Add 11 implication-based simplification rules for U,W,R,M.

* src/ltlvisit/simplify.cc: Add them.
* src/ltltest/reduccmp.test: Check them.
* doc/tl/tl.tex: Document them.
This commit is contained in:
Alexandre Duret-Lutz 2012-09-21 18:39:13 +02:00
parent f711f9d097
commit 45ba8c3ef6
3 changed files with 123 additions and 16 deletions

View file

@ -1599,12 +1599,19 @@ option is set (otherwise the rewriting rule is not applied).
\text{if}& f\simp h &\text{then}& f\U (g \R (h \W k)) &\equiv g \R (h \W k) \\
\text{if}& f\simp h &\text{then}& f\U (g \M (h \U k)) &\equiv g \M (h \U k) \\
\text{if}& f\simp h &\text{then}& f\U (g \M (h \W k)) &\equiv g \M (h \W k) \\
\text{if}& f\simp h &\text{then}& (f\U g) \U h &\equiv g \U h \\
\text{if}& f\simp h &\text{then}& (f\W g) \U h &\equiv g \U h \\
\text{if}& g\simp h &\text{then}& (f\U g) \U h &\equiv (f \U g) \OR h \\
\text{if}& f\simp g &\text{then}& f\W g &\equiv g \\
\text{if}& (f\W g)\Simp g &\text{then}& f\W g &\equiv g \\
\text{if}& (\NOT f)\simp g &\text{then}& f\W g &\equiv \1 \\
\text{if}& f\simp g &\text{then}& f\W (g \W h) &\equiv g \W h \\
\text{if}& g\simp f &\text{then}& f\W (g \U h) &\equiv f \W h \\
\text{if}& g\simp f &\text{then}& f\W (g \W h) &\equiv f \W h \\
\text{if}& f\simp h &\text{then}& (f\U g) \W h &\equiv g \W h \\
\text{if}& f\simp h &\text{then}& (f\W g) \W h &\equiv g \W h \\
\text{if}& g\simp h &\text{then}& (f\W g) \W h &\equiv (f \W g) \OR h \\
\text{if}& g\simp h &\text{then}& (f\U g) \W h &\equiv (f \U g) \OR h \\
\text{if}& g\simp f &\text{then}& f\R g &\equiv g \\
\text{if}& g\simp \NOT f &\text{then}& f\R g &\equiv \G g \\
\text{if}& g\simp f &\text{then}& f\R (g \R h) &\equiv g \R h \\
@ -1612,12 +1619,16 @@ option is set (otherwise the rewriting rule is not applied).
\text{if}& f\simp g &\text{then}& f\R (g \R h) &\equiv f \R h \\
\text{if}& h\simp f &\text{then}& (f\R g) \R h &\equiv g \R h \\
\text{if}& h\simp f &\text{then}& (f\M g) \R h &\equiv g \R h \\
\text{if}& g\simp h &\text{then}& (f\R g) \R h &\equiv (f \AND g) \R h \\
\text{if}& g\simp h &\text{then}& (f\M g) \R h &\equiv (f \AND g) \R h \\
\text{if}& g\simp f &\text{then}& f\M g &\equiv g \\
\text{if}& g\simp \NOT f &\text{then}& f\M g &\equiv \0 \\
\text{if}& g\simp f &\text{then}& f\M (g \M h) &\equiv g \M h \\
\text{if}& f\simp g &\text{then}& f\M (g \M h) &\equiv f \M h \\
\text{if}& f\simp g &\text{then}& f\M (g \R h) &\equiv f \M h \\
\text{if}& h\simp f &\text{then}& (f\M g) \M h &\equiv g \M h \\
\text{if}& h\simp f &\text{then}& (f\R g) \M h &\equiv g \M h \\
\text{if}& g\simp h &\text{then}& (f\M g) \M h &\equiv (f \AND g) \M h \\
\end{array}
\end{equation*}