product_susp: new function
* spot/twaalgos/product.cc, spot/twaalgos/product.hh: Implement it. * tests/python/_product_susp.ipynb: New file. * tests/Makefile.am: Add it. * NEWS: Mention it.
This commit is contained in:
parent
a4a8ae9a20
commit
4f2e9512a2
5 changed files with 3810 additions and 5 deletions
15
NEWS
15
NEWS
|
|
@ -55,11 +55,6 @@ New in spot 2.5.3.dev (not yet released)
|
||||||
{SERE;1} = {1} if {SERE} accepts [*0]
|
{SERE;1} = {1} if {SERE} accepts [*0]
|
||||||
{SERE;1} = {SERE} if {SERE} does not accept [*0]
|
{SERE;1} = {SERE} if {SERE} does not accept [*0]
|
||||||
|
|
||||||
- spot::product() and spot::product_or() learned to produce an
|
|
||||||
automaton with a simpler acceptance condition if one of the
|
|
||||||
argument is a weak automaton. In this case the resulting
|
|
||||||
acceptance condition is (usually) that of the other argument.
|
|
||||||
|
|
||||||
- gf_guarantee_to_ba() is a specialized construction for translating
|
- gf_guarantee_to_ba() is a specialized construction for translating
|
||||||
formulas of the form GF(guarantee) to BA or DBA, and
|
formulas of the form GF(guarantee) to BA or DBA, and
|
||||||
fg_safety_to_dca() is a specialized construction for translating
|
fg_safety_to_dca() is a specialized construction for translating
|
||||||
|
|
@ -82,6 +77,16 @@ New in spot 2.5.3.dev (not yet released)
|
||||||
GF(((a & Xb) | XXc) & Xd) 6 4 16 5
|
GF(((a & Xb) | XXc) & Xd) 6 4 16 5
|
||||||
GF((b | Fa) & (b R Xb)) 6 2 3 3
|
GF((b | Fa) & (b R Xb)) 6 2 3 3
|
||||||
|
|
||||||
|
- spot::product() and spot::product_or() learned to produce an
|
||||||
|
automaton with a simpler acceptance condition if one of the
|
||||||
|
argument is a weak automaton. In this case the resulting
|
||||||
|
acceptance condition is (usually) that of the other argument.
|
||||||
|
|
||||||
|
- spot::product_susp() and spot::product_or_susp() are new
|
||||||
|
functions for building products between an automaton A and
|
||||||
|
a "suspendable" automaton B. They are also optimized for
|
||||||
|
the case that A is weak.
|
||||||
|
|
||||||
- print_dot(), used to print automata in GraphViz's format,
|
- print_dot(), used to print automata in GraphViz's format,
|
||||||
underwent several changes:
|
underwent several changes:
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -21,6 +21,7 @@
|
||||||
#include <spot/twaalgos/product.hh>
|
#include <spot/twaalgos/product.hh>
|
||||||
#include <spot/twa/twagraph.hh>
|
#include <spot/twa/twagraph.hh>
|
||||||
#include <spot/twaalgos/complete.hh>
|
#include <spot/twaalgos/complete.hh>
|
||||||
|
#include <spot/twaalgos/sccinfo.hh>
|
||||||
#include <deque>
|
#include <deque>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <spot/misc/hash.hh>
|
#include <spot/misc/hash.hh>
|
||||||
|
|
@ -326,4 +327,223 @@ namespace spot
|
||||||
right->get_init_state_number());
|
right->get_init_state_number());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
static void
|
||||||
|
product_susp_aux(const const_twa_graph_ptr& left,
|
||||||
|
const const_twa_graph_ptr& right,
|
||||||
|
twa_graph_ptr res, bool and_acc,
|
||||||
|
bool sync_all, acc_cond::mark_t rejmark, T merge_acc)
|
||||||
|
{
|
||||||
|
std::unordered_map<product_state, unsigned, product_state_hash> s2n;
|
||||||
|
std::deque<std::pair<product_state, unsigned>> todo;
|
||||||
|
|
||||||
|
scc_info si(left,
|
||||||
|
and_acc ? scc_info_options::TRACK_STATES_IF_FIN_USED
|
||||||
|
: (scc_info_options::TRACK_STATES_IF_FIN_USED
|
||||||
|
| scc_info_options::TRACK_SUCCS));
|
||||||
|
si.determine_unknown_acceptance();
|
||||||
|
|
||||||
|
auto new_state =
|
||||||
|
[&](unsigned left_state, unsigned right_state) -> unsigned
|
||||||
|
{
|
||||||
|
product_state x(left_state, right_state);
|
||||||
|
auto p = s2n.emplace(x, 0);
|
||||||
|
if (p.second) // This is a new state
|
||||||
|
{
|
||||||
|
p.first->second = res->new_state();
|
||||||
|
todo.emplace_back(x, p.first->second);
|
||||||
|
}
|
||||||
|
return p.first->second;
|
||||||
|
};
|
||||||
|
|
||||||
|
unsigned right_init = right->get_init_state_number();
|
||||||
|
unsigned left_init = left->get_init_state_number();
|
||||||
|
unsigned res_init;
|
||||||
|
|
||||||
|
auto target_scc = [&](unsigned scc) -> bool
|
||||||
|
{
|
||||||
|
return (!si.is_trivial(scc)
|
||||||
|
&& (sync_all ||si.is_accepting_scc(scc) == and_acc));
|
||||||
|
};
|
||||||
|
|
||||||
|
if (target_scc(si.scc_of(left_init)))
|
||||||
|
res_init = new_state(left_init, right_init);
|
||||||
|
else
|
||||||
|
res_init = new_state(left_init, -1U);
|
||||||
|
res->set_init_state(res_init);
|
||||||
|
|
||||||
|
bool sbacc = res->prop_state_acc().is_true();
|
||||||
|
|
||||||
|
while (!todo.empty())
|
||||||
|
{
|
||||||
|
auto top = todo.front();
|
||||||
|
todo.pop_front();
|
||||||
|
for (auto& l: left->out(top.first.first))
|
||||||
|
if (!target_scc(si.scc_of(l.dst)))
|
||||||
|
{
|
||||||
|
if (!sbacc || top.first.second == -1U)
|
||||||
|
{
|
||||||
|
res->new_edge(top.second, new_state(l.dst, -1U), l.cond,
|
||||||
|
merge_acc(l.acc, rejmark));
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// This edge leaves a target SCC, but we build a
|
||||||
|
// state-based automaton, so make sure we still
|
||||||
|
// use the same acceptance marks as in the SCC.
|
||||||
|
auto rm = right->state_acc_sets(top.first.second);
|
||||||
|
res->new_edge(top.second, new_state(l.dst, -1U), l.cond,
|
||||||
|
merge_acc(l.acc, rm));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
unsigned right_state = top.first.second;
|
||||||
|
if (top.first.second == -1U)
|
||||||
|
right_state = right_init;
|
||||||
|
for (auto& r: right->out(right_state))
|
||||||
|
{
|
||||||
|
auto cond = l.cond & r.cond;
|
||||||
|
if (cond == bddfalse)
|
||||||
|
continue;
|
||||||
|
auto dst = new_state(l.dst, r.dst);
|
||||||
|
res->new_edge(top.second, dst, cond,
|
||||||
|
merge_acc(l.acc, r.acc));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static twa_graph_ptr
|
||||||
|
product_susp_main(const const_twa_graph_ptr& left,
|
||||||
|
const const_twa_graph_ptr& right,
|
||||||
|
bool and_acc = true)
|
||||||
|
{
|
||||||
|
if (SPOT_UNLIKELY(!(left->is_existential() && right->is_existential())))
|
||||||
|
throw std::runtime_error
|
||||||
|
("product_susp() does not support alternating automata");
|
||||||
|
if (SPOT_UNLIKELY(left->get_dict() != right->get_dict()))
|
||||||
|
throw std::runtime_error("product_susp(): left and right automata "
|
||||||
|
"should share their bdd_dict");
|
||||||
|
|
||||||
|
auto false_or_left = [&] (bool ff)
|
||||||
|
{
|
||||||
|
if (ff)
|
||||||
|
{
|
||||||
|
auto res = make_twa_graph(left->get_dict());
|
||||||
|
res->new_state();
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
return make_twa_graph(left, twa::prop_set::all());
|
||||||
|
};
|
||||||
|
|
||||||
|
// We assume RIGHT is suspendable, but we want to deal with some
|
||||||
|
// trivial true/false cases so we can later assume right has
|
||||||
|
// more than one acceptance set.
|
||||||
|
// Note: suspendable with "t" acceptance = universal language.
|
||||||
|
if (SPOT_UNLIKELY(right->num_sets() == 0))
|
||||||
|
{
|
||||||
|
if (and_acc)
|
||||||
|
return false_or_left(right->is_empty());
|
||||||
|
else if (right->is_empty()) // left OR false = left
|
||||||
|
return make_twa_graph(left, twa::prop_set::all());
|
||||||
|
else // left OR true = true
|
||||||
|
return make_twa_graph(right, twa::prop_set::all());
|
||||||
|
}
|
||||||
|
|
||||||
|
auto res = make_twa_graph(left->get_dict());
|
||||||
|
res->copy_ap_of(left);
|
||||||
|
res->copy_ap_of(right);
|
||||||
|
bool leftweak = left->prop_weak().is_true();
|
||||||
|
|
||||||
|
res->prop_state_acc(left->prop_state_acc() && right->prop_state_acc());
|
||||||
|
|
||||||
|
auto rightunsatmark = right->acc().unsat_mark();
|
||||||
|
if (SPOT_UNLIKELY(!rightunsatmark.first))
|
||||||
|
return false_or_left(and_acc);
|
||||||
|
acc_cond::mark_t rejmark = rightunsatmark.second;
|
||||||
|
|
||||||
|
if (leftweak)
|
||||||
|
{
|
||||||
|
res->copy_acceptance_of(right);
|
||||||
|
if (and_acc)
|
||||||
|
{
|
||||||
|
product_susp_aux(left, right, res, true, false, rejmark,
|
||||||
|
[&] (acc_cond::mark_t,
|
||||||
|
acc_cond::mark_t mr)
|
||||||
|
{
|
||||||
|
return mr;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
auto rightsatmark = right->acc().sat_mark();
|
||||||
|
if (!rightsatmark.first)
|
||||||
|
// Right is always rejecting, no point in making a product_or
|
||||||
|
return make_twa_graph(left, twa::prop_set::all());
|
||||||
|
acc_cond::mark_t accmark = rightsatmark.second;
|
||||||
|
auto& lacc = left->acc();
|
||||||
|
product_susp_aux(left, right, res, false, false, rejmark,
|
||||||
|
[&] (acc_cond::mark_t ml,
|
||||||
|
acc_cond::mark_t mr)
|
||||||
|
{
|
||||||
|
if (!lacc.accepting(ml))
|
||||||
|
return mr;
|
||||||
|
else
|
||||||
|
return accmark;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else // general case
|
||||||
|
{
|
||||||
|
auto left_num = left->num_sets();
|
||||||
|
auto right_acc = right->get_acceptance() << left_num;
|
||||||
|
if (and_acc)
|
||||||
|
right_acc &= left->get_acceptance();
|
||||||
|
else
|
||||||
|
right_acc |= left->get_acceptance();
|
||||||
|
res->set_acceptance(left_num + right->num_sets(), right_acc);
|
||||||
|
|
||||||
|
product_susp_aux(left, right, res, and_acc, !and_acc, rejmark,
|
||||||
|
[&] (acc_cond::mark_t ml,
|
||||||
|
acc_cond::mark_t mr)
|
||||||
|
{
|
||||||
|
return ml | (mr << left_num);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// The product of two non-deterministic automata could be
|
||||||
|
// deterministic. Likewise for non-complete automata.
|
||||||
|
if (left->prop_universal() && right->prop_universal())
|
||||||
|
res->prop_universal(true);
|
||||||
|
if (left->prop_complete() && right->prop_complete())
|
||||||
|
res->prop_complete(true);
|
||||||
|
if (left->prop_stutter_invariant() && right->prop_stutter_invariant())
|
||||||
|
res->prop_stutter_invariant(true);
|
||||||
|
if (left->prop_inherently_weak() && right->prop_inherently_weak())
|
||||||
|
res->prop_inherently_weak(true);
|
||||||
|
if (left->prop_weak() && right->prop_weak())
|
||||||
|
res->prop_weak(true);
|
||||||
|
if (left->prop_terminal() && right->prop_terminal())
|
||||||
|
res->prop_terminal(true);
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
twa_graph_ptr product_susp(const const_twa_graph_ptr& left,
|
||||||
|
const const_twa_graph_ptr& right)
|
||||||
|
{
|
||||||
|
return product_susp_main(left, right);
|
||||||
|
}
|
||||||
|
|
||||||
|
twa_graph_ptr product_or_susp(const const_twa_graph_ptr& left,
|
||||||
|
const const_twa_graph_ptr& right)
|
||||||
|
{
|
||||||
|
return product_susp_main(complete(left), right, false);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -118,4 +118,44 @@ namespace spot
|
||||||
unsigned left_state,
|
unsigned left_state,
|
||||||
unsigned right_state);
|
unsigned right_state);
|
||||||
|
|
||||||
|
|
||||||
|
/// \ingroup twa_algorithms
|
||||||
|
/// \brief Build the product of an automaton with a suspendable
|
||||||
|
/// automaton.
|
||||||
|
///
|
||||||
|
/// The language of this product is the intersection of the
|
||||||
|
/// languages of both input automata.
|
||||||
|
///
|
||||||
|
/// This function *assumes* that \a right_susp is a suspendable
|
||||||
|
/// automaton, i.e., it its language L satisfies L = Σ*.L.
|
||||||
|
/// Therefore the product between the two automata need only be done
|
||||||
|
/// with the accepting SCCs of left.
|
||||||
|
///
|
||||||
|
/// If \a left is a weak automaton, the acceptance condition of the
|
||||||
|
/// output will be that of \a right_susp. Otherwise the acceptance
|
||||||
|
/// condition is the conjunction of both acceptances.
|
||||||
|
SPOT_API
|
||||||
|
twa_graph_ptr product_susp(const const_twa_graph_ptr& left,
|
||||||
|
const const_twa_graph_ptr& right_susp);
|
||||||
|
|
||||||
|
/// \ingroup twa_algorithms
|
||||||
|
/// \brief Build the "or" product of an automaton with a suspendable
|
||||||
|
/// automaton.
|
||||||
|
///
|
||||||
|
/// The language of this product is the union of the languages of
|
||||||
|
/// both input automata.
|
||||||
|
///
|
||||||
|
/// This function *assumes* that \a right_susp is a suspendable
|
||||||
|
/// automaton, i.e., it its language L satisfies L = Σ*.L.
|
||||||
|
/// Therefore, after left has been completed (this will be done by
|
||||||
|
/// product_or_susp) the product between the two automata need only
|
||||||
|
/// be done with the SCCs of left that contains some rejecting cycles.
|
||||||
|
///
|
||||||
|
/// The current implementation is currently suboptimal as instead of
|
||||||
|
/// looking for SCC with rejecting cycles, it simply loop for
|
||||||
|
/// non-trivial SCC, (or in the case of weak automata, with
|
||||||
|
/// non-trivial and rejecting SCCs).
|
||||||
|
SPOT_API
|
||||||
|
twa_graph_ptr product_or_susp(const const_twa_graph_ptr& left,
|
||||||
|
const const_twa_graph_ptr& right_susp);
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -385,6 +385,7 @@ TESTS_python = \
|
||||||
python/parity.py \
|
python/parity.py \
|
||||||
python/prodexpt.py \
|
python/prodexpt.py \
|
||||||
python/_product_weak.ipynb \
|
python/_product_weak.ipynb \
|
||||||
|
python/_product_susp.ipynb \
|
||||||
python/randgen.py \
|
python/randgen.py \
|
||||||
python/relabel.py \
|
python/relabel.py \
|
||||||
python/remfin.py \
|
python/remfin.py \
|
||||||
|
|
|
||||||
3539
tests/python/_product_susp.ipynb
Normal file
3539
tests/python/_product_susp.ipynb
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue