Maintain basic LTL properties using a bitfield inside formula objects.
This bitfield is easily updated as the formulae are constructed. Doing so avoids many AST recursions to compute these properties individually. This patch removes the eventual_universal_visitor, as well as the kind_of() function. * src/ltlast/formula.hh (is_boolean, is_sugar_free_boolean, is_in_nenoform, is_X_free, is_sugar_free_ltl, is_ltl_formula, is_eltl_formula, is_psl_formula, is_eventual, is_universal, is_marked): New methods to query formula properties in constant time. (get_props, ltl_prop): A method and structure for implementation as a field bit in an unsigned, for fast computation. (print_formula_props): New function. * src/ltlast/formula.cc (print_formula_props): Implement it. * src/ltlast/atomic_prop.cc, src/ltlast/binop.cc, src/ltlast/bunop.cc, src/ltlast/constant.cc, src/ltlast/multop.cc, src/ltlast/unop.cc, src/ltlast/automatop.cc: Compute the properties as instances are constructed. * src/ltlparse/ltlparse.yy: Update to use is_boolean() instead of kind_of(). * src/ltltest/kind.cc: Update to use print_formula_props(). * src/ltltest/kind.test: Adjust to test eventual and universal properties. * src/ltlvisit/kind.cc, src/ltlvisit/kind.hh: Delete these files. * src/ltlvisit/Makefile.am: Remove kind.hh and kind.cc. * src/ltlvisit/reduce.cc (recurse_eu, eventual_universal_visitor): Remove, no longer needed. (reduce_visitor, is_eventual, is_universal): Adjust to use formula::is_eventual(), and formula::is_universal(). * src/ltlvisit/reduce.hh (is_eventual, is_universal): Declare as deprecated.
This commit is contained in:
parent
1671aa5da1
commit
546260e7a0
17 changed files with 408 additions and 488 deletions
|
|
@ -38,168 +38,6 @@ namespace spot
|
|||
{
|
||||
namespace
|
||||
{
|
||||
typedef union
|
||||
{
|
||||
unsigned v;
|
||||
struct is_struct
|
||||
{
|
||||
bool eventual:1;
|
||||
bool universal:1;
|
||||
} is;
|
||||
} eu_info;
|
||||
|
||||
static unsigned recurse_eu(const formula* f);
|
||||
|
||||
class eventual_universal_visitor: public const_visitor
|
||||
{
|
||||
public:
|
||||
|
||||
eventual_universal_visitor()
|
||||
{
|
||||
}
|
||||
|
||||
virtual
|
||||
~eventual_universal_visitor()
|
||||
{
|
||||
}
|
||||
|
||||
bool
|
||||
is_eventual() const
|
||||
{
|
||||
return ret_.is.eventual;
|
||||
}
|
||||
|
||||
bool
|
||||
is_universal() const
|
||||
{
|
||||
return ret_.is.universal;
|
||||
}
|
||||
|
||||
unsigned
|
||||
eu() const
|
||||
{
|
||||
return ret_.v;
|
||||
}
|
||||
|
||||
void
|
||||
visit(const atomic_prop*)
|
||||
{
|
||||
ret_.v = 0;
|
||||
}
|
||||
|
||||
void
|
||||
visit(const constant*)
|
||||
{
|
||||
ret_.v = 0;
|
||||
}
|
||||
|
||||
void
|
||||
visit(const bunop*)
|
||||
{
|
||||
ret_.v = 0;
|
||||
}
|
||||
|
||||
void
|
||||
visit(const unop* uo)
|
||||
{
|
||||
const formula* f1 = uo->child();
|
||||
if (uo->op() == unop::F)
|
||||
{
|
||||
ret_.v = recurse_eu(f1);
|
||||
ret_.is.eventual = true;
|
||||
return;
|
||||
}
|
||||
if (uo->op() == unop::G)
|
||||
{
|
||||
ret_.v = recurse_eu(f1);
|
||||
ret_.is.universal = true;
|
||||
return;
|
||||
}
|
||||
ret_.v = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
void
|
||||
visit(const binop* bo)
|
||||
{
|
||||
const formula* f1 = bo->first();
|
||||
const formula* f2 = bo->second();
|
||||
|
||||
// Beware: (f U g) is purely eventual if both operands
|
||||
// are purely eventual, unlike in the proceedings of
|
||||
// Concur'00. (The revision of the paper available at
|
||||
// http://www.bell-labs.com/project/TMP/ is fixed.) See
|
||||
// also http://arxiv.org/abs/1011.4214 for a discussion
|
||||
// about this problem. (Which we fixed in 2005 thanks
|
||||
// to LBTT.)
|
||||
|
||||
// This means that we can use the following case to handle
|
||||
// all cases of (f U g), (f R g), (f W g), (f M g) for
|
||||
// universality and eventuality.
|
||||
ret_.v = recurse_eu(f1) & recurse_eu(f2);
|
||||
|
||||
// we are left with the case where U, R, W, or M are actually
|
||||
// used to represent F or G.
|
||||
switch (bo->op())
|
||||
{
|
||||
case binop::Xor:
|
||||
case binop::Equiv:
|
||||
case binop::Implies:
|
||||
return;
|
||||
case binop::U:
|
||||
if (f1 == constant::true_instance())
|
||||
ret_.is.eventual = true;
|
||||
return;
|
||||
case binop::W:
|
||||
if (f2 == constant::true_instance())
|
||||
ret_.is.eventual = true;
|
||||
return;
|
||||
case binop::R:
|
||||
if (f1 == constant::false_instance())
|
||||
ret_.is.universal = true;
|
||||
return;
|
||||
case binop::M:
|
||||
if (f2 == constant::false_instance())
|
||||
ret_.is.universal = true;
|
||||
return;
|
||||
case binop::UConcat:
|
||||
case binop::EConcat:
|
||||
case binop::EConcatMarked:
|
||||
return;
|
||||
}
|
||||
/* Unreachable code. */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(const automatop*)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(const multop* mo)
|
||||
{
|
||||
unsigned mos = mo->size();
|
||||
assert(mos != 0);
|
||||
ret_.v = recurse_eu(mo->nth(0));
|
||||
for (unsigned i = 1; i < mos && ret_.v != 0; ++i)
|
||||
ret_.v &= recurse_eu(mo->nth(i));
|
||||
}
|
||||
|
||||
private:
|
||||
eu_info ret_;
|
||||
};
|
||||
|
||||
static unsigned
|
||||
recurse_eu(const formula* f)
|
||||
{
|
||||
eventual_universal_visitor v;
|
||||
const_cast<formula*>(f)->accept(v);
|
||||
return v.eu();
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class reduce_visitor: public visitor
|
||||
|
|
@ -251,14 +89,14 @@ namespace spot
|
|||
case unop::F:
|
||||
/* If f is a pure eventuality formula then F(f)=f. */
|
||||
if (!(opt_ & Reduce_Eventuality_And_Universality)
|
||||
|| !is_eventual(result_))
|
||||
|| !result_->is_eventual())
|
||||
result_ = unop::instance(unop::F, result_);
|
||||
return;
|
||||
|
||||
case unop::G:
|
||||
/* If f is a pure universality formula then G(f)=f. */
|
||||
if (!(opt_ & Reduce_Eventuality_And_Universality)
|
||||
|| !is_universal(result_))
|
||||
|| !result_->is_universal())
|
||||
result_ = unop::instance(unop::G, result_);
|
||||
return;
|
||||
|
||||
|
|
@ -280,14 +118,13 @@ namespace spot
|
|||
binop::type op = bo->op();
|
||||
|
||||
formula* f2 = recurse(bo->second());
|
||||
eu_info f2i = { recurse_eu(f2) };
|
||||
|
||||
if (opt_ & Reduce_Eventuality_And_Universality)
|
||||
{
|
||||
/* If b is a pure eventuality formula then a U b = b.
|
||||
If b is a pure universality formula a R b = b. */
|
||||
if ((f2i.is.eventual && (op == binop::U))
|
||||
|| (f2i.is.universal && (op == binop::R)))
|
||||
if ((f2->is_eventual() && (op == binop::U))
|
||||
|| (f2->is_universal() && (op == binop::R)))
|
||||
{
|
||||
result_ = f2;
|
||||
return;
|
||||
|
|
@ -295,17 +132,16 @@ namespace spot
|
|||
}
|
||||
|
||||
formula* f1 = recurse(bo->first());
|
||||
eu_info f1i = { recurse_eu(f1) };
|
||||
if (opt_ & Reduce_Eventuality_And_Universality)
|
||||
{
|
||||
/* If a is a pure eventuality formula then a M b = a & b.
|
||||
If a is a pure universality formula a W b = a|b. */
|
||||
if (f1i.is.eventual && (op == binop::M))
|
||||
if (f1->is_eventual() && (op == binop::M))
|
||||
{
|
||||
result_ = multop::instance(multop::And, f1, f2);
|
||||
return;
|
||||
}
|
||||
if (f1i.is.universal && (op == binop::W))
|
||||
if (f1->is_universal() && (op == binop::W))
|
||||
{
|
||||
result_ = multop::instance(multop::Or, f1, f2);
|
||||
return;
|
||||
|
|
@ -639,17 +475,13 @@ namespace spot
|
|||
bool
|
||||
is_eventual(const formula* f)
|
||||
{
|
||||
eventual_universal_visitor v;
|
||||
const_cast<formula*>(f)->accept(v);
|
||||
return v.is_eventual();
|
||||
return f->is_eventual();
|
||||
}
|
||||
|
||||
bool
|
||||
is_universal(const formula* f)
|
||||
{
|
||||
eventual_universal_visitor v;
|
||||
const_cast<formula*>(f)->accept(v);
|
||||
return v.is_universal();
|
||||
return f->is_universal();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue