cite[Fig.~11]{duret.11.vecos}.
|
||||
the default rules for $\R$, $\W$ and $\M$, those were chosen because
|
||||
they are easier to translate in a tableau
|
||||
construction~\cite[Fig.~11]{duret.11.vecos}.
|
||||
|
||||
Besides the `\verb=unabbreviate()=' function, there is also a class
|
||||
`\verb=unabbreviator()= that implement the same functionality, but
|
||||
maintain a cache of abbreviated subformulas. This is preferable if
|
||||
`\verb=unabbreviator()= that implements the same functionality, but
|
||||
maintains a cache of abbreviated subformulas. This is preferable if
|
||||
you plan to abbreviate many formulas sharing identical subformulas.
|
||||
|
||||
\section{LTL simplifier}
|
||||
|
|
|
|||
|
|
@ -129,9 +129,9 @@ static const argp_option options[] =
|
|||
0 },
|
||||
{ "unabbreviate", OPT_UNABBREVIATE, "STR", OPTION_ARG_OPTIONAL,
|
||||
"remove all occurrences of the operators specified by STR, which "
|
||||
"must be a substring of \"eFGiMW^\", where 'e', 'i', and '^' stand "
|
||||
"respectively for <->, ->, and xor. If no argument is passed, all "
|
||||
"rewriting rules are applied.", 0 },
|
||||
"must be a substring of \"eFGiMRW^\", where 'e', 'i', and '^' stand "
|
||||
"respectively for <->, ->, and xor. If no argument is passed, "
|
||||
"the subset \"eFGiMW^\" is used.", 0 },
|
||||
{ "exclusive-ap", OPT_EXCLUSIVE_AP, "AP,AP,...", 0,
|
||||
"if any of those APs occur in the formula, add a term ensuring "
|
||||
"two of them may not be true at the same time. Use this option "
|
||||
|
|
|
|||
|
|
@ -51,6 +51,9 @@ namespace spot
|
|||
re_m_ = true;
|
||||
re_some_other_ = true;
|
||||
break;
|
||||
case 'R':
|
||||
re_r_ = true;
|
||||
re_some_other_ = true;
|
||||
case 'W':
|
||||
re_w_ = true;
|
||||
re_some_other_ = true;
|
||||
|
|
@ -109,18 +112,44 @@ namespace spot
|
|||
auto c = run(uo->child());
|
||||
switch (auto op = uo->op())
|
||||
{
|
||||
// F f1 = true U f1
|
||||
// F f = true U f
|
||||
case unop::F:
|
||||
if (!re_f_)
|
||||
goto unop_clone;
|
||||
out = binop::instance(binop::U, constant::true_instance(), c);
|
||||
break;
|
||||
// G f1 = false R f1
|
||||
// G f = false R f
|
||||
// G f = f W false
|
||||
// G f = !F!f
|
||||
// G f = !(true U !f)
|
||||
case unop::G:
|
||||
if (!re_g_)
|
||||
goto unop_clone;
|
||||
out = binop::instance(binop::R, constant::false_instance(), c);
|
||||
break;
|
||||
if (!re_r_)
|
||||
{
|
||||
out = binop::instance(binop::R,
|
||||
constant::false_instance(), c);
|
||||
break;
|
||||
}
|
||||
if (!re_w_)
|
||||
{
|
||||
out = binop::instance(binop::W,
|
||||
c, constant::false_instance());
|
||||
break;
|
||||
}
|
||||
{
|
||||
auto nc = unop::instance(unop::Not, c);
|
||||
if (!re_f_)
|
||||
{
|
||||
out = unop::instance(unop::Not,
|
||||
unop::instance(unop::F, nc));
|
||||
break;
|
||||
}
|
||||
auto u = binop::instance(binop::U,
|
||||
constant::true_instance(), nc);
|
||||
out = unop::instance(unop::Not, u);
|
||||
break;
|
||||
}
|
||||
case unop::Not:
|
||||
case unop::X:
|
||||
case unop::Closure:
|
||||
|
|
@ -182,12 +211,29 @@ namespace spot
|
|||
break;
|
||||
}
|
||||
// f1 W f2 = f2 R (f2 | f1)
|
||||
// f1 W f2 = f1 U (f2 | G f1)
|
||||
// f1 W f2 = f1 U (f2 | !F !f1)
|
||||
// f1 W f2 = f1 U (f2 | !(1 U !f1))
|
||||
case binop::W:
|
||||
if (!re_w_)
|
||||
goto binop_clone;
|
||||
out = binop::instance(binop::R, f2,
|
||||
multop::instance(multop::Or,
|
||||
f2->clone(), f1));
|
||||
if (!re_r_)
|
||||
{
|
||||
out = binop::instance(binop::R, f2,
|
||||
multop::instance(multop::Or,
|
||||
f2->clone(), f1));
|
||||
break;
|
||||
}
|
||||
f1->clone();
|
||||
out = unop::instance(unop::G, f1);
|
||||
if (re_g_)
|
||||
{
|
||||
auto tmp = out;
|
||||
out = run(out);
|
||||
tmp->destroy();
|
||||
}
|
||||
out = binop::instance(binop::U, f1,
|
||||
multop::instance(multop::Or, f2, out));
|
||||
break;
|
||||
// f1 M f2 = f2 U (g2 & f1)
|
||||
case binop::M:
|
||||
|
|
@ -197,8 +243,32 @@ namespace spot
|
|||
multop::instance(multop::And,
|
||||
f2->clone(), f1));
|
||||
break;
|
||||
case binop::U:
|
||||
// f1 R f2 = f2 W (f1 & f2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | Gf2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | !F!f2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | !(1 U !f2))
|
||||
case binop::R:
|
||||
if (!re_r_)
|
||||
goto binop_clone;
|
||||
{
|
||||
auto f12 = multop::instance(multop::And, f1, f2->clone());
|
||||
if (!re_w_)
|
||||
{
|
||||
out = binop::instance(binop::W, f2, f12);
|
||||
break;
|
||||
}
|
||||
out = unop::instance(unop::G, f2->clone());
|
||||
if (re_g_)
|
||||
{
|
||||
auto tmp = out;
|
||||
out = run(tmp);
|
||||
tmp->destroy();
|
||||
}
|
||||
out = binop::instance(binop::U, f2,
|
||||
multop::instance(multop::Or, f12, out));
|
||||
}
|
||||
break;
|
||||
case binop::U:
|
||||
case binop::UConcat:
|
||||
case binop::EConcat:
|
||||
case binop::EConcatMarked:
|
||||
|
|
|
|||
|
|
@ -40,11 +40,12 @@ namespace spot
|
|||
bool re_g_ = false;
|
||||
bool re_i_ = false;
|
||||
bool re_m_ = false;
|
||||
bool re_r_ = false;
|
||||
bool re_w_ = false;
|
||||
bool re_xor_ = false;
|
||||
bool re_some_bool_ = false; // rewrite xor, i, or e
|
||||
bool re_some_f_g_ = false; // rewrite F or G
|
||||
bool re_some_other_ = false; // rewrite W or M
|
||||
bool re_some_other_ = false; // rewrite W, M, or R
|
||||
// Cache of rewritten subformulas
|
||||
std::unordered_map<const formula*, const formula*> cache_;
|
||||
public:
|
||||
|
|
|
|||
|
|
@ -25,8 +25,10 @@
|
|||
|
||||
set -e
|
||||
|
||||
ltlfilt=../../bin/ltlfilt
|
||||
|
||||
# Removing W,M in this formula caused a segfault at some point.
|
||||
run 0 ../../bin/ltlfilt --remove-wm >out <<EOF
|
||||
run 0 $ltlfilt --remove-wm >out <<EOF
|
||||
(!((G(p0)) U ((F(p0)) M ((F(X(p1))) & ((p2) W (G(p2))))))) M (F(p0))
|
||||
(Fp0 U(Fp0&!(Gp0 U((FXp1 &(Gp2 R(p2|Gp2))) U(Fp0&FXp1&(Gp2 R(p2|Gp2)))))))
|
||||
EOF
|
||||
|
|
@ -34,3 +36,11 @@ EOF
|
|||
# The first formula will be simplified to the second, so after uniq
|
||||
# the output should have one line.
|
||||
test `uniq out | wc -l` = 1
|
||||
|
||||
for i in 'GFa' 'a R b' 'a W b' 'a M b'; do
|
||||
for fg in '' F G GF; do
|
||||
for rwm in '' R W M RW RM WM RWM; do
|
||||
$ltlfilt -f "$i" --unabbrev=$fg$rwm --equivalent-to "$i"
|
||||
done
|
||||
done
|
||||
done
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue