is_unambiguous: rewrite more efficiently
Avoid calling scc_info::determine_unknown_acceptance on the product, as suggested in #188. * spot/twaalgos/isunamb.cc (is_unambiguous): Rewrite. * tests/core/unambig.test: Add the automaton from #188. * NEWS: Mention the improved function. * spot/twaalgos/mask.cc, spot/twaalgos/mask.hh (mask_keep_accessible_states): New function.
This commit is contained in:
parent
9b3451c52e
commit
5384a3b89a
5 changed files with 188 additions and 12 deletions
|
|
@ -19,25 +19,114 @@
|
|||
|
||||
#include <spot/twaalgos/isunamb.hh>
|
||||
#include <spot/twaalgos/product.hh>
|
||||
#include <spot/twaalgos/sccfilter.hh>
|
||||
#include <spot/twaalgos/sccinfo.hh>
|
||||
#include <spot/twaalgos/mask.hh>
|
||||
#include <set>
|
||||
#include <list>
|
||||
|
||||
namespace spot
|
||||
{
|
||||
// Conceptually, aut is unambiguous if the useful part of aut has
|
||||
// the same size as the useful part of aut*aut.
|
||||
//
|
||||
// However calling scc_info::determine_unknown_acceptance(), which
|
||||
// is needed to decide which states are actually useless, is costly.
|
||||
// We do it on aut, but we avoid doing it on prod.
|
||||
//
|
||||
// This optimization, which requires much more code than what
|
||||
// we used to have, was motivated by issue #188.
|
||||
bool is_unambiguous(const const_twa_graph_ptr& aut)
|
||||
{
|
||||
trival u = aut->prop_unambiguous();
|
||||
if (u.is_known())
|
||||
return u.is_true();
|
||||
|
||||
auto clean_a = scc_filter_states(aut);
|
||||
if (clean_a->num_edges() == 0)
|
||||
if (aut->num_edges() == 0)
|
||||
return true;
|
||||
auto prod = product(clean_a, clean_a);
|
||||
auto clean_p = scc_filter_states(prod);
|
||||
return (clean_a->num_states() == clean_p->num_states()
|
||||
&& clean_a->num_edges() == clean_p->num_edges());
|
||||
|
||||
scc_info sccmap(aut);
|
||||
sccmap.determine_unknown_acceptance();
|
||||
unsigned autsz = aut->num_states();
|
||||
std::vector<bool> v;
|
||||
v.reserve(autsz);
|
||||
bool all_useful = true;
|
||||
for (unsigned n = 0; n < autsz; ++n)
|
||||
{
|
||||
bool useful = sccmap.is_useful_state(n);
|
||||
all_useful &= useful;
|
||||
v.push_back(useful);
|
||||
}
|
||||
|
||||
// If the input automaton comes from any /decent/ source, it is
|
||||
// unlikely that it has some useless states, so do not bother too
|
||||
// much optimizing this case.
|
||||
if (!all_useful)
|
||||
return is_unambiguous(mask_keep_accessible_states
|
||||
(aut, v, aut->get_init_state_number()));
|
||||
|
||||
// Reuse v to remember which states are in an accepting SCC.
|
||||
for (unsigned n = 0; n < autsz; ++n)
|
||||
v[n] = sccmap.is_accepting_scc(sccmap.scc_of(n));
|
||||
|
||||
auto prod = product(aut, aut);
|
||||
auto sprod =
|
||||
prod->get_named_prop<std::vector<std::pair<unsigned,
|
||||
unsigned>>>("product-states");
|
||||
assert(sprod);
|
||||
|
||||
// What follow is a way to compute whether an SCC is useless in
|
||||
// prod, without having to call
|
||||
// scc_map::determine_unknown_acceptance() on scc_map(prod),
|
||||
// because prod has potentially a large acceptance condition.
|
||||
//
|
||||
// We know that an SCC of the product is accepting iff it is the
|
||||
// combination of two accepting SCCs of the original automaton.
|
||||
//
|
||||
// So we can just compute the acceptance of each SCC this way, and
|
||||
// derive the usefulness from that.
|
||||
scc_info sccmap_prod(prod);
|
||||
unsigned psc = sccmap_prod.scc_count();
|
||||
std::vector<bool> useful;
|
||||
useful.reserve(psc);
|
||||
for (unsigned n = 0; n < psc; ++n)
|
||||
{
|
||||
unsigned one_state = sccmap_prod.states_of(n).front();
|
||||
bool accepting =
|
||||
v[(*sprod)[one_state].first] && v[(*sprod)[one_state].second];
|
||||
if (accepting)
|
||||
{
|
||||
useful[n] = true;
|
||||
continue;
|
||||
}
|
||||
bool uf = false;
|
||||
for (unsigned j: sccmap_prod.succ(n))
|
||||
if (useful[j])
|
||||
{
|
||||
uf = true;
|
||||
break;
|
||||
}
|
||||
useful[n] = uf;
|
||||
}
|
||||
|
||||
// Now we just have to count the number of states && edges that
|
||||
// belong to the useful part of the automaton.
|
||||
unsigned np = prod->num_states();
|
||||
v.resize(np);
|
||||
unsigned useful_states = 0;
|
||||
for (unsigned n = 0; n < np; ++n)
|
||||
{
|
||||
bool uf = useful[sccmap_prod.scc_of(n)];
|
||||
v[n] = uf;
|
||||
useful_states += uf;
|
||||
}
|
||||
|
||||
if (aut->num_states() != useful_states)
|
||||
return false;
|
||||
|
||||
unsigned useful_edges = 0;
|
||||
for (const auto& e: prod->edges())
|
||||
useful_edges += v[e.src] && v[e.dst];
|
||||
|
||||
return aut->num_edges() == useful_edges;
|
||||
}
|
||||
|
||||
bool check_unambiguous(const twa_graph_ptr& aut)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue