Stable version of TGTA approach implementation (automaton + product)
* src/ta/tgta.hh, src/ta/tgta.cc, src/ta/tgtaexplicit.hh, src/ta/tgtaexplicit.hh, src/ta/tgtaproduct.hh, src/ta/tgtaproduct.cc, src/taalgos/minimize.cc, src/taalgos/minimize.hh, src/taalgos/emptinessta.hh, src/taalgos/emptinessta.hh, src/taalgos/emptinessta.cc, src/taalgos/tgba2ta.hh, src/taalgos/tgba2ta.cc: rename tgbta to tgta in this source files. * src/ta/tgbtaexplicit.hh, src/ta/tgbtaproduct.hh, src/ta/tgbta.cc, src/ta/tgbtaproduct.cc, src/ta/tgbta.hh, src/ta/tgbtaexplicit.cc: Rename as... * src/ta/taexplicit.cc, src/ta/taexplicit.hh, src/ta/taproduct.cc, src/ta/taproduct.hh, src/ta/tgtaexplicit.cc: ... these. * src/taalgos/sba2ta.hh, src/taalgos/sba2ta.cc: deleted because the implementation of all the transformations beteween TGBA and the different forms of TA are new implemented in src/taalgos/tgba2ta.hh and src/taalgos/tgba2ta.cc. * src/tgbatest/ltl2tgba.cc: rename the options of commands that build the different forms of TA. * src/ta/ta.hh: BUG Fix * src/ta/Makefile.am, src/tgbatest/ltl2ta.test: impacts of this renaming
This commit is contained in:
parent
c76e651bad
commit
5a706300b0
24 changed files with 1308 additions and 1580 deletions
|
|
@ -47,7 +47,7 @@ namespace spot
|
|||
|
||||
bool
|
||||
ta_check::check(bool disable_second_pass,
|
||||
disable_heuristic_for_livelock_detection)
|
||||
bool disable_heuristic_for_livelock_detection)
|
||||
{
|
||||
|
||||
// We use five main data in this algorithm:
|
||||
|
|
|
|||
|
|
@ -39,14 +39,15 @@ namespace spot
|
|||
typedef std::pair<spot::state*, ta_succ_iterator_product*> pair_state_iter;
|
||||
}
|
||||
|
||||
/// \addtogroup emptiness_check Emptiness-checks
|
||||
/// \addtogroup ta_emptiness_check Emptiness-checks
|
||||
/// \ingroup ta_algorithms
|
||||
///
|
||||
/// \brief Check whether the language of a product between a Kripke structure
|
||||
/// and a TA is empty. It works for both standard and generalized form of TA.
|
||||
/// \brief Check whether the language of a product (spot::ta_product) between
|
||||
/// a Kripke structure and a TA is empty. It works also for the product
|
||||
/// using Generalized TA (GTA and SGTA).
|
||||
///
|
||||
/// you should call \c check to check the product automaton.
|
||||
/// If \c check() returns false, then the product automaton
|
||||
/// you should call spot::ta_check::check() to check the product automaton.
|
||||
/// If spot::ta_check::check() returns false, then the product automaton
|
||||
/// was found empty. Otherwise the automaton accepts some run.
|
||||
///
|
||||
/// This is based on the following paper.
|
||||
|
|
@ -64,21 +65,22 @@ namespace spot
|
|||
/// }
|
||||
/// \endverbatim
|
||||
///
|
||||
/// the implementation of \c check is inspired from the two-pass algorithm
|
||||
/// of the paper above:
|
||||
/// the implementation of spot::ta_check::check() is inspired from the
|
||||
/// two-pass algorithm of the paper above:
|
||||
/// - the fist-pass detect all Buchi-accepting cycles and includes
|
||||
// the heuristic proposed in the paper to detect some
|
||||
/// the heuristic proposed in the paper to detect some
|
||||
/// livelock-accepting cycles.
|
||||
/// - the second-pass detect all livelock-accepting cycles.
|
||||
/// In addition, we add some optimizations to the fist pass:
|
||||
/// 1- Detection of all (livelock-accepting) cycles containing a least
|
||||
/// one state that is both livelock and accepting states
|
||||
/// 1- Detection of all cycles containing a least
|
||||
/// one state that is both livelock and Buchi accepting states
|
||||
/// 2- Detection of all livelock-accepting cycles containing a least
|
||||
/// one state (k,t) such as its "TA component" t is a livelock-accepting
|
||||
/// state that has no successors in the TA automaton.
|
||||
///
|
||||
/// The implementation of each pass is a SCC-based algorithm inspired
|
||||
/// from spot::gtec.hh.
|
||||
/// The implementation of the algorithm of each pass is a SCC-based algorithm
|
||||
/// inspired from spot::gtec.hh.
|
||||
/// @{
|
||||
|
||||
/// \brief An implementation of the emptiness-check algorithm for a product
|
||||
/// between a TA and a Kripke structure
|
||||
|
|
@ -153,7 +155,10 @@ namespace spot
|
|||
|
||||
};
|
||||
|
||||
/// @}
|
||||
/// @}
|
||||
|
||||
/// \addtogroup ta_emptiness_check_algorithms Emptiness-check algorithms
|
||||
/// \ingroup ta_emptiness_check
|
||||
}
|
||||
|
||||
#endif // SPOT_TAALGOS_EMPTINESS_HH
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
#include "ltlast/allnodes.hh"
|
||||
#include "misc/hash.hh"
|
||||
#include "misc/bddlt.hh"
|
||||
#include "ta/tgbtaexplicit.hh"
|
||||
#include "ta/tgtaexplicit.hh"
|
||||
#include "taalgos/statessetbuilder.hh"
|
||||
#include "tgba/tgbaexplicit.hh"
|
||||
#include "tgba/bddprint.hh"
|
||||
|
|
@ -73,7 +73,8 @@ namespace spot
|
|||
|
||||
// From the base automaton and the list of sets, build the minimal automaton
|
||||
void
|
||||
build_result(const ta* a, std::list<hash_set*>& sets, tgba_explicit_number* result_tgba, ta_explicit* result)
|
||||
build_result(const ta* a, std::list<hash_set*>& sets,
|
||||
tgba_explicit_number* result_tgba, ta_explicit* result)
|
||||
{
|
||||
|
||||
// For each set, create a state in the tgbaulting automaton.
|
||||
|
|
@ -168,314 +169,331 @@ namespace spot
|
|||
else if (is_initial_state)
|
||||
result->add_to_initial_states_set(new_dst);
|
||||
|
||||
result->create_transition(ta_src, succit->current_condition(), succit->current_acceptance_conditions(), ta_dst);
|
||||
result->create_transition(ta_src, succit->current_condition(),
|
||||
succit->current_acceptance_conditions(), ta_dst);
|
||||
|
||||
}
|
||||
delete succit;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
partition_t build_partition(const ta* ta_){
|
||||
partition_t
|
||||
build_partition(const ta* ta_)
|
||||
{
|
||||
partition_t cur_run;
|
||||
partition_t next_run;
|
||||
partition_t next_run;
|
||||
|
||||
// The list of equivalent states.
|
||||
partition_t done;
|
||||
// The list of equivalent states.
|
||||
partition_t done;
|
||||
|
||||
std::set<const state*> states_set = get_states_set(ta_);
|
||||
std::set<const state*> states_set = get_states_set(ta_);
|
||||
|
||||
hash_set* I = new hash_set;
|
||||
hash_set* I = new hash_set;
|
||||
|
||||
// livelock acceptance states
|
||||
hash_set* G = new hash_set;
|
||||
// livelock acceptance states
|
||||
hash_set* G = new hash_set;
|
||||
|
||||
// Buchi acceptance states
|
||||
hash_set* F = new hash_set;
|
||||
// Buchi acceptance states
|
||||
hash_set* F = new hash_set;
|
||||
|
||||
// Buchi and livelock acceptance states
|
||||
hash_set* G_F = new hash_set;
|
||||
// Buchi and livelock acceptance states
|
||||
hash_set* G_F = new hash_set;
|
||||
|
||||
// the other states (non initial and not in G, F and G_F)
|
||||
hash_set* S = new hash_set;
|
||||
// the other states (non initial and not in G, F and G_F)
|
||||
hash_set* S = new hash_set;
|
||||
|
||||
std::set<const state*>::iterator it;
|
||||
std::set<const state*>::iterator it;
|
||||
|
||||
spot::state* artificial_initial_state = ta_->get_artificial_initial_state();
|
||||
spot::state* artificial_initial_state = ta_->get_artificial_initial_state();
|
||||
|
||||
for (it = states_set.begin(); it != states_set.end(); it++)
|
||||
for (it = states_set.begin(); it != states_set.end(); it++)
|
||||
{
|
||||
const state* s = (*it);
|
||||
|
||||
if (s == artificial_initial_state)
|
||||
{
|
||||
const state* s = (*it);
|
||||
|
||||
if (s == artificial_initial_state)
|
||||
{
|
||||
I->insert(s);
|
||||
}
|
||||
else if (artificial_initial_state == 0 && ta_->is_initial_state(s))
|
||||
{
|
||||
I->insert(s);
|
||||
}
|
||||
else if (ta_->is_livelock_accepting_state(s)
|
||||
&& ta_->is_accepting_state(s))
|
||||
{
|
||||
G_F->insert(s);
|
||||
}
|
||||
else if (ta_->is_accepting_state(s))
|
||||
{
|
||||
F->insert(s);
|
||||
}
|
||||
|
||||
else if (ta_->is_livelock_accepting_state(s))
|
||||
{
|
||||
G->insert(s);
|
||||
}
|
||||
else
|
||||
{
|
||||
S->insert(s);
|
||||
}
|
||||
|
||||
I->insert(s);
|
||||
}
|
||||
else if (artificial_initial_state == 0 && ta_->is_initial_state(s))
|
||||
{
|
||||
I->insert(s);
|
||||
}
|
||||
else if (ta_->is_livelock_accepting_state(s)
|
||||
&& ta_->is_accepting_state(s))
|
||||
{
|
||||
G_F->insert(s);
|
||||
}
|
||||
else if (ta_->is_accepting_state(s))
|
||||
{
|
||||
F->insert(s);
|
||||
}
|
||||
|
||||
hash_map state_set_map;
|
||||
|
||||
// Size of ta_
|
||||
unsigned size = states_set.size() + 6;
|
||||
// Use bdd variables to number sets. set_num is the first variable
|
||||
// available.
|
||||
unsigned set_num = ta_->get_dict()->register_anonymous_variables(size, ta_);
|
||||
|
||||
std::set<int> free_var;
|
||||
for (unsigned i = set_num; i < set_num + size; ++i)
|
||||
free_var.insert(i);
|
||||
std::map<int, int> used_var;
|
||||
|
||||
else if (ta_->is_livelock_accepting_state(s))
|
||||
{
|
||||
|
||||
for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i)
|
||||
{
|
||||
hash_set* cI = new hash_set;
|
||||
cI->insert(*i);
|
||||
done.push_back(cI);
|
||||
|
||||
used_var[set_num] = 1;
|
||||
free_var.erase(set_num);
|
||||
state_set_map[*i] = set_num;
|
||||
set_num++;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
delete I;
|
||||
|
||||
if (!G->empty())
|
||||
{
|
||||
unsigned s = G->size();
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(G);
|
||||
else
|
||||
done.push_back(G);
|
||||
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
|
||||
G->insert(s);
|
||||
}
|
||||
else
|
||||
delete G;
|
||||
|
||||
if (!F->empty())
|
||||
{
|
||||
unsigned s = F->size();
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(F);
|
||||
else
|
||||
done.push_back(F);
|
||||
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
S->insert(s);
|
||||
}
|
||||
else
|
||||
delete F;
|
||||
|
||||
if (!G_F->empty())
|
||||
}
|
||||
|
||||
hash_map state_set_map;
|
||||
|
||||
// Size of ta_
|
||||
unsigned size = states_set.size() + 6;
|
||||
// Use bdd variables to number sets. set_num is the first variable
|
||||
// available.
|
||||
unsigned set_num = ta_->get_dict()->register_anonymous_variables(size, ta_);
|
||||
|
||||
std::set<int> free_var;
|
||||
for (unsigned i = set_num; i < set_num + size; ++i)
|
||||
free_var.insert(i);
|
||||
std::map<int, int> used_var;
|
||||
|
||||
{
|
||||
|
||||
for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i)
|
||||
{
|
||||
unsigned s = G_F->size();
|
||||
unsigned num = set_num;
|
||||
hash_set* cI = new hash_set;
|
||||
cI->insert(*i);
|
||||
done.push_back(cI);
|
||||
|
||||
used_var[set_num] = 1;
|
||||
free_var.erase(set_num);
|
||||
state_set_map[*i] = set_num;
|
||||
set_num++;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(G_F);
|
||||
else
|
||||
done.push_back(G_F);
|
||||
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
|
||||
}
|
||||
else
|
||||
delete G_F;
|
||||
|
||||
if (!S->empty())
|
||||
{
|
||||
unsigned s = S->size();
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(S);
|
||||
else
|
||||
done.push_back(S);
|
||||
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
}
|
||||
else
|
||||
delete S;
|
||||
}
|
||||
delete I;
|
||||
|
||||
// A bdd_states_map is a list of formulae (in a BDD form) associated with a
|
||||
// destination set of states.
|
||||
typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;
|
||||
|
||||
bool did_split = true;
|
||||
if (!G->empty())
|
||||
{
|
||||
unsigned s = G->size();
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = 1;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
bdd bdd_false_acceptance_condition = bdd_ithvar(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(G);
|
||||
else
|
||||
done.push_back(G);
|
||||
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
|
||||
while (did_split)
|
||||
}
|
||||
else
|
||||
delete G;
|
||||
|
||||
if (!F->empty())
|
||||
{
|
||||
unsigned s = F->size();
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(F);
|
||||
else
|
||||
done.push_back(F);
|
||||
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
}
|
||||
else
|
||||
delete F;
|
||||
|
||||
if (!G_F->empty())
|
||||
{
|
||||
unsigned s = G_F->size();
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(G_F);
|
||||
else
|
||||
done.push_back(G_F);
|
||||
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
}
|
||||
else
|
||||
delete G_F;
|
||||
|
||||
if (!S->empty())
|
||||
{
|
||||
unsigned s = S->size();
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = s;
|
||||
free_var.erase(num);
|
||||
if (s > 1)
|
||||
cur_run.push_back(S);
|
||||
else
|
||||
done.push_back(S);
|
||||
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
|
||||
state_set_map[*i] = num;
|
||||
}
|
||||
else
|
||||
delete S;
|
||||
|
||||
// A bdd_states_map is a list of formulae (in a BDD form) associated with a
|
||||
// destination set of states.
|
||||
typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;
|
||||
|
||||
bool did_split = true;
|
||||
unsigned num = set_num;
|
||||
set_num++;
|
||||
used_var[num] = 1;
|
||||
free_var.erase(num);
|
||||
bdd bdd_false_acceptance_condition = bdd_ithvar(num);
|
||||
|
||||
while (did_split)
|
||||
{
|
||||
did_split = false;
|
||||
while (!cur_run.empty())
|
||||
{
|
||||
did_split = false;
|
||||
while (!cur_run.empty())
|
||||
// Get a set to process.
|
||||
hash_set* cur = cur_run.front();
|
||||
cur_run.pop_front();
|
||||
|
||||
trace
|
||||
<< "processing " << format_hash_set(cur, ta_) << std::endl;
|
||||
|
||||
hash_set::iterator hi;
|
||||
bdd_states_map bdd_map;
|
||||
for (hi = cur->begin(); hi != cur->end(); ++hi)
|
||||
{
|
||||
// Get a set to process.
|
||||
hash_set* cur = cur_run.front();
|
||||
cur_run.pop_front();
|
||||
|
||||
const state* src = *hi;
|
||||
bdd f = bddfalse;
|
||||
ta_succ_iterator* si = ta_->succ_iter(src);
|
||||
trace
|
||||
<< "processing " << format_hash_set(cur, ta_) << std::endl;
|
||||
|
||||
hash_set::iterator hi;
|
||||
bdd_states_map bdd_map;
|
||||
for (hi = cur->begin(); hi != cur->end(); ++hi)
|
||||
<< "+src: " << src << std::endl;
|
||||
for (si->first(); !si->done(); si->next())
|
||||
{
|
||||
const state* src = *hi;
|
||||
bdd f = bddfalse;
|
||||
ta_succ_iterator* si = ta_->succ_iter(src);
|
||||
trace << "+src: " << src << std::endl;
|
||||
for (si->first(); !si->done(); si->next())
|
||||
{
|
||||
const state* dst = si->current_state();
|
||||
hash_map::const_iterator i = state_set_map.find(dst);
|
||||
const state* dst = si->current_state();
|
||||
hash_map::const_iterator i = state_set_map.find(dst);
|
||||
|
||||
assert(i != state_set_map.end());
|
||||
bdd current_acceptance_conditions =
|
||||
si->current_acceptance_conditions();
|
||||
if (current_acceptance_conditions == bddfalse)
|
||||
current_acceptance_conditions
|
||||
= bdd_false_acceptance_condition;
|
||||
f |= (bdd_ithvar(i->second) & si->current_condition()
|
||||
& current_acceptance_conditions);
|
||||
trace << "+f: " << bdd_format_accset(ta_->get_dict(),f) << std::endl;;
|
||||
trace << " -bdd_ithvar(i->second): " << bdd_format_accset(ta_->get_dict(),bdd_ithvar(i->second)) << std::endl;;
|
||||
trace << " -si->current_condition(): " << bdd_format_accset(ta_->get_dict(),si->current_condition()) << std::endl;;
|
||||
trace << " -current_acceptance_conditions: " << bdd_format_accset(ta_->get_dict(),current_acceptance_conditions) << std::endl;;
|
||||
|
||||
}
|
||||
delete si;
|
||||
|
||||
// Have we already seen this formula ?
|
||||
bdd_states_map::iterator bsi = bdd_map.find(f);
|
||||
if (bsi == bdd_map.end())
|
||||
{
|
||||
// No, create a new set.
|
||||
hash_set* new_set = new hash_set;
|
||||
new_set->insert(src);
|
||||
bdd_map[f] = new_set;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Yes, add the current state to the set.
|
||||
bsi->second->insert(src);
|
||||
}
|
||||
}
|
||||
|
||||
bdd_states_map::iterator bsi = bdd_map.begin();
|
||||
if (bdd_map.size() == 1)
|
||||
{
|
||||
// The set was not split.
|
||||
assert(i != state_set_map.end());
|
||||
bdd current_acceptance_conditions =
|
||||
si->current_acceptance_conditions();
|
||||
if (current_acceptance_conditions == bddfalse)
|
||||
current_acceptance_conditions
|
||||
= bdd_false_acceptance_condition;
|
||||
f |= (bdd_ithvar(i->second) & si->current_condition()
|
||||
& current_acceptance_conditions);
|
||||
trace
|
||||
<< "set " << format_hash_set(bsi->second, ta_)
|
||||
<< " was not split" << std::endl;
|
||||
next_run.push_back(bsi->second);
|
||||
<< "+f: " << bdd_format_accset(ta_->get_dict(), f)
|
||||
<< std::endl;
|
||||
;
|
||||
trace
|
||||
<< " -bdd_ithvar(i->second): " << bdd_format_accset(
|
||||
ta_->get_dict(), bdd_ithvar(i->second)) << std::endl;
|
||||
;
|
||||
trace
|
||||
<< " -si->current_condition(): "
|
||||
<< bdd_format_accset(ta_->get_dict(),
|
||||
si->current_condition()) << std::endl;
|
||||
;
|
||||
trace
|
||||
<< " -current_acceptance_conditions: "
|
||||
<< bdd_format_accset(ta_->get_dict(),
|
||||
current_acceptance_conditions) << std::endl;
|
||||
;
|
||||
|
||||
}
|
||||
delete si;
|
||||
|
||||
// Have we already seen this formula ?
|
||||
bdd_states_map::iterator bsi = bdd_map.find(f);
|
||||
if (bsi == bdd_map.end())
|
||||
{
|
||||
// No, create a new set.
|
||||
hash_set* new_set = new hash_set;
|
||||
new_set->insert(src);
|
||||
bdd_map[f] = new_set;
|
||||
}
|
||||
else
|
||||
{
|
||||
did_split = true;
|
||||
for (; bsi != bdd_map.end(); ++bsi)
|
||||
// Yes, add the current state to the set.
|
||||
bsi->second->insert(src);
|
||||
}
|
||||
}
|
||||
|
||||
bdd_states_map::iterator bsi = bdd_map.begin();
|
||||
if (bdd_map.size() == 1)
|
||||
{
|
||||
// The set was not split.
|
||||
trace
|
||||
<< "set " << format_hash_set(bsi->second, ta_)
|
||||
<< " was not split" << std::endl;
|
||||
next_run.push_back(bsi->second);
|
||||
}
|
||||
else
|
||||
{
|
||||
did_split = true;
|
||||
for (; bsi != bdd_map.end(); ++bsi)
|
||||
{
|
||||
hash_set* set = bsi->second;
|
||||
// Free the number associated to these states.
|
||||
unsigned num = state_set_map[*set->begin()];
|
||||
assert(used_var.find(num) != used_var.end());
|
||||
unsigned left = (used_var[num] -= set->size());
|
||||
// Make sure LEFT does not become negative (hence bigger
|
||||
// than SIZE when read as unsigned)
|
||||
assert(left < size);
|
||||
if (left == 0)
|
||||
{
|
||||
hash_set* set = bsi->second;
|
||||
// Free the number associated to these states.
|
||||
unsigned num = state_set_map[*set->begin()];
|
||||
assert(used_var.find(num) != used_var.end());
|
||||
unsigned left = (used_var[num] -= set->size());
|
||||
// Make sure LEFT does not become negative (hence bigger
|
||||
// than SIZE when read as unsigned)
|
||||
assert(left < size);
|
||||
if (left == 0)
|
||||
{
|
||||
used_var.erase(num);
|
||||
free_var.insert(num);
|
||||
}
|
||||
// Pick a free number
|
||||
assert(!free_var.empty());
|
||||
num = *free_var.begin();
|
||||
free_var.erase(free_var.begin());
|
||||
used_var[num] = set->size();
|
||||
for (hash_set::iterator hit = set->begin(); hit
|
||||
!= set->end(); ++hit)
|
||||
state_set_map[*hit] = num;
|
||||
// Trivial sets can't be splitted any further.
|
||||
if (set->size() == 1)
|
||||
{
|
||||
trace
|
||||
<< "set " << format_hash_set(set, ta_)
|
||||
<< " is minimal" << std::endl;
|
||||
done.push_back(set);
|
||||
}
|
||||
else
|
||||
{
|
||||
trace
|
||||
<< "set " << format_hash_set(set, ta_)
|
||||
<< " should be processed further" << std::endl;
|
||||
next_run.push_back(set);
|
||||
}
|
||||
used_var.erase(num);
|
||||
free_var.insert(num);
|
||||
}
|
||||
// Pick a free number
|
||||
assert(!free_var.empty());
|
||||
num = *free_var.begin();
|
||||
free_var.erase(free_var.begin());
|
||||
used_var[num] = set->size();
|
||||
for (hash_set::iterator hit = set->begin(); hit
|
||||
!= set->end(); ++hit)
|
||||
state_set_map[*hit] = num;
|
||||
// Trivial sets can't be splitted any further.
|
||||
if (set->size() == 1)
|
||||
{
|
||||
trace
|
||||
<< "set " << format_hash_set(set, ta_)
|
||||
<< " is minimal" << std::endl;
|
||||
done.push_back(set);
|
||||
}
|
||||
else
|
||||
{
|
||||
trace
|
||||
<< "set " << format_hash_set(set, ta_)
|
||||
<< " should be processed further" << std::endl;
|
||||
next_run.push_back(set);
|
||||
}
|
||||
}
|
||||
delete cur;
|
||||
}
|
||||
if (did_split)
|
||||
trace
|
||||
<< "splitting did occur during this pass." << std::endl;
|
||||
//elsetrace << "splitting did not occur during this pass." << std::endl;
|
||||
std::swap(cur_run, next_run);
|
||||
delete cur;
|
||||
}
|
||||
if (did_split)
|
||||
trace
|
||||
<< "splitting did occur during this pass." << std::endl;
|
||||
//elsetrace << "splitting did not occur during this pass." << std::endl;
|
||||
std::swap(cur_run, next_run);
|
||||
}
|
||||
|
||||
done.splice(done.end(), cur_run);
|
||||
done.splice(done.end(), cur_run);
|
||||
|
||||
#ifdef TRACE
|
||||
trace << "Final partition: ";
|
||||
for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
|
||||
trace << format_hash_set(*i, ta_) << " ";
|
||||
trace << std::endl;
|
||||
#endif
|
||||
#ifdef TRACE
|
||||
trace << "Final partition: ";
|
||||
for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
|
||||
trace << format_hash_set(*i, ta_) << " ";
|
||||
trace << std::endl;
|
||||
#endif
|
||||
|
||||
return done;
|
||||
return done;
|
||||
}
|
||||
|
||||
ta*
|
||||
|
|
@ -486,11 +504,8 @@ namespace spot
|
|||
|
||||
ta_explicit* res = new ta_explicit(tgba, ta_->all_acceptance_conditions());
|
||||
|
||||
|
||||
partition_t partition = build_partition(ta_);
|
||||
|
||||
|
||||
|
||||
// Build the ta automata result.
|
||||
build_result(ta_, partition, tgba, res);
|
||||
|
||||
|
|
@ -503,32 +518,30 @@ namespace spot
|
|||
return res;
|
||||
}
|
||||
|
||||
tgbta*
|
||||
minimize_tgbta(const tgbta* tgbta_)
|
||||
{
|
||||
tgta*
|
||||
minimize_tgta(const tgta* tgta_)
|
||||
{
|
||||
|
||||
tgba_explicit_number* tgba = new tgba_explicit_number(tgbta_->get_dict());
|
||||
tgba_explicit_number* tgba = new tgba_explicit_number(tgta_->get_dict());
|
||||
|
||||
tgbta_explicit* res = new tgbta_explicit(tgba, tgbta_->all_acceptance_conditions(),0);
|
||||
tgta_explicit* res = new tgta_explicit(tgba,
|
||||
tgta_->all_acceptance_conditions(), 0);
|
||||
|
||||
const ta_explicit* tgbta = dynamic_cast <const tgbta_explicit*> (tgbta_);
|
||||
//TODO copier le tgta_ dans un tgta_explicit au lieu de faire un cast...
|
||||
const ta_explicit* tgta = dynamic_cast<const tgta_explicit*> (tgta_);
|
||||
|
||||
partition_t partition = build_partition(tgbta);
|
||||
partition_t partition = build_partition(tgta);
|
||||
|
||||
// Build the minimal tgta automaton.
|
||||
build_result(tgta, partition, tgba, res);
|
||||
|
||||
// Free all the allocated memory.
|
||||
std::list<hash_set*>::iterator itdone;
|
||||
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
|
||||
delete *itdone;
|
||||
//delete ta_;
|
||||
|
||||
// Build the tgbault.
|
||||
build_result(tgbta, partition,tgba, res);
|
||||
|
||||
// Free all the allocated memory.
|
||||
std::list<hash_set*>::iterator itdone;
|
||||
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
|
||||
delete *itdone;
|
||||
//delete ta_;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,19 +22,58 @@
|
|||
# define SPOT_TAALGOS_MINIMIZE_HH
|
||||
|
||||
# include "ta/ta.hh"
|
||||
# include "ta/tgbta.hh"
|
||||
# include "ta/tgta.hh"
|
||||
# include "ta/taexplicit.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
/// \addtogroup ta_reduction
|
||||
/// @{
|
||||
|
||||
|
||||
/// \brief Construct a simplified TA by merging bisimilar states.
|
||||
///
|
||||
/// A TA automaton can be simplified by merging bisimilar states:
|
||||
/// Two states are bisimilar if the automaton can accept the
|
||||
/// same executions starting for either of these states. This can be
|
||||
/// achieved using any algorithm based on partition refinement
|
||||
///
|
||||
/// For more detail about this type of algorithm, see the following paper:
|
||||
/// \verbatim
|
||||
/// @InProceedings{valmari.09.icatpn,
|
||||
/// author = {Antti Valmari},
|
||||
/// title = {Bisimilarity Minimization in in O(m logn) Time},
|
||||
/// booktitle = {Proceedings of the 30th International Conference on
|
||||
/// the Applications and Theory of Petri Nets
|
||||
/// (ICATPN'09)},
|
||||
/// series = {Lecture Notes in Computer Science},
|
||||
/// publisher = {Springer},
|
||||
/// isbn = {978-3-642-02423-8},
|
||||
/// pages = {123--142},
|
||||
/// volume = 5606,
|
||||
/// url = {http://dx.doi.org/10.1007/978-3-642-02424-5_9},
|
||||
/// year = {2009}
|
||||
/// }
|
||||
/// \endverbatim
|
||||
///
|
||||
/// \param ta_ the TA automaton to convert into a simplified TA
|
||||
ta*
|
||||
minimize_ta(const ta* ta_);
|
||||
|
||||
tgbta*
|
||||
minimize_tgbta(const tgbta* tgbta_);
|
||||
|
||||
|
||||
/// \brief Construct a simplified TGTA by merging bisimilar states.
|
||||
///
|
||||
/// A TGTA automaton can be simplified by merging bisimilar states:
|
||||
/// Two states are bisimilar if the automaton can accept the
|
||||
/// same executions starting for either of these states. This can be
|
||||
/// achieved using same algorithm used to simplify a TA taking into account
|
||||
/// the acceptance conditions of the outgoing transitions.
|
||||
///
|
||||
/// \param tgta_ the TGTA automaton to convert into a simplified TGTA
|
||||
tgta*
|
||||
minimize_tgta(const tgta* tgta_);
|
||||
|
||||
/// @}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,454 +0,0 @@
|
|||
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
|
||||
// de l Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
//
|
||||
// Spot is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation; either version 2 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||||
// License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with Spot; see the file COPYING. If not, write to the Free
|
||||
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
||||
// 02111-1307, USA.
|
||||
|
||||
#include "ltlast/atomic_prop.hh"
|
||||
#include "ltlast/constant.hh"
|
||||
#include "tgba/formula2bdd.hh"
|
||||
#include "misc/bddop.hh"
|
||||
#include <cassert>
|
||||
#include "ltlvisit/tostring.hh"
|
||||
#include <iostream>
|
||||
#include "tgba/bddprint.hh"
|
||||
#include "tgbaalgos/gtec/nsheap.hh"
|
||||
#include <stack>
|
||||
#include "sba2ta.hh"
|
||||
#include "taalgos/statessetbuilder.hh"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace spot
|
||||
{
|
||||
|
||||
ta*
|
||||
sba_to_ta(const tgba_sba_proxy* tgba_, bdd atomic_propositions_set_,
|
||||
bool artificial_initial_state_mode,
|
||||
bool artificial_livelock_accepting_state_mode)
|
||||
{
|
||||
|
||||
ta_explicit* ta;
|
||||
std::stack<state_ta_explicit*> todo;
|
||||
|
||||
// build Initial states set:
|
||||
state* tgba_init_state = tgba_->get_init_state();
|
||||
|
||||
if (artificial_initial_state_mode)
|
||||
{
|
||||
state_ta_explicit* ta_init_state = new state_ta_explicit(
|
||||
tgba_init_state->clone(), bddtrue, true);
|
||||
|
||||
ta = new spot::ta_explicit(tgba_, ta_init_state);
|
||||
}
|
||||
else
|
||||
{
|
||||
ta = new spot::ta_explicit(tgba_);
|
||||
}
|
||||
|
||||
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
|
||||
|
||||
bdd satone_tgba_condition;
|
||||
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
tgba_condition -= satone_tgba_condition;
|
||||
state_ta_explicit* init_state = new state_ta_explicit(
|
||||
tgba_init_state->clone(), satone_tgba_condition, true,
|
||||
tgba_->state_is_accepting(tgba_init_state));
|
||||
state_ta_explicit* s = ta->add_state(init_state);
|
||||
assert(s == init_state);
|
||||
ta->add_to_initial_states_set(s);
|
||||
|
||||
todo.push(init_state);
|
||||
}
|
||||
tgba_init_state->destroy();
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
state_ta_explicit* source = todo.top();
|
||||
todo.pop();
|
||||
|
||||
tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter(
|
||||
source->get_tgba_state());
|
||||
for (tgba_succ_it->first(); !tgba_succ_it->done(); tgba_succ_it->next())
|
||||
{
|
||||
const state* tgba_state = tgba_succ_it->current_state();
|
||||
bdd tgba_condition = tgba_succ_it->current_condition();
|
||||
bdd satone_tgba_condition;
|
||||
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
|
||||
tgba_condition -= satone_tgba_condition;
|
||||
|
||||
bdd all_props = bddtrue;
|
||||
bdd dest_condition;
|
||||
if (satone_tgba_condition == source->get_tgba_condition())
|
||||
while ((dest_condition = bdd_satoneset(all_props,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
all_props -= dest_condition;
|
||||
state_ta_explicit* new_dest = new state_ta_explicit(
|
||||
tgba_state->clone(), dest_condition, false,
|
||||
tgba_->state_is_accepting(tgba_state));
|
||||
|
||||
state_ta_explicit* dest = ta->add_state(new_dest);
|
||||
|
||||
if (dest != new_dest)
|
||||
{
|
||||
// the state dest already exists in the testing automata
|
||||
new_dest->get_tgba_state()->destroy();
|
||||
delete new_dest;
|
||||
}
|
||||
else
|
||||
{
|
||||
todo.push(dest);
|
||||
}
|
||||
|
||||
ta->create_transition(source, bdd_setxor(
|
||||
source->get_tgba_condition(),
|
||||
dest->get_tgba_condition()), bddfalse, dest);
|
||||
}
|
||||
|
||||
}
|
||||
tgba_state->destroy();
|
||||
}
|
||||
delete tgba_succ_it;
|
||||
|
||||
}
|
||||
|
||||
compute_livelock_acceptance_states(ta);
|
||||
if (artificial_livelock_accepting_state_mode)
|
||||
{
|
||||
|
||||
state_ta_explicit* artificial_livelock_accepting_state =
|
||||
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddfalse,
|
||||
false, false, true, 0, true);
|
||||
|
||||
add_artificial_livelock_accepting_state(ta,
|
||||
artificial_livelock_accepting_state);
|
||||
|
||||
}
|
||||
|
||||
return ta;
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
|
||||
state_ta_explicit* artificial_livelock_accepting_state)
|
||||
{
|
||||
|
||||
testing_automata->add_state(artificial_livelock_accepting_state);
|
||||
|
||||
ta::states_set_t states_set = testing_automata->get_states_set();
|
||||
ta::states_set_t::iterator it;
|
||||
|
||||
std::set<bdd, bdd_less_than>* conditions_to_livelock_accepting_states =
|
||||
new std::set<bdd, bdd_less_than>;
|
||||
|
||||
for (it = states_set.begin(); it != states_set.end(); it++)
|
||||
{
|
||||
|
||||
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
|
||||
|
||||
conditions_to_livelock_accepting_states->clear();
|
||||
|
||||
state_ta_explicit::transitions* trans = source->get_transitions();
|
||||
state_ta_explicit::transitions::iterator it_trans;
|
||||
|
||||
if (trans != 0)
|
||||
for (it_trans = trans->begin(); it_trans != trans->end();)
|
||||
{
|
||||
state_ta_explicit* dest = (*it_trans)->dest;
|
||||
|
||||
if (dest->is_livelock_accepting_state())
|
||||
{
|
||||
conditions_to_livelock_accepting_states->insert(
|
||||
(*it_trans)->condition);
|
||||
|
||||
}
|
||||
|
||||
//remove hole successors states
|
||||
state_ta_explicit::transitions* dest_trans =
|
||||
(dest)->get_transitions();
|
||||
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
|
||||
if (dest_trans_empty)
|
||||
{
|
||||
source->get_transitions((*it_trans)->condition)->remove(
|
||||
*it_trans);
|
||||
delete (*it_trans);
|
||||
it_trans = trans->erase(it_trans);
|
||||
}
|
||||
else
|
||||
{
|
||||
it_trans++;
|
||||
}
|
||||
}
|
||||
|
||||
if (conditions_to_livelock_accepting_states != 0)
|
||||
{
|
||||
std::set<bdd, bdd_less_than>::iterator it_conditions;
|
||||
for (it_conditions
|
||||
= conditions_to_livelock_accepting_states->begin(); it_conditions
|
||||
!= conditions_to_livelock_accepting_states->end(); it_conditions++)
|
||||
{
|
||||
|
||||
testing_automata->create_transition(source, (*it_conditions),bddfalse,
|
||||
artificial_livelock_accepting_state);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
delete conditions_to_livelock_accepting_states;
|
||||
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
|
||||
}
|
||||
|
||||
void
|
||||
compute_livelock_acceptance_states(ta_explicit* testing_automata)
|
||||
{
|
||||
// We use five main data in this algorithm:
|
||||
// * sscc: a stack of strongly stuttering-connected components (SSCC)
|
||||
scc_stack_ta sscc;
|
||||
|
||||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
int num = 0;
|
||||
|
||||
// * todo: the depth-first search stack. This holds pairs of the
|
||||
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
|
||||
// over the successors of STATE. In our use, ITERATOR should
|
||||
// always be freed when TODO is popped, but STATE should not because
|
||||
// it is also used as a key in H.
|
||||
std::stack<pair_state_iter> todo;
|
||||
|
||||
// * init: the set of the depth-first search initial states
|
||||
std::stack<state*> init_set;
|
||||
|
||||
ta::states_set_t::const_iterator it;
|
||||
ta::states_set_t init_states = testing_automata->get_initial_states_set();
|
||||
for (it = init_states.begin(); it != init_states.end(); it++)
|
||||
{
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
|
||||
}
|
||||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
{
|
||||
state_ta_explicit* init =
|
||||
down_cast<state_ta_explicit*> (init_set.top());
|
||||
init_set.pop();
|
||||
state_ta_explicit* init_clone = init->clone();
|
||||
numbered_state_heap::state_index_p h_init = h->find(init_clone);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init_clone, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting
|
||||
= testing_automata->is_accepting_state(init);
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
|
||||
numbered_state_heap::state_index_p spi = h->find(curr->clone());
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
{
|
||||
todo.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
tgba_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
|
||||
sscc.rem().push_front(curr);
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
bool is_livelock_accepting_sscc = (sscc.top().is_accepting
|
||||
&& (sscc.rem().size() > 1));
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
if (is_livelock_accepting_sscc)
|
||||
{//if it is an accepting sscc
|
||||
//add the state to G (=the livelock-accepting states set)
|
||||
|
||||
state_ta_explicit * livelock_accepting_state =
|
||||
down_cast<state_ta_explicit*> (*i);
|
||||
|
||||
livelock_accepting_state->set_livelock_accepting_state(
|
||||
true);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
sscc.pop();
|
||||
|
||||
}
|
||||
|
||||
// automata reduction
|
||||
testing_automata->delete_stuttering_and_hole_successors(curr);
|
||||
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
bool is_stuttering_transition =
|
||||
testing_automata->get_state_condition(curr)
|
||||
== testing_automata->get_state_condition(dest);
|
||||
state* dest_clone = dest->clone();
|
||||
spi = h->find(dest_clone);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
dest_clone->destroy();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest_clone, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = testing_automata->is_accepting_state(
|
||||
dest);
|
||||
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
if (!curr->compare(dest))
|
||||
{
|
||||
state_ta_explicit * self_loop_state =
|
||||
down_cast<state_ta_explicit*> (curr);
|
||||
assert(self_loop_state);
|
||||
|
||||
if (testing_automata->is_accepting_state(self_loop_state))
|
||||
self_loop_state->set_livelock_accepting_state(true);
|
||||
|
||||
}
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
|
||||
acc |= sscc.top().is_accepting;
|
||||
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
delete h;
|
||||
|
||||
}
|
||||
}
|
||||
|
|
@ -1,49 +0,0 @@
|
|||
// Copyright (C) 2010 Laboratoire de Recherche et Developpement
|
||||
// de l Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
//
|
||||
// Spot is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation; either version 2 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||||
// License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with Spot; see the file COPYING. If not, write to the Free
|
||||
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
||||
// 02111-1307, USA.
|
||||
|
||||
#ifndef SPOT_TGBAALGOS_SBA2TA_HH
|
||||
# define SPOT_TGBAALGOS_SBA2TA_HH
|
||||
|
||||
#include "misc/hash.hh"
|
||||
#include <list>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include "tgba/tgbatba.hh"
|
||||
#include "ltlast/formula.hh"
|
||||
#include <cassert>
|
||||
#include "misc/bddlt.hh"
|
||||
#include "ta/taexplicit.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
ta*
|
||||
sba_to_ta(const tgba_sba_proxy* tgba_to_convert, bdd atomic_propositions_set, bool artificial_initial_state_mode = true,
|
||||
bool artificial_livelock_accepting_state_mode = false);
|
||||
|
||||
void
|
||||
compute_livelock_acceptance_states(ta_explicit* testing_automata);
|
||||
|
||||
void
|
||||
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
|
||||
state_ta_explicit* artificial_livelock_accepting_state);
|
||||
|
||||
}
|
||||
|
||||
#endif // SPOT_TGBAALGOS_SBA2TA_HH
|
||||
|
|
@ -39,16 +39,412 @@
|
|||
#include <stack>
|
||||
#include "tgba2ta.hh"
|
||||
#include "taalgos/statessetbuilder.hh"
|
||||
#include "ta/tgbtaexplicit.hh"
|
||||
#include "ta/tgtaexplicit.hh"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace spot
|
||||
{
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
|
||||
}
|
||||
|
||||
void
|
||||
transform_to_single_pass_automaton(ta_explicit* testing_automata,
|
||||
state_ta_explicit* artificial_livelock_accepting_state = 0)
|
||||
{
|
||||
|
||||
if (artificial_livelock_accepting_state != 0)
|
||||
{
|
||||
state_ta_explicit* artificial_livelock_accepting_state_added =
|
||||
testing_automata->add_state(artificial_livelock_accepting_state);
|
||||
|
||||
// unique artificial_livelock_accepting_state
|
||||
assert(artificial_livelock_accepting_state_added
|
||||
== artificial_livelock_accepting_state);
|
||||
artificial_livelock_accepting_state->set_livelock_accepting_state(true);
|
||||
artificial_livelock_accepting_state->free_transitions();
|
||||
}
|
||||
|
||||
|
||||
|
||||
ta::states_set_t states_set = testing_automata->get_states_set();
|
||||
ta::states_set_t::iterator it;
|
||||
|
||||
state_ta_explicit::transitions* transitions_to_livelock_states =
|
||||
new state_ta_explicit::transitions;
|
||||
|
||||
for (it = states_set.begin(); it != states_set.end(); it++)
|
||||
{
|
||||
|
||||
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
|
||||
|
||||
transitions_to_livelock_states->clear();
|
||||
|
||||
state_ta_explicit::transitions* trans = source->get_transitions();
|
||||
state_ta_explicit::transitions::iterator it_trans;
|
||||
|
||||
if (trans != 0)
|
||||
for (it_trans = trans->begin(); it_trans != trans->end();)
|
||||
{
|
||||
state_ta_explicit* dest = (*it_trans)->dest;
|
||||
|
||||
state_ta_explicit::transitions* dest_trans =
|
||||
(dest)->get_transitions();
|
||||
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
|
||||
|
||||
|
||||
|
||||
//select transitions where a destination is a livelock state
|
||||
// which isn't a Buchi accepting state and has successors
|
||||
if (dest->is_livelock_accepting_state()
|
||||
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
|
||||
{
|
||||
transitions_to_livelock_states->push_front(*it_trans);
|
||||
|
||||
}
|
||||
|
||||
//optimization to have, after
|
||||
// minimization, an unique livelock state which has no successors
|
||||
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
|
||||
{
|
||||
dest->set_accepting_state(false);
|
||||
|
||||
}
|
||||
|
||||
it_trans++;
|
||||
|
||||
}
|
||||
|
||||
if (transitions_to_livelock_states != 0)
|
||||
{
|
||||
state_ta_explicit::transitions::iterator it_trans;
|
||||
|
||||
for (it_trans = transitions_to_livelock_states->begin(); it_trans
|
||||
!= transitions_to_livelock_states->end(); it_trans++)
|
||||
{
|
||||
if (artificial_livelock_accepting_state != 0)
|
||||
{
|
||||
testing_automata->create_transition(source,
|
||||
(*it_trans)->condition,
|
||||
(*it_trans)->acceptance_conditions,
|
||||
artificial_livelock_accepting_state, true);
|
||||
}
|
||||
else
|
||||
{
|
||||
testing_automata->create_transition(source,
|
||||
(*it_trans)->condition,
|
||||
(*it_trans)->acceptance_conditions,
|
||||
((*it_trans)->dest)->stuttering_reachable_livelock,
|
||||
true);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
delete transitions_to_livelock_states;
|
||||
|
||||
for (it = states_set.begin(); it != states_set.end(); it++)
|
||||
{
|
||||
|
||||
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
|
||||
state_ta_explicit::transitions* state_trans =
|
||||
(state)->get_transitions();
|
||||
bool state_trans_empty = state_trans == 0 || state_trans->empty();
|
||||
|
||||
if (state->is_livelock_accepting_state()
|
||||
&& (!state->is_accepting_state()) && (!state_trans_empty))
|
||||
state->set_livelock_accepting_state(false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
compute_livelock_acceptance_states(ta_explicit* testing_automata,
|
||||
bool single_pass_emptiness_check,
|
||||
state_ta_explicit* artificial_livelock_accepting_state)
|
||||
{
|
||||
// We use five main data in this algorithm:
|
||||
// * sscc: a stack of strongly stuttering-connected components (SSCC)
|
||||
scc_stack_ta sscc;
|
||||
|
||||
// * arc, a stack of acceptance conditions between each of these SCC,
|
||||
std::stack<bdd> arc;
|
||||
|
||||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build();
|
||||
///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
int num = 0;
|
||||
|
||||
// * todo: the depth-first search stack. This holds pairs of the
|
||||
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
|
||||
// over the successors of STATE. In our use, ITERATOR should
|
||||
// always be freed when TODO is popped, but STATE should not because
|
||||
// it is also used as a key in H.
|
||||
std::stack<pair_state_iter> todo;
|
||||
|
||||
// * init: the set of the depth-first search initial states
|
||||
std::stack<state*> init_set;
|
||||
|
||||
ta::states_set_t::const_iterator it;
|
||||
ta::states_set_t init_states = testing_automata->get_initial_states_set();
|
||||
for (it = init_states.begin(); it != init_states.end(); it++)
|
||||
{
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
|
||||
}
|
||||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
|
||||
{
|
||||
state_ta_explicit* init =
|
||||
down_cast<state_ta_explicit*> (init_set.top());
|
||||
init_set.pop();
|
||||
state_ta_explicit* init_clone = init;
|
||||
numbered_state_heap::state_index_p h_init = h->find(init_clone);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init_clone, ++num);
|
||||
sscc.push(num);
|
||||
arc.push(bddfalse);
|
||||
sscc.top().is_accepting
|
||||
= testing_automata->is_accepting_state(init);
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
|
||||
numbered_state_heap::state_index_p spi = h->find(curr);
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
{
|
||||
todo.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
tgba_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi = h->index(curr);
|
||||
assert(spi.first);
|
||||
|
||||
sscc.rem().push_front(curr);
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
|
||||
&& ((sscc.top().is_accepting) || (sscc.top().condition
|
||||
== testing_automata->all_acceptance_conditions()));
|
||||
|
||||
trace
|
||||
<< "*** sscc.size() = ***"
|
||||
<< sscc.size() << std::endl;
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index((*i));
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
|
||||
if (is_livelock_accepting_sscc)
|
||||
{//if it is an accepting sscc add the state to
|
||||
//G (=the livelock-accepting states set)
|
||||
trace << "*** sscc.size() > 1: states: ***"
|
||||
<< testing_automata->format_state(*i)
|
||||
<< std::endl;
|
||||
state_ta_explicit * livelock_accepting_state =
|
||||
down_cast<state_ta_explicit*> (*i);
|
||||
|
||||
livelock_accepting_state->set_livelock_accepting_state(
|
||||
true);
|
||||
|
||||
if (single_pass_emptiness_check)
|
||||
{
|
||||
livelock_accepting_state->set_accepting_state(
|
||||
true);
|
||||
livelock_accepting_state->stuttering_reachable_livelock
|
||||
= livelock_accepting_state;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
assert(!arc.empty());
|
||||
sscc.pop();
|
||||
arc.pop();
|
||||
|
||||
}
|
||||
|
||||
// automata reduction
|
||||
testing_automata->delete_stuttering_and_hole_successors(curr);
|
||||
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
bdd acc_cond = succ->current_acceptance_conditions();
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
bool is_stuttering_transition =
|
||||
testing_automata->get_state_condition(curr)
|
||||
== testing_automata->get_state_condition(dest);
|
||||
state* dest_clone = dest;
|
||||
spi = h->find(dest_clone);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
dest_clone->destroy();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest_clone, ++num);
|
||||
sscc.push(num);
|
||||
arc.push(acc_cond);
|
||||
sscc.top().is_accepting = testing_automata->is_accepting_state(
|
||||
dest);
|
||||
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
trace
|
||||
<< "***compute_livelock_acceptance_states: CYCLE***" << std::endl;
|
||||
|
||||
if (!curr->compare(dest))
|
||||
{
|
||||
state_ta_explicit * self_loop_state =
|
||||
down_cast<state_ta_explicit*> (curr);
|
||||
assert(self_loop_state);
|
||||
|
||||
if (testing_automata->is_accepting_state(self_loop_state)
|
||||
|| (acc_cond
|
||||
== testing_automata->all_acceptance_conditions()))
|
||||
{
|
||||
self_loop_state->set_livelock_accepting_state(true);
|
||||
if (single_pass_emptiness_check)
|
||||
{
|
||||
self_loop_state->set_accepting_state(true);
|
||||
self_loop_state->stuttering_reachable_livelock
|
||||
= self_loop_state;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
trace
|
||||
<< "***compute_livelock_acceptance_states: CYCLE: self_loop_state***"
|
||||
<< std::endl;
|
||||
|
||||
}
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
assert(!arc.empty());
|
||||
acc |= sscc.top().is_accepting;
|
||||
acc_cond |= sscc.top().condition;
|
||||
acc_cond |= arc.top();
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
arc.pop();
|
||||
}
|
||||
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
sscc.top().condition |= acc_cond;
|
||||
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
delete h;
|
||||
|
||||
if ((artificial_livelock_accepting_state != 0)
|
||||
|| single_pass_emptiness_check)
|
||||
transform_to_single_pass_automaton(testing_automata,
|
||||
artificial_livelock_accepting_state);
|
||||
|
||||
}
|
||||
|
||||
ta_explicit*
|
||||
build_ta(ta_explicit* ta, bdd atomic_propositions_set_,
|
||||
bool artificial_livelock_accepting_state_mode, bool degeneralized)
|
||||
build_ta(ta_explicit* ta, bdd atomic_propositions_set_, bool degeneralized,
|
||||
bool single_pass_emptiness_check, bool artificial_livelock_state_mode)
|
||||
{
|
||||
|
||||
std::stack<state_ta_explicit*> todo;
|
||||
|
|
@ -115,17 +511,17 @@ namespace spot
|
|||
all_props -= dest_condition;
|
||||
state_ta_explicit* new_dest;
|
||||
if (degeneralized)
|
||||
{
|
||||
{
|
||||
|
||||
new_dest
|
||||
= new state_ta_explicit(
|
||||
tgba_state->clone(),
|
||||
dest_condition,
|
||||
false,
|
||||
new_dest
|
||||
= new state_ta_explicit(
|
||||
tgba_state->clone(),
|
||||
dest_condition,
|
||||
false,
|
||||
((const tgba_sba_proxy*) tgba_)->state_is_accepting(
|
||||
tgba_state));
|
||||
tgba_state));
|
||||
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
new_dest = new state_ta_explicit(tgba_state->clone(),
|
||||
|
|
@ -136,7 +532,7 @@ namespace spot
|
|||
|
||||
if (dest != new_dest)
|
||||
{
|
||||
// the state dest already exists in the testing automata
|
||||
// the state dest already exists in the automaton
|
||||
new_dest->get_tgba_state()->destroy();
|
||||
delete new_dest;
|
||||
}
|
||||
|
|
@ -163,11 +559,11 @@ namespace spot
|
|||
|
||||
trace
|
||||
<< "*** build_ta: artificial_livelock_accepting_state_mode = ***"
|
||||
<< artificial_livelock_accepting_state_mode << std::endl;
|
||||
<< artificial_livelock_state_mode << std::endl;
|
||||
|
||||
if (artificial_livelock_accepting_state_mode)
|
||||
if (artificial_livelock_state_mode)
|
||||
{
|
||||
|
||||
single_pass_emptiness_check = true;
|
||||
artificial_livelock_accepting_state = new state_ta_explicit(
|
||||
ta->get_tgba()->get_init_state(), bddtrue, false, false, true, 0);
|
||||
trace
|
||||
|
|
@ -176,7 +572,8 @@ namespace spot
|
|||
|
||||
}
|
||||
|
||||
compute_livelock_acceptance_states(ta, artificial_livelock_accepting_state);
|
||||
compute_livelock_acceptance_states(ta, single_pass_emptiness_check,
|
||||
artificial_livelock_accepting_state);
|
||||
|
||||
return ta;
|
||||
|
||||
|
|
@ -184,19 +581,19 @@ namespace spot
|
|||
|
||||
ta_explicit*
|
||||
tgba_to_ta(const tgba* tgba_, bdd atomic_propositions_set_,
|
||||
bool artificial_initial_state_mode,
|
||||
bool artificial_livelock_accepting_state_mode, bool degeneralized)
|
||||
bool degeneralized, bool artificial_initial_state_mode,
|
||||
bool single_pass_emptiness_check, bool artificial_livelock_state_mode)
|
||||
{
|
||||
ta_explicit* ta;
|
||||
|
||||
state* tgba_init_state = tgba_->get_init_state();
|
||||
if (artificial_initial_state_mode)
|
||||
{
|
||||
state_ta_explicit* ta_init_state = new state_ta_explicit(
|
||||
state_ta_explicit* artificial_init_state = new state_ta_explicit(
|
||||
tgba_init_state->clone(), bddfalse, true);
|
||||
|
||||
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions(),
|
||||
ta_init_state);
|
||||
artificial_init_state);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
@ -205,413 +602,38 @@ namespace spot
|
|||
tgba_init_state->destroy();
|
||||
|
||||
// build ta automata:
|
||||
build_ta(ta, atomic_propositions_set_,
|
||||
artificial_livelock_accepting_state_mode, degeneralized);
|
||||
build_ta(ta, atomic_propositions_set_, degeneralized,
|
||||
single_pass_emptiness_check, artificial_livelock_state_mode);
|
||||
return ta;
|
||||
}
|
||||
|
||||
void
|
||||
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
|
||||
state_ta_explicit* artificial_livelock_accepting_state)
|
||||
{
|
||||
|
||||
state_ta_explicit* artificial_livelock_accepting_state_added =
|
||||
testing_automata->add_state(artificial_livelock_accepting_state);
|
||||
|
||||
// unique artificial_livelock_accepting_state
|
||||
assert(artificial_livelock_accepting_state_added
|
||||
== artificial_livelock_accepting_state);
|
||||
|
||||
trace
|
||||
<< "*** add_artificial_livelock_accepting_state: "
|
||||
<< "assert(artificial_livelock_accepting_state_added == "
|
||||
<< "artificial_livelock_accepting_state) = ***"
|
||||
<< (artificial_livelock_accepting_state_added
|
||||
== artificial_livelock_accepting_state) << std::endl;
|
||||
|
||||
ta::states_set_t states_set = testing_automata->get_states_set();
|
||||
ta::states_set_t::iterator it;
|
||||
|
||||
std::set<bdd, bdd_less_than>* conditions_to_livelock_accepting_states =
|
||||
new std::set<bdd, bdd_less_than>;
|
||||
|
||||
for (it = states_set.begin(); it != states_set.end(); it++)
|
||||
{
|
||||
|
||||
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
|
||||
|
||||
conditions_to_livelock_accepting_states->clear();
|
||||
|
||||
state_ta_explicit::transitions* trans = source->get_transitions();
|
||||
state_ta_explicit::transitions::iterator it_trans;
|
||||
|
||||
if (trans != 0)
|
||||
for (it_trans = trans->begin(); it_trans != trans->end();)
|
||||
{
|
||||
state_ta_explicit* dest = (*it_trans)->dest;
|
||||
|
||||
state_ta_explicit::transitions* dest_trans =
|
||||
(dest)->get_transitions();
|
||||
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
|
||||
|
||||
//TA++
|
||||
if (dest->is_livelock_accepting_state()
|
||||
&& (!dest->is_accepting_state() || dest_trans_empty))
|
||||
{
|
||||
conditions_to_livelock_accepting_states->insert(
|
||||
(*it_trans)->condition);
|
||||
|
||||
}
|
||||
|
||||
//remove hole successors states
|
||||
if (dest_trans_empty)
|
||||
{
|
||||
source->get_transitions((*it_trans)->condition)->remove(
|
||||
*it_trans);
|
||||
delete (*it_trans);
|
||||
it_trans = trans->erase(it_trans);
|
||||
}
|
||||
else
|
||||
{
|
||||
it_trans++;
|
||||
}
|
||||
}
|
||||
|
||||
if (conditions_to_livelock_accepting_states != 0)
|
||||
{
|
||||
std::set<bdd, bdd_less_than>::iterator it_conditions;
|
||||
for (it_conditions
|
||||
= conditions_to_livelock_accepting_states->begin(); it_conditions
|
||||
!= conditions_to_livelock_accepting_states->end(); it_conditions++)
|
||||
{
|
||||
|
||||
testing_automata->create_transition(source, (*it_conditions),
|
||||
bddfalse, artificial_livelock_accepting_state, true);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
delete conditions_to_livelock_accepting_states;
|
||||
|
||||
for (it = states_set.begin(); it != states_set.end(); it++)
|
||||
{
|
||||
|
||||
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
|
||||
state_ta_explicit::transitions* state_trans =
|
||||
(state)->get_transitions();
|
||||
bool state_trans_empty = state_trans == 0 || state_trans->empty();
|
||||
|
||||
if (state->is_livelock_accepting_state()
|
||||
&& (!state->is_accepting_state()) && (!state_trans_empty))
|
||||
state->set_livelock_accepting_state(false);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
|
||||
}
|
||||
|
||||
void
|
||||
compute_livelock_acceptance_states(ta_explicit* testing_automata,
|
||||
state_ta_explicit* artificial_livelock_accepting_state)
|
||||
{
|
||||
// We use five main data in this algorithm:
|
||||
// * sscc: a stack of strongly stuttering-connected components (SSCC)
|
||||
scc_stack_ta sscc;
|
||||
|
||||
// * arc, a stack of acceptance conditions between each of these SCC,
|
||||
std::stack<bdd> arc;
|
||||
|
||||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build();
|
||||
///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
int num = 0;
|
||||
|
||||
// * todo: the depth-first search stack. This holds pairs of the
|
||||
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
|
||||
// over the successors of STATE. In our use, ITERATOR should
|
||||
// always be freed when TODO is popped, but STATE should not because
|
||||
// it is also used as a key in H.
|
||||
std::stack<pair_state_iter> todo;
|
||||
|
||||
// * init: the set of the depth-first search initial states
|
||||
std::stack<state*> init_set;
|
||||
|
||||
ta::states_set_t::const_iterator it;
|
||||
ta::states_set_t init_states = testing_automata->get_initial_states_set();
|
||||
for (it = init_states.begin(); it != init_states.end(); it++)
|
||||
{
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
|
||||
}
|
||||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
|
||||
{
|
||||
state_ta_explicit* init =
|
||||
down_cast<state_ta_explicit*> (init_set.top());
|
||||
init_set.pop();
|
||||
state_ta_explicit* init_clone = init;
|
||||
numbered_state_heap::state_index_p h_init = h->find(init_clone);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init_clone, ++num);
|
||||
sscc.push(num);
|
||||
arc.push(bddfalse);
|
||||
sscc.top().is_accepting
|
||||
= testing_automata->is_accepting_state(init);
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
|
||||
numbered_state_heap::state_index_p spi = h->find(curr);
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
{
|
||||
todo.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
tgba_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi = h->index(curr);
|
||||
assert(spi.first);
|
||||
|
||||
sscc.rem().push_front(curr);
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
|
||||
&& ((sscc.top().is_accepting) || (sscc.top().condition
|
||||
== testing_automata->all_acceptance_conditions()));
|
||||
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index((*i));
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
if (is_livelock_accepting_sscc)
|
||||
{//if it is an accepting sscc add the state to
|
||||
//G (=the livelock-accepting states set)
|
||||
|
||||
state_ta_explicit * livelock_accepting_state =
|
||||
down_cast<state_ta_explicit*> (*i);
|
||||
|
||||
livelock_accepting_state->set_livelock_accepting_state(
|
||||
true);
|
||||
|
||||
//case STA (Single-pass Testing Automata) or case
|
||||
//STGTA (Single-pass Transition-based Generalised Testing Automata)
|
||||
if (artificial_livelock_accepting_state != 0)
|
||||
livelock_accepting_state->set_accepting_state(
|
||||
true);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
assert(!arc.empty());
|
||||
sscc.pop();
|
||||
arc.pop();
|
||||
|
||||
}
|
||||
|
||||
// automata reduction
|
||||
testing_automata->delete_stuttering_and_hole_successors(curr);
|
||||
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
bdd acc_cond = succ->current_acceptance_conditions();
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
bool is_stuttering_transition =
|
||||
testing_automata->get_state_condition(curr)
|
||||
== testing_automata->get_state_condition(dest);
|
||||
state* dest_clone = dest;
|
||||
spi = h->find(dest_clone);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
dest_clone->destroy();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest_clone, ++num);
|
||||
sscc.push(num);
|
||||
arc.push(acc_cond);
|
||||
sscc.top().is_accepting = testing_automata->is_accepting_state(
|
||||
dest);
|
||||
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
trace
|
||||
<< "***compute_livelock_acceptance_states: CYCLE***" << std::endl;
|
||||
|
||||
if (!curr->compare(dest))
|
||||
{
|
||||
state_ta_explicit * self_loop_state =
|
||||
down_cast<state_ta_explicit*> (curr);
|
||||
assert(self_loop_state);
|
||||
|
||||
if (testing_automata->is_accepting_state(self_loop_state)
|
||||
|| (acc_cond
|
||||
== testing_automata->all_acceptance_conditions()))
|
||||
{
|
||||
self_loop_state->set_livelock_accepting_state(true);
|
||||
if (artificial_livelock_accepting_state != 0)
|
||||
self_loop_state->set_accepting_state(true);
|
||||
|
||||
}
|
||||
|
||||
trace
|
||||
<< "***compute_livelock_acceptance_states: CYCLE: self_loop_state***"
|
||||
<< std::endl;
|
||||
|
||||
}
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
assert(!arc.empty());
|
||||
acc |= sscc.top().is_accepting;
|
||||
acc_cond |= sscc.top().condition;
|
||||
acc_cond |= arc.top();
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
arc.pop();
|
||||
}
|
||||
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
sscc.top().condition |= acc_cond;
|
||||
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
delete h;
|
||||
|
||||
trace
|
||||
<< "*** compute_livelock_acceptance_states: PRE call add_artificial_livelock_accepting_state() method ... (artificial_livelock_accepting_state != 0) :***"
|
||||
<< (artificial_livelock_accepting_state != 0) << std::endl;
|
||||
|
||||
if (artificial_livelock_accepting_state != 0)
|
||||
add_artificial_livelock_accepting_state(testing_automata,
|
||||
artificial_livelock_accepting_state);
|
||||
|
||||
trace
|
||||
<< "*** compute_livelock_acceptance_states: POST call add_artificial_livelock_accepting_state() method ***"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
tgbta_explicit*
|
||||
tgba_to_tgbta(const tgba* tgba_, bdd atomic_propositions_set_)
|
||||
tgta_explicit*
|
||||
tgba_to_tgta(const tgba* tgba_, bdd atomic_propositions_set_)
|
||||
{
|
||||
|
||||
state* tgba_init_state = tgba_->get_init_state();
|
||||
state_ta_explicit* ta_init_state = new state_ta_explicit(
|
||||
state_ta_explicit* artificial_init_state = new state_ta_explicit(
|
||||
tgba_init_state->clone(), bddfalse, true);
|
||||
tgba_init_state->destroy();
|
||||
|
||||
tgbta_explicit* tgbta = new spot::tgbta_explicit(tgba_,
|
||||
tgba_->all_acceptance_conditions(), ta_init_state);
|
||||
tgta_explicit* tgta = new spot::tgta_explicit(tgba_,
|
||||
tgba_->all_acceptance_conditions(), artificial_init_state);
|
||||
|
||||
// build ta automata:
|
||||
build_ta(tgbta, atomic_propositions_set_, true, false);
|
||||
// build a Generalized TA automaton involving a single_pass_emptiness_check
|
||||
// (without an artificial livelock state):
|
||||
build_ta(tgta, atomic_propositions_set_, false, true, false);
|
||||
|
||||
trace
|
||||
<< "***tgba_to_tgbta: POST build_ta***" << std::endl;
|
||||
|
||||
// adapt a ta automata to build tgbta automata :
|
||||
ta::states_set_t states_set = tgbta->get_states_set();
|
||||
// adapt a ta automata to build tgta automata :
|
||||
ta::states_set_t states_set = tgta->get_states_set();
|
||||
ta::states_set_t::iterator it;
|
||||
tgba_succ_iterator* initial_states_iter = tgbta->succ_iter(
|
||||
tgbta->get_artificial_initial_state());
|
||||
tgba_succ_iterator* initial_states_iter = tgta->succ_iter(
|
||||
tgta->get_artificial_initial_state());
|
||||
initial_states_iter->first();
|
||||
if (initial_states_iter->done())
|
||||
return tgbta;
|
||||
return tgta;
|
||||
bdd first_state_condition = (initial_states_iter)->current_condition();
|
||||
delete initial_states_iter;
|
||||
|
||||
|
|
@ -630,21 +652,14 @@ namespace spot
|
|||
bool trans_empty = (trans == 0 || trans->empty());
|
||||
if (trans_empty || state->is_accepting_state())
|
||||
{
|
||||
trace
|
||||
<< "***tgba_to_tgbta: PRE if (state->is_livelock_accepting_state()) ... create_transition ***"
|
||||
<< std::endl;
|
||||
tgbta->create_transition(state, bdd_stutering_transition,
|
||||
tgbta->all_acceptance_conditions(), state);
|
||||
trace
|
||||
<< "***tgba_to_tgbta: POST if (state->is_livelock_accepting_state()) ... create_transition ***"
|
||||
<< std::endl;
|
||||
|
||||
tgta->create_transition(state, bdd_stutering_transition,
|
||||
tgta->all_acceptance_conditions(), state);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (state->compare(tgbta->get_artificial_initial_state()))
|
||||
tgbta->create_transition(state, bdd_stutering_transition, bddfalse,
|
||||
if (state->compare(tgta->get_artificial_initial_state()))
|
||||
tgta->create_transition(state, bdd_stutering_transition, bddfalse,
|
||||
state);
|
||||
|
||||
state->set_livelock_accepting_state(false);
|
||||
|
|
@ -654,7 +669,7 @@ namespace spot
|
|||
|
||||
}
|
||||
|
||||
return tgbta;
|
||||
return tgta;
|
||||
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -30,11 +30,11 @@
|
|||
#include <cassert>
|
||||
#include "misc/bddlt.hh"
|
||||
#include "ta/taexplicit.hh"
|
||||
#include "ta/tgbtaexplicit.hh"
|
||||
#include "ta/tgtaexplicit.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
/// \brief Build a spot::tgba_explicit* from an LTL formula.
|
||||
/// \brief Build a spot::ta_explicit* (TA) from an LTL formula.
|
||||
/// \ingroup tgba_ta
|
||||
///
|
||||
/// This is based on the following paper.
|
||||
|
|
@ -57,50 +57,53 @@ namespace spot
|
|||
/// \param atomic_propositions_set The set of atomic propositions used in the
|
||||
/// input TGBA \a tgba_to_convert
|
||||
///
|
||||
/// \param degeneralized When false, the returned automaton is a generalized
|
||||
/// form of TA, called GTA (Generalized Testing Automaton).
|
||||
/// Like TGBA, GTA use Generalized Büchi acceptance
|
||||
/// conditions intead of Buchi-accepting states: there are several acceptance
|
||||
/// sets (of transitions), and a path is accepted if it traverses
|
||||
/// at least one transition of each set infinitely often or if it contains a
|
||||
/// livelock-accepting cycle (like a TA). The spot emptiness check algorithm
|
||||
/// for TA (spot::ta_check::check) can also be used to check GTA.
|
||||
///
|
||||
/// \param artificial_initial_state_mode When set, the algorithm will build
|
||||
/// a TA automaton with an unique initial state. This
|
||||
/// artificial initial state have one transition to each real initial state,
|
||||
/// and this transition is labeled by the corresponding initial condition.
|
||||
/// (see spot::ta::get_artificial_initial_state())
|
||||
///
|
||||
/// \param STA_mode When set, the returned TA
|
||||
/// automaton is a STA (Single-pass Testing Automata): a STA automaton is a TA
|
||||
/// \param single_pass_emptiness_check When set, the product between the
|
||||
/// returned automaton and a kripke structure requires only the fist pass of
|
||||
/// the emptiness check algorithm (see the parameter \c disable_second_pass
|
||||
/// of the method spot::ta_check::check)
|
||||
///
|
||||
///
|
||||
/// \param artificial_livelock_state_mode When set, the returned TA automaton
|
||||
/// is a STA (Single-pass Testing Automata): a STA automaton is a TA
|
||||
/// where: for every livelock-accepting state s, if s is not also a
|
||||
/// Buchi-accepting state, then s has no successors. A STA product requires
|
||||
/// only one-pass emptiness check algorithm (see spot::ta_check::check)
|
||||
///
|
||||
/// \param degeneralized When false, the returned automaton is a generalized
|
||||
/// form of TA, called TGTA (Transition-based Generalized Testing Automaton).
|
||||
/// Like TGBA, TGTA use Generalized Büchi acceptance
|
||||
/// conditions intead of Büchi-accepting states: there are several acceptance
|
||||
/// sets (of transitions), and a path is accepted if it traverses
|
||||
/// at least one transition of each set infinitely often or if it contains a
|
||||
/// livelock-accepting cycle.
|
||||
///
|
||||
/// \return A spot::ta_explicit that recognizes the same language as the
|
||||
/// TGBA \a tgba_to_convert.
|
||||
ta_explicit*
|
||||
tgba_to_ta(const tgba* tgba_to_convert, bdd atomic_propositions_set,
|
||||
bool artificial_initial_state_mode = true, bool STA_mode = false,
|
||||
bool degeneralized = true);
|
||||
bool degeneralized = true, bool artificial_initial_state_mode = true,
|
||||
bool single_pass_emptiness_check = false,
|
||||
bool artificial_livelock_state_mode = false);
|
||||
|
||||
stgta_explicit*
|
||||
tgba_to_stgta(const tgba* tgba_to_convert, bdd atomic_propositions_set);
|
||||
|
||||
|
||||
//artificial_livelock_accepting_state is used in the case of
|
||||
//STA (Single-pass Testing Automata) or in the case
|
||||
//STGTA (Single-pass Transition-based Generalised Testing Automata)
|
||||
void
|
||||
compute_livelock_acceptance_states(ta_explicit* testing_automata,
|
||||
state_ta_explicit* artificial_livelock_accepting_state = 0);
|
||||
|
||||
//artificial_livelock_accepting_state is added to transform TA into
|
||||
//STA (Single-pass Testing Automata) or to transform TGTA into
|
||||
//STGTA (Single-pass Transition-based Generalised Testing Automata)
|
||||
void
|
||||
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
|
||||
state_ta_explicit* artificial_livelock_accepting_state);
|
||||
/// \brief Build a spot::tgta_explicit* (TGTA) from an LTL formula.
|
||||
/// \ingroup tgba_ta
|
||||
/// \param tgba_to_convert The TGBA automaton to convert into a TGTA automaton
|
||||
///
|
||||
/// \param atomic_propositions_set The set of atomic propositions used in the
|
||||
/// input TGBA \a tgba_to_convert
|
||||
///
|
||||
/// \return A spot::tgta_explicit (spot::tgta) that recognizes the same
|
||||
/// language as the TGBA \a tgba_to_convert.
|
||||
tgta_explicit*
|
||||
tgba_to_tgta(const tgba* tgba_to_convert, bdd atomic_propositions_set);
|
||||
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue