Stable version of TGTA approach implementation (automaton + product)

* src/ta/tgta.hh, src/ta/tgta.cc, src/ta/tgtaexplicit.hh,
src/ta/tgtaexplicit.hh, src/ta/tgtaproduct.hh, src/ta/tgtaproduct.cc,
src/taalgos/minimize.cc, src/taalgos/minimize.hh,
src/taalgos/emptinessta.hh, src/taalgos/emptinessta.hh,
src/taalgos/emptinessta.cc, src/taalgos/tgba2ta.hh,
src/taalgos/tgba2ta.cc: rename tgbta to tgta
in this source files.
* src/ta/tgbtaexplicit.hh, src/ta/tgbtaproduct.hh,  src/ta/tgbta.cc,
src/ta/tgbtaproduct.cc, src/ta/tgbta.hh, src/ta/tgbtaexplicit.cc:
Rename as...
* src/ta/taexplicit.cc, src/ta/taexplicit.hh, src/ta/taproduct.cc,
src/ta/taproduct.hh, src/ta/tgtaexplicit.cc: ... these.
* src/taalgos/sba2ta.hh, src/taalgos/sba2ta.cc: deleted because
the implementation of all the transformations beteween TGBA and
the different forms of TA are new implemented in src/taalgos/tgba2ta.hh
 and src/taalgos/tgba2ta.cc.
* src/tgbatest/ltl2tgba.cc: rename the options of commands that build
the different forms of TA.
* src/ta/ta.hh: BUG Fix
* src/ta/Makefile.am, src/tgbatest/ltl2ta.test: impacts of this renaming
This commit is contained in:
Ala-Eddine Ben-Salem 2012-04-10 23:30:03 +02:00 committed by Alexandre Duret-Lutz
parent c76e651bad
commit 5a706300b0
24 changed files with 1308 additions and 1580 deletions

View file

@ -27,16 +27,16 @@ ta_HEADERS = \
ta.hh \ ta.hh \
taexplicit.hh \ taexplicit.hh \
taproduct.hh \ taproduct.hh \
tgbta.hh \ tgta.hh \
tgbtaexplicit.hh \ tgtaexplicit.hh \
tgbtaproduct.hh tgtaproduct.hh
noinst_LTLIBRARIES = libta.la noinst_LTLIBRARIES = libta.la
libta_la_SOURCES = \ libta_la_SOURCES = \
ta.cc \ ta.cc \
taproduct.cc \ taproduct.cc \
tgbta.cc \ tgta.cc \
tgbtaexplicit.cc \ tgtaexplicit.cc \
taexplicit.cc \ taexplicit.cc \
tgbtaproduct.cc tgtaproduct.cc

View file

@ -51,7 +51,7 @@ namespace spot
/// ///
/// The Testing Automata (TA) were introduced by /// The Testing Automata (TA) were introduced by
/// Henri Hansen, Wojciech Penczek and Antti Valmari /// Henri Hansen, Wojciech Penczek and Antti Valmari
/// in "Stuttering-insensitive automata for on-the-fly de- tection of livelock /// in "Stuttering-insensitive automata for on-the-fly detection of livelock
/// properties" In Proc. of FMICSÕ02, vol. 66(2) of Electronic Notes in /// properties" In Proc. of FMICSÕ02, vol. 66(2) of Electronic Notes in
/// Theoretical Computer Science.Elsevier. /// Theoretical Computer Science.Elsevier.
/// ///
@ -69,7 +69,7 @@ namespace spot
/// Browsing such automaton can be achieved using two functions: /// Browsing such automaton can be achieved using two functions:
/// \c get_initial_states_set or \c get_artificial_initial_state, and \c /// \c get_initial_states_set or \c get_artificial_initial_state, and \c
/// succ_iter. The former returns the initial state(s) while the latter lists /// succ_iter. The former returns the initial state(s) while the latter lists
/// the successor states of any state (filtred by transition "changeset"). /// the successor states of any state (filtred by "changeset").
/// ///
/// Note that although this is a transition-based automata, /// Note that although this is a transition-based automata,
/// we never represent transitions! Transition informations are /// we never represent transitions! Transition informations are
@ -98,7 +98,7 @@ namespace spot
/// artificial initial state have one transition to each real initial state, /// artificial initial state have one transition to each real initial state,
/// and this transition is labeled by the corresponding initial condition. /// and this transition is labeled by the corresponding initial condition.
/// (For more details, see the paper cited above) /// (For more details, see the paper cited above)
spot::state* virtual spot::state*
get_artificial_initial_state() const get_artificial_initial_state() const
{ {
return 0; return 0;
@ -114,7 +114,7 @@ namespace spot
succ_iter(const spot::state* state) const = 0; succ_iter(const spot::state* state) const = 0;
/// \brief Get an iterator over the successors of \a state /// \brief Get an iterator over the successors of \a state
/// filtred by the changeset labeling the transitions /// filtred by the changeset on transitions
/// ///
/// The iterator has been allocated with \c new. It is the /// The iterator has been allocated with \c new. It is the
/// responsability of the caller to \c delete it when no /// responsability of the caller to \c delete it when no

View file

@ -105,7 +105,6 @@ namespace spot
return (*i_)->acceptance_conditions; return (*i_)->acceptance_conditions;
} }
//////////////////////////////////////// ////////////////////////////////////////
// state_ta_explicit // state_ta_explicit
@ -141,19 +140,19 @@ namespace spot
if (transitions_ == 0) if (transitions_ == 0)
transitions_ = new transitions; transitions_ = new transitions;
transitions* transitions_condition = get_transitions(t->condition); transitions* trans_by_condition = get_transitions(t->condition);
if (transitions_condition == 0) if (trans_by_condition == 0)
{ {
transitions_condition = new transitions; trans_by_condition = new transitions;
transitions_by_condition[(t->condition).id()] = transitions_condition; transitions_by_condition[(t->condition).id()] = trans_by_condition;
} }
state_ta_explicit::transitions::iterator it_trans; state_ta_explicit::transitions::iterator it_trans;
bool transition_found = false; bool transition_found = false;
for (it_trans = transitions_condition->begin(); (it_trans for (it_trans = trans_by_condition->begin(); (it_trans
!= transitions_condition->end() && !transition_found); it_trans++) != trans_by_condition->end() && !transition_found); it_trans++)
{ {
transition_found = ((*it_trans)->dest == t->dest); transition_found = ((*it_trans)->dest == t->dest);
if (transition_found) if (transition_found)
@ -166,12 +165,12 @@ namespace spot
{ {
if (add_at_beginning) if (add_at_beginning)
{ {
transitions_condition->push_front(t); trans_by_condition->push_front(t);
transitions_->push_front(t); transitions_->push_front(t);
} }
else else
{ {
transitions_condition->push_back(t); trans_by_condition->push_back(t);
transitions_->push_back(t); transitions_->push_back(t);
} }
@ -290,11 +289,16 @@ namespace spot
== (dest)->get_tgba_condition()); == (dest)->get_tgba_condition());
bool dest_is_livelock_accepting = dest->is_livelock_accepting_state(); bool dest_is_livelock_accepting = dest->is_livelock_accepting_state();
//Before deleting stuttering transitions, propaged back livelock and initial state's properties //Before deleting stuttering transitions, propaged back livelock
//and initial state's properties
if (is_stuttering_transition) if (is_stuttering_transition)
{ {
if (dest_is_livelock_accepting) if (!is_livelock_accepting_state() && dest_is_livelock_accepting)
set_livelock_accepting_state(true); {
set_livelock_accepting_state(true);
stuttering_reachable_livelock
= dest->stuttering_reachable_livelock;
}
if (dest->is_initial_state()) if (dest->is_initial_state())
set_initial_state(true); set_initial_state(true);
} }
@ -321,7 +325,7 @@ namespace spot
void void
state_ta_explicit::free_transitions() state_ta_explicit::free_transitions()
{ {
state_ta_explicit::transitions* trans = get_transitions(); state_ta_explicit::transitions* trans = transitions_;
state_ta_explicit::transitions::iterator it_trans; state_ta_explicit::transitions::iterator it_trans;
// We don't destroy the transitions in the state's destructor because // We don't destroy the transitions in the state's destructor because
// they are not cloned. // they are not cloned.
@ -340,6 +344,7 @@ namespace spot
++i; ++i;
} }
transitions_ = 0;
} }
//////////////////////////////////////// ////////////////////////////////////////

View file

@ -227,6 +227,7 @@ namespace spot
void void
free_transitions(); free_transitions();
state_ta_explicit* stuttering_reachable_livelock;
private: private:
const state* tgba_state_; const state* tgba_state_;
const bdd tgba_condition_; const bdd tgba_condition_;

View file

@ -81,7 +81,6 @@ namespace spot
ta_succ_iterator_product::~ta_succ_iterator_product() ta_succ_iterator_product::~ta_succ_iterator_product()
{ {
// ta_->free_state(current_state_);
delete current_state_; delete current_state_;
current_state_ = 0; current_state_ = 0;
delete ta_succ_it_; delete ta_succ_it_;
@ -315,6 +314,17 @@ namespace spot
return new ta_succ_iterator_product(stp, ta_, kripke_); return new ta_succ_iterator_product(stp, ta_, kripke_);
} }
ta_succ_iterator_product*
ta_product::succ_iter(const spot::state* s, bdd changeset) const
{
const state_ta_product* stp = down_cast<const state_ta_product*> (s);
assert(s);
return new ta_succ_iterator_product_by_changeset(stp, ta_, kripke_,
changeset);
}
bdd_dict* bdd_dict*
ta_product::get_dict() const ta_product::get_dict() const
{ {
@ -349,6 +359,7 @@ namespace spot
} }
bool bool
ta_product::is_initial_state(const spot::state* s) const ta_product::is_initial_state(const spot::state* s) const
{ {
@ -400,4 +411,62 @@ namespace spot
} }
ta_succ_iterator_product_by_changeset::ta_succ_iterator_product_by_changeset(
const state_ta_product* s, const ta* t, const kripke* k, bdd changeset) :
ta_succ_iterator_product(s, t, k)
{
current_condition_ = changeset;
}
void
ta_succ_iterator_product_by_changeset::next_kripke_dest()
{
if (!kripke_succ_it_)
return;
if (kripke_current_dest_state == 0)
{
kripke_succ_it_->first();
}
else
{
kripke_current_dest_state->destroy();
kripke_current_dest_state = 0;
kripke_succ_it_->next();
}
// If one of the two successor sets is empty initially, we reset
// kripke_succ_it_, so that done() can detect this situation easily. (We
// choose to reset kripke_succ_it_ because this variable is already used by
// done().)
if (kripke_succ_it_->done())
{
delete kripke_succ_it_;
kripke_succ_it_ = 0;
return;
}
kripke_current_dest_state = kripke_succ_it_->current_state();
bdd kripke_current_dest_condition = kripke_->state_condition(
kripke_current_dest_state);
if (current_condition_ != bdd_setxor(kripke_source_condition,
kripke_current_dest_condition))
next_kripke_dest();
is_stuttering_transition_ = (kripke_source_condition
== kripke_current_dest_condition);
if (!is_stuttering_transition_)
{
ta_succ_it_ = ta_->succ_iter(source_->get_ta_state(),
current_condition_);
ta_succ_it_->first();
}
}
} }

View file

@ -28,7 +28,7 @@ namespace spot
{ {
/// \brief A state for spot::ta_product. /// \brief A state for spot::ta_product.
/// \ingroup emptiness_check /// \ingroup ta_emptiness_check
/// ///
/// This state is in fact a pair of state: the state from the TA /// This state is in fact a pair of state: the state from the TA
/// automaton and that of Kripke structure. /// automaton and that of Kripke structure.
@ -104,7 +104,7 @@ namespace spot
bool bool
is_stuttering_transition() const; is_stuttering_transition() const;
private: protected:
//@{ //@{
/// Internal routines to advance to the next successor. /// Internal routines to advance to the next successor.
void void
@ -135,7 +135,7 @@ namespace spot
/// \brief A lazy product between a Testing automaton and a Kripke structure. /// \brief A lazy product between a Testing automaton and a Kripke structure.
/// (States are computed on the fly.) /// (States are computed on the fly.)
/// \ingroup emptiness_check /// \ingroup ta_emptiness_check
class ta_product : public ta class ta_product : public ta
{ {
public: public:
@ -153,6 +153,9 @@ namespace spot
virtual ta_succ_iterator_product* virtual ta_succ_iterator_product*
succ_iter(const spot::state* s) const; succ_iter(const spot::state* s) const;
virtual ta_succ_iterator_product*
succ_iter(const spot::state* s, bdd changeset) const;
virtual bdd_dict* virtual bdd_dict*
get_dict() const; get_dict() const;
@ -169,7 +172,7 @@ namespace spot
is_initial_state(const spot::state* s) const; is_initial_state(const spot::state* s) const;
/// \brief Return true if the state \a s has no succeseurs /// \brief Return true if the state \a s has no succeseurs
/// in the ta automaton (the TA component of the product automaton) /// in the TA automaton (the TA component of the product automaton)
virtual bool virtual bool
is_hole_state_in_ta_component(const spot::state* s) const; is_hole_state_in_ta_component(const spot::state* s) const;
@ -205,6 +208,23 @@ namespace spot
operator=(const ta_product&); operator=(const ta_product&);
}; };
class ta_succ_iterator_product_by_changeset : public ta_succ_iterator_product
{
public:
ta_succ_iterator_product_by_changeset(const state_ta_product* s,
const ta* t, const kripke* k, bdd changeset);
/// \brief Move to the next successor in the kripke structure
void
next_kripke_dest();
};
} }
#endif // SPOT_TA_TAPRODUCT_HH #endif // SPOT_TA_TAPRODUCT_HH

View file

@ -1,44 +0,0 @@
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
// de l Epita_explicit (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANta_explicitBILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more deta_explicitils.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#ifndef SPOT_TA_TGBTA_HH
# define SPOT_TA_TGBTA_HH
#include "tgba/tgba.hh"
namespace spot
{
class tgbta : public tgba
{
protected:
tgbta();
public:
virtual
~tgbta();
virtual tgba_succ_iterator*
succ_iter_by_changeset(const spot::state* s, bdd change_set) const =0;
};
}
#endif // SPOT_TA_TGBTA_HH

View file

@ -1,98 +0,0 @@
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "ltlast/atomic_prop.hh"
#include "ltlast/constant.hh"
#include "tgbtaexplicit.hh"
#include "tgba/formula2bdd.hh"
#include "misc/bddop.hh"
#include "ltlvisit/tostring.hh"
#include "tgba/bddprint.hh"
namespace spot
{
tgbta_explicit::tgbta_explicit(const tgba* tgba, bdd all_acceptance_conditions,
state_ta_explicit* artificial_initial_state) :
ta_explicit(tgba, all_acceptance_conditions, artificial_initial_state)
{
}
state*
tgbta_explicit::get_init_state() const
{
return ta_explicit::get_artificial_initial_state();
}
tgba_succ_iterator*
tgbta_explicit::succ_iter(const spot::state* state,
const spot::state*,
const tgba*) const
{
return ta_explicit::succ_iter(state);
}
bdd
tgbta_explicit::compute_support_conditions(const spot::state* in) const
{
return get_tgba()->support_conditions(((const state_ta_explicit*) in)->get_tgba_state());
}
bdd
tgbta_explicit::compute_support_variables(const spot::state* in) const
{
return get_tgba()->support_variables(((const state_ta_explicit*) in)->get_tgba_state());
}
bdd_dict*
tgbta_explicit::get_dict() const
{
return ta_explicit::get_dict();
}
bdd
tgbta_explicit::all_acceptance_conditions() const
{
return ta_explicit::all_acceptance_conditions();
}
bdd
tgbta_explicit::neg_acceptance_conditions() const
{
return get_tgba()->neg_acceptance_conditions();
}
std::string
tgbta_explicit::format_state(const spot::state* s) const
{
return ta_explicit::format_state(s);
}
spot::tgba_succ_iterator* tgbta_explicit::succ_iter_by_changeset(const spot::state* s, bdd change_set) const
{
return ta_explicit::succ_iter(s,change_set);
}
}

View file

@ -18,15 +18,15 @@
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA. // 02111-1307, USA.
#include "tgbta.hh" #include "tgta.hh"
namespace spot namespace spot
{ {
tgbta::tgbta() tgta::tgta()
{}; {};
tgbta::~tgbta() tgta::~tgta()
{}; {};

85
src/ta/tgta.hh Normal file
View file

@ -0,0 +1,85 @@
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
// de l Epita_explicit (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANta_explicitBILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more deta_explicitils.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#ifndef SPOT_TA_TGBTA_HH
# define SPOT_TA_TGBTA_HH
#include "tgba/tgba.hh"
namespace spot
{
/// \brief A Transition-based Generalized Testing Automaton (TGTA).
/// \ingroup ta_essentials
///
/// Transition-based Generalized Testing Automaton (TGTA) is a new kind of
/// automaton that combines features from both TA and TGBA.
/// From TA, we take the idea of labeling transitions with changesets,
/// however we remove the use of livelock-acceptance (because it may require
/// a two-pass emptiness check), and the implicit stuttering. From TGBA, we
/// inherit the use of transition-based generalized acceptance conditions.
/// The resulting Chimera, which we call \emph{Transition-based
/// Generalized Testing Automaton} (TGTA), accepts only
/// stuttering-insensitive languages like TA, and inherits advantages from
/// both TA and TGBA: it has a simple one-pass emptiness-check procedure
/// (the same as algorithm the one for TGBA), and can benefit from reductions
/// based on the stuttering of the properties pretty much like a TA.
/// Livelock acceptance states, which are no longer supported are emulated
///using states with a Büchi accepting self-loop labeled by empty changeset.
///
/// Browsing such automaton can be achieved using two functions:
/// \c get_initial_state and \c
/// succ_iter. The former returns the initial state(s) while the latter lists
/// the successor states of any state. A second implementation of \c succ_iter
/// returns only the successors reached through a changeset passed as
/// a parameter.
///
/// Note that although this is a transition-based automata,
/// we never represent transitions! Transition informations are
/// obtained by querying the iterator over the successors of
/// a state.
class tgta : public tgba
{
protected:
tgta();
public:
virtual
~tgta();
/// \brief Get an iterator over the successors of \a state
/// filtred by the value of the changeset on transitions between the
/// \a state and his successors
///
/// The iterator has been allocated with \c new. It is the
/// responsability of the caller to \c delete it when no
/// longer needed.
///
virtual tgba_succ_iterator*
succ_iter_by_changeset(const spot::state* s, bdd change_set) const =0;
};
}
#endif // SPOT_TA_TGBTA_HH

97
src/ta/tgtaexplicit.cc Normal file
View file

@ -0,0 +1,97 @@
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "ltlast/atomic_prop.hh"
#include "ltlast/constant.hh"
#include "tgtaexplicit.hh"
#include "tgba/formula2bdd.hh"
#include "misc/bddop.hh"
#include "ltlvisit/tostring.hh"
#include "tgba/bddprint.hh"
namespace spot
{
tgta_explicit::tgta_explicit(const tgba* tgba, bdd all_acceptance_conditions,
state_ta_explicit* artificial_initial_state) :
ta_explicit(tgba, all_acceptance_conditions, artificial_initial_state)
{
}
state*
tgta_explicit::get_init_state() const
{
return ta_explicit::get_artificial_initial_state();
}
tgba_succ_iterator*
tgta_explicit::succ_iter(const spot::state* state, const spot::state*,
const tgba*) const
{
return ta_explicit::succ_iter(state);
}
bdd
tgta_explicit::compute_support_conditions(const spot::state* in) const
{
return get_tgba()->support_conditions(
((const state_ta_explicit*) in)->get_tgba_state());
}
bdd
tgta_explicit::compute_support_variables(const spot::state* in) const
{
return get_tgba()->support_variables(
((const state_ta_explicit*) in)->get_tgba_state());
}
bdd_dict*
tgta_explicit::get_dict() const
{
return ta_explicit::get_dict();
}
bdd
tgta_explicit::all_acceptance_conditions() const
{
return ta_explicit::all_acceptance_conditions();
}
bdd
tgta_explicit::neg_acceptance_conditions() const
{
return get_tgba()->neg_acceptance_conditions();
}
std::string
tgta_explicit::format_state(const spot::state* s) const
{
return ta_explicit::format_state(s);
}
spot::tgba_succ_iterator*
tgta_explicit::succ_iter_by_changeset(const spot::state* s, bdd chngset) const
{
return ta_explicit::succ_iter(s, chngset);
}
}

View file

@ -18,8 +18,8 @@
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA. // 02111-1307, USA.
#ifndef SPOT_TA_TGBTAEXPLICIT_HH #ifndef SPOT_TA_TGTAEXPLICIT_HH
# define SPOT_TA_TGBTAEXPLICIT_HH # define SPOT_TA_TGTAEXPLICIT_HH
#include "misc/hash.hh" #include "misc/hash.hh"
#include <list> #include <list>
@ -29,38 +29,46 @@
#include <cassert> #include <cassert>
#include "misc/bddlt.hh" #include "misc/bddlt.hh"
#include "taexplicit.hh" #include "taexplicit.hh"
#include "tgbta.hh" #include "tgta.hh"
namespace spot namespace spot
{ {
class tgbta_explicit : public tgbta, public ta_explicit
/// Explicit representation of a spot::tgta.
/// \ingroup ta_representation
class tgta_explicit : public tgta, public ta_explicit
{ {
public: public:
tgbta_explicit(const tgba* tgba, bdd all_acceptance_conditions, tgta_explicit(const tgba* tgba, bdd all_acceptance_conditions,
state_ta_explicit* artificial_initial_state) ; state_ta_explicit* artificial_initial_state);
// tgba interface // tgba interface
virtual spot::state* get_init_state() const; virtual spot::state*
virtual tgba_succ_iterator* get_init_state() const;
succ_iter(const spot::state* local_state, virtual tgba_succ_iterator*
const spot::state* global_state = 0, succ_iter(const spot::state* local_state, const spot::state* global_state =
const tgba* global_automaton = 0) const; 0, const tgba* global_automaton = 0) const;
virtual bdd_dict* get_dict() const; virtual bdd_dict*
get_dict() const;
virtual bdd all_acceptance_conditions() const; virtual bdd
virtual bdd neg_acceptance_conditions() const; all_acceptance_conditions() const;
virtual bdd
neg_acceptance_conditions() const;
virtual std::string format_state(const spot::state* s) const; virtual std::string
format_state(const spot::state* s) const;
virtual tgba_succ_iterator* succ_iter_by_changeset(const spot::state* s, bdd change_set) const; virtual tgba_succ_iterator*
protected: succ_iter_by_changeset(const spot::state* s, bdd change_set) const;
virtual bdd compute_support_conditions(const spot::state* state) const; protected:
virtual bdd compute_support_variables(const spot::state* state) const; virtual bdd
compute_support_conditions(const spot::state* state) const;
virtual bdd
compute_support_variables(const spot::state* state) const;
}; };
} }
#endif // SPOT_TA_TGBTAEXPLICIT_HH #endif // SPOT_TA_TGTAEXPLICIT_HH

View file

@ -28,7 +28,7 @@
#define trace while (0) std::clog #define trace while (0) std::clog
#endif #endif
#include "tgbtaproduct.hh" #include "tgtaproduct.hh"
#include <string> #include <string>
#include <cassert> #include <cassert>
#include "misc/hashfunc.hh" #include "misc/hashfunc.hh"
@ -38,19 +38,19 @@ namespace spot
{ {
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// tgbta_succ_iterator_product // tgta_succ_iterator_product
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// tgbta_product // tgta_product
tgbta_product::tgbta_product(const kripke* left, const tgbta* right) : tgta_product::tgta_product(const kripke* left, const tgta* right) :
tgba_product(left, right) tgba_product(left, right)
{ {
} }
state* state*
tgbta_product::get_init_state() const tgta_product::get_init_state() const
{ {
fixed_size_pool* p = const_cast<fixed_size_pool*> (&pool_); fixed_size_pool* p = const_cast<fixed_size_pool*> (&pool_);
return new (p->allocate()) state_product(left_->get_init_state(), return new (p->allocate()) state_product(left_->get_init_state(),
@ -58,7 +58,7 @@ namespace spot
} }
tgba_succ_iterator* tgba_succ_iterator*
tgbta_product::succ_iter(const state* local_state, const state*, tgta_product::succ_iter(const state* local_state, const state*,
const tgba*) const const tgba*) const
{ {
const state_product* s = down_cast<const state_product*> (local_state); const state_product* s = down_cast<const state_product*> (local_state);
@ -66,20 +66,20 @@ namespace spot
fixed_size_pool* p = const_cast<fixed_size_pool*> (&pool_); fixed_size_pool* p = const_cast<fixed_size_pool*> (&pool_);
return new tgbta_succ_iterator_product(s, (const kripke*) left_, return new tgta_succ_iterator_product(s, (const kripke*) left_,
(const tgbta *) right_, p); (const tgta *) right_, p);
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// tgbtgbta_succ_iterator_product // tgbtgta_succ_iterator_product
tgbta_succ_iterator_product::tgbta_succ_iterator_product( tgta_succ_iterator_product::tgta_succ_iterator_product(
const state_product* s, const kripke* k, const tgbta* t, const state_product* s, const kripke* k, const tgta* t,
fixed_size_pool* pool) : fixed_size_pool* pool) :
source_(s), tgbta_(t), kripke_(k), pool_(pool) source_(s), tgta_(t), kripke_(k), pool_(pool)
{ {
state * tgbta_init_state = tgbta_->get_init_state(); state * tgta_init_state = tgta_->get_init_state();
if ((s->right())->compare(tgbta_init_state) == 0) if ((s->right())->compare(tgta_init_state) == 0)
source_ = 0; source_ = 0;
if (source_ == 0) if (source_ == 0)
@ -88,11 +88,11 @@ namespace spot
kripke_current_dest_state = kripke_->get_init_state(); kripke_current_dest_state = kripke_->get_init_state();
current_condition_ current_condition_
= kripke_->state_condition(kripke_current_dest_state); = kripke_->state_condition(kripke_current_dest_state);
tgbta_succ_it_ = tgbta_->succ_iter_by_changeset( tgta_succ_it_ = tgta_->succ_iter_by_changeset(
tgbta_init_state, current_condition_); tgta_init_state, current_condition_);
tgbta_succ_it_->first(); tgta_succ_it_->first();
trace trace
<< "*** tgbta_succ_it_->done() = ***" << tgbta_succ_it_->done() << "*** tgta_succ_it_->done() = ***" << tgta_succ_it_->done()
<< std::endl; << std::endl;
} }
@ -101,40 +101,40 @@ namespace spot
kripke_source_condition = kripke_->state_condition(s->left()); kripke_source_condition = kripke_->state_condition(s->left());
kripke_succ_it_ = kripke_->succ_iter(s->left()); kripke_succ_it_ = kripke_->succ_iter(s->left());
kripke_current_dest_state = 0; kripke_current_dest_state = 0;
tgbta_succ_it_ = 0; tgta_succ_it_ = 0;
} }
tgbta_init_state->destroy(); tgta_init_state->destroy();
current_state_ = 0; current_state_ = 0;
} }
tgbta_succ_iterator_product::~tgbta_succ_iterator_product() tgta_succ_iterator_product::~tgta_succ_iterator_product()
{ {
// ta_->free_state(current_state_); // ta_->free_state(current_state_);
if (current_state_ != 0) if (current_state_ != 0)
current_state_->destroy(); current_state_->destroy();
current_state_ = 0; current_state_ = 0;
delete tgbta_succ_it_; delete tgta_succ_it_;
delete kripke_succ_it_; delete kripke_succ_it_;
if (kripke_current_dest_state != 0) if (kripke_current_dest_state != 0)
kripke_current_dest_state->destroy(); kripke_current_dest_state->destroy();
} }
void void
tgbta_succ_iterator_product::step_() tgta_succ_iterator_product::step_()
{ {
if (!tgbta_succ_it_->done()) if (!tgta_succ_it_->done())
tgbta_succ_it_->next(); tgta_succ_it_->next();
if (tgbta_succ_it_->done()) if (tgta_succ_it_->done())
{ {
delete tgbta_succ_it_; delete tgta_succ_it_;
tgbta_succ_it_ = 0; tgta_succ_it_ = 0;
next_kripke_dest(); next_kripke_dest();
} }
} }
void void
tgbta_succ_iterator_product::next_kripke_dest() tgta_succ_iterator_product::next_kripke_dest()
{ {
if (!kripke_succ_it_) if (!kripke_succ_it_)
return; return;
@ -167,14 +167,14 @@ namespace spot
current_condition_ = bdd_setxor(kripke_source_condition, current_condition_ = bdd_setxor(kripke_source_condition,
kripke_current_dest_condition); kripke_current_dest_condition);
tgbta_succ_it_ = tgbta_->succ_iter_by_changeset(source_->right(), tgta_succ_it_ = tgta_->succ_iter_by_changeset(source_->right(),
current_condition_); current_condition_);
tgbta_succ_it_->first(); tgta_succ_it_->first();
} }
void void
tgbta_succ_iterator_product::first() tgta_succ_iterator_product::first()
{ {
next_kripke_dest(); next_kripke_dest();
@ -186,7 +186,7 @@ namespace spot
} }
void void
tgbta_succ_iterator_product::next() tgta_succ_iterator_product::next()
{ {
current_state_->destroy(); current_state_->destroy();
current_state_ = 0; current_state_ = 0;
@ -202,18 +202,18 @@ namespace spot
} }
void void
tgbta_succ_iterator_product::find_next_succ_() tgta_succ_iterator_product::find_next_succ_()
{ {
while (!done()) while (!done())
{ {
if (!tgbta_succ_it_->done()) if (!tgta_succ_it_->done())
{ {
current_state_ = new (pool_->allocate()) state_product( current_state_ = new (pool_->allocate()) state_product(
kripke_current_dest_state->clone(), kripke_current_dest_state->clone(),
tgbta_succ_it_->current_state(), pool_); tgta_succ_it_->current_state(), pool_);
current_acceptance_conditions_ current_acceptance_conditions_
= tgbta_succ_it_->current_acceptance_conditions(); = tgta_succ_it_->current_acceptance_conditions();
return; return;
} }
@ -222,11 +222,11 @@ namespace spot
} }
bool bool
tgbta_succ_iterator_product::done() const tgta_succ_iterator_product::done() const
{ {
if (source_ == 0) if (source_ == 0)
{ {
return !tgbta_succ_it_ || tgbta_succ_it_->done(); return !tgta_succ_it_ || tgta_succ_it_->done();
} }
else else
{ {
@ -236,7 +236,7 @@ namespace spot
} }
state_product* state_product*
tgbta_succ_iterator_product::current_state() const tgta_succ_iterator_product::current_state() const
{ {
trace trace
<< "*** current_state() .... if(done()) = ***" << done() << std::endl; << "*** current_state() .... if(done()) = ***" << done() << std::endl;
@ -244,13 +244,13 @@ namespace spot
} }
bdd bdd
tgbta_succ_iterator_product::current_condition() const tgta_succ_iterator_product::current_condition() const
{ {
return current_condition_; return current_condition_;
} }
bdd bdd
tgbta_succ_iterator_product::current_acceptance_conditions() const tgta_succ_iterator_product::current_acceptance_conditions() const
{ {
return current_acceptance_conditions_; return current_acceptance_conditions_;
} }

View file

@ -21,24 +21,24 @@
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA. // 02111-1307, USA.
#ifndef SPOT_TGBTA_TGBAPRODUCT_HH #ifndef SPOT_tgta_TGBAPRODUCT_HH
# define SPOT_TGBTA_TGBAPRODUCT_HH # define SPOT_tgta_TGBAPRODUCT_HH
#include "tgba/tgba.hh" #include "tgba/tgba.hh"
#include "tgba/tgbaproduct.hh" #include "tgba/tgbaproduct.hh"
#include "misc/fixpool.hh" #include "misc/fixpool.hh"
#include "kripke/kripke.hh" #include "kripke/kripke.hh"
#include "tgbta.hh" #include "tgta.hh"
namespace spot namespace spot
{ {
/// \brief A lazy product. (States are computed on the fly.) /// \brief A lazy product. (States are computed on the fly.)
class tgbta_product : public tgba_product class tgta_product : public tgba_product
{ {
public: public:
tgbta_product(const kripke* left, const tgbta* right); tgta_product(const kripke* left, const tgta* right);
virtual state* virtual state*
get_init_state() const; get_init_state() const;
@ -51,13 +51,13 @@ namespace spot
}; };
/// \brief Iterate over the successors of a product computed on the fly. /// \brief Iterate over the successors of a product computed on the fly.
class tgbta_succ_iterator_product : public tgba_succ_iterator class tgta_succ_iterator_product : public tgba_succ_iterator
{ {
public: public:
tgbta_succ_iterator_product(const state_product* s, const kripke* k, const tgbta* tgbta, fixed_size_pool* pool); tgta_succ_iterator_product(const state_product* s, const kripke* k, const tgta* tgta, fixed_size_pool* pool);
virtual virtual
~tgbta_succ_iterator_product(); ~tgta_succ_iterator_product();
// iteration // iteration
void void
@ -91,10 +91,10 @@ namespace spot
protected: protected:
const state_product* source_; const state_product* source_;
const tgbta* tgbta_; const tgta* tgta_;
const kripke* kripke_; const kripke* kripke_;
fixed_size_pool* pool_; fixed_size_pool* pool_;
tgba_succ_iterator* tgbta_succ_it_; tgba_succ_iterator* tgta_succ_it_;
tgba_succ_iterator* kripke_succ_it_; tgba_succ_iterator* kripke_succ_it_;
state_product* current_state_; state_product* current_state_;
bdd current_condition_; bdd current_condition_;
@ -107,4 +107,4 @@ namespace spot
} }
#endif // SPOT_TGBTA_TGBAPRODUCT_HH #endif // SPOT_tgta_TGBAPRODUCT_HH

View file

@ -47,7 +47,7 @@ namespace spot
bool bool
ta_check::check(bool disable_second_pass, ta_check::check(bool disable_second_pass,
disable_heuristic_for_livelock_detection) bool disable_heuristic_for_livelock_detection)
{ {
// We use five main data in this algorithm: // We use five main data in this algorithm:

View file

@ -39,14 +39,15 @@ namespace spot
typedef std::pair<spot::state*, ta_succ_iterator_product*> pair_state_iter; typedef std::pair<spot::state*, ta_succ_iterator_product*> pair_state_iter;
} }
/// \addtogroup emptiness_check Emptiness-checks /// \addtogroup ta_emptiness_check Emptiness-checks
/// \ingroup ta_algorithms /// \ingroup ta_algorithms
/// ///
/// \brief Check whether the language of a product between a Kripke structure /// \brief Check whether the language of a product (spot::ta_product) between
/// and a TA is empty. It works for both standard and generalized form of TA. /// a Kripke structure and a TA is empty. It works also for the product
/// using Generalized TA (GTA and SGTA).
/// ///
/// you should call \c check to check the product automaton. /// you should call spot::ta_check::check() to check the product automaton.
/// If \c check() returns false, then the product automaton /// If spot::ta_check::check() returns false, then the product automaton
/// was found empty. Otherwise the automaton accepts some run. /// was found empty. Otherwise the automaton accepts some run.
/// ///
/// This is based on the following paper. /// This is based on the following paper.
@ -64,21 +65,22 @@ namespace spot
/// } /// }
/// \endverbatim /// \endverbatim
/// ///
/// the implementation of \c check is inspired from the two-pass algorithm /// the implementation of spot::ta_check::check() is inspired from the
/// of the paper above: /// two-pass algorithm of the paper above:
/// - the fist-pass detect all Buchi-accepting cycles and includes /// - the fist-pass detect all Buchi-accepting cycles and includes
// the heuristic proposed in the paper to detect some /// the heuristic proposed in the paper to detect some
/// livelock-accepting cycles. /// livelock-accepting cycles.
/// - the second-pass detect all livelock-accepting cycles. /// - the second-pass detect all livelock-accepting cycles.
/// In addition, we add some optimizations to the fist pass: /// In addition, we add some optimizations to the fist pass:
/// 1- Detection of all (livelock-accepting) cycles containing a least /// 1- Detection of all cycles containing a least
/// one state that is both livelock and accepting states /// one state that is both livelock and Buchi accepting states
/// 2- Detection of all livelock-accepting cycles containing a least /// 2- Detection of all livelock-accepting cycles containing a least
/// one state (k,t) such as its "TA component" t is a livelock-accepting /// one state (k,t) such as its "TA component" t is a livelock-accepting
/// state that has no successors in the TA automaton. /// state that has no successors in the TA automaton.
/// ///
/// The implementation of each pass is a SCC-based algorithm inspired /// The implementation of the algorithm of each pass is a SCC-based algorithm
/// from spot::gtec.hh. /// inspired from spot::gtec.hh.
/// @{
/// \brief An implementation of the emptiness-check algorithm for a product /// \brief An implementation of the emptiness-check algorithm for a product
/// between a TA and a Kripke structure /// between a TA and a Kripke structure
@ -153,7 +155,10 @@ namespace spot
}; };
/// @} /// @}
/// \addtogroup ta_emptiness_check_algorithms Emptiness-check algorithms
/// \ingroup ta_emptiness_check
} }
#endif // SPOT_TAALGOS_EMPTINESS_HH #endif // SPOT_TAALGOS_EMPTINESS_HH

View file

@ -34,7 +34,7 @@
#include "ltlast/allnodes.hh" #include "ltlast/allnodes.hh"
#include "misc/hash.hh" #include "misc/hash.hh"
#include "misc/bddlt.hh" #include "misc/bddlt.hh"
#include "ta/tgbtaexplicit.hh" #include "ta/tgtaexplicit.hh"
#include "taalgos/statessetbuilder.hh" #include "taalgos/statessetbuilder.hh"
#include "tgba/tgbaexplicit.hh" #include "tgba/tgbaexplicit.hh"
#include "tgba/bddprint.hh" #include "tgba/bddprint.hh"
@ -73,7 +73,8 @@ namespace spot
// From the base automaton and the list of sets, build the minimal automaton // From the base automaton and the list of sets, build the minimal automaton
void void
build_result(const ta* a, std::list<hash_set*>& sets, tgba_explicit_number* result_tgba, ta_explicit* result) build_result(const ta* a, std::list<hash_set*>& sets,
tgba_explicit_number* result_tgba, ta_explicit* result)
{ {
// For each set, create a state in the tgbaulting automaton. // For each set, create a state in the tgbaulting automaton.
@ -168,314 +169,331 @@ namespace spot
else if (is_initial_state) else if (is_initial_state)
result->add_to_initial_states_set(new_dst); result->add_to_initial_states_set(new_dst);
result->create_transition(ta_src, succit->current_condition(), succit->current_acceptance_conditions(), ta_dst); result->create_transition(ta_src, succit->current_condition(),
succit->current_acceptance_conditions(), ta_dst);
} }
delete succit; delete succit;
} }
} }
partition_t build_partition(const ta* ta_){ partition_t
build_partition(const ta* ta_)
{
partition_t cur_run; partition_t cur_run;
partition_t next_run; partition_t next_run;
// The list of equivalent states. // The list of equivalent states.
partition_t done; partition_t done;
std::set<const state*> states_set = get_states_set(ta_); std::set<const state*> states_set = get_states_set(ta_);
hash_set* I = new hash_set; hash_set* I = new hash_set;
// livelock acceptance states // livelock acceptance states
hash_set* G = new hash_set; hash_set* G = new hash_set;
// Buchi acceptance states // Buchi acceptance states
hash_set* F = new hash_set; hash_set* F = new hash_set;
// Buchi and livelock acceptance states // Buchi and livelock acceptance states
hash_set* G_F = new hash_set; hash_set* G_F = new hash_set;
// the other states (non initial and not in G, F and G_F) // the other states (non initial and not in G, F and G_F)
hash_set* S = new hash_set; hash_set* S = new hash_set;
std::set<const state*>::iterator it; std::set<const state*>::iterator it;
spot::state* artificial_initial_state = ta_->get_artificial_initial_state(); spot::state* artificial_initial_state = ta_->get_artificial_initial_state();
for (it = states_set.begin(); it != states_set.end(); it++) for (it = states_set.begin(); it != states_set.end(); it++)
{
const state* s = (*it);
if (s == artificial_initial_state)
{ {
const state* s = (*it); I->insert(s);
}
if (s == artificial_initial_state) else if (artificial_initial_state == 0 && ta_->is_initial_state(s))
{ {
I->insert(s); I->insert(s);
} }
else if (artificial_initial_state == 0 && ta_->is_initial_state(s)) else if (ta_->is_livelock_accepting_state(s)
{ && ta_->is_accepting_state(s))
I->insert(s); {
} G_F->insert(s);
else if (ta_->is_livelock_accepting_state(s) }
&& ta_->is_accepting_state(s)) else if (ta_->is_accepting_state(s))
{ {
G_F->insert(s); F->insert(s);
}
else if (ta_->is_accepting_state(s))
{
F->insert(s);
}
else if (ta_->is_livelock_accepting_state(s))
{
G->insert(s);
}
else
{
S->insert(s);
}
} }
hash_map state_set_map; else if (ta_->is_livelock_accepting_state(s))
// Size of ta_
unsigned size = states_set.size() + 6;
// Use bdd variables to number sets. set_num is the first variable
// available.
unsigned set_num = ta_->get_dict()->register_anonymous_variables(size, ta_);
std::set<int> free_var;
for (unsigned i = set_num; i < set_num + size; ++i)
free_var.insert(i);
std::map<int, int> used_var;
{ {
G->insert(s);
for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i)
{
hash_set* cI = new hash_set;
cI->insert(*i);
done.push_back(cI);
used_var[set_num] = 1;
free_var.erase(set_num);
state_set_map[*i] = set_num;
set_num++;
}
}
delete I;
if (!G->empty())
{
unsigned s = G->size();
unsigned num = set_num;
set_num++;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G);
else
done.push_back(G);
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
state_set_map[*i] = num;
} }
else else
delete G;
if (!F->empty())
{ {
unsigned s = F->size(); S->insert(s);
unsigned num = set_num;
set_num++;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(F);
else
done.push_back(F);
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
state_set_map[*i] = num;
} }
else
delete F;
if (!G_F->empty()) }
hash_map state_set_map;
// Size of ta_
unsigned size = states_set.size() + 6;
// Use bdd variables to number sets. set_num is the first variable
// available.
unsigned set_num = ta_->get_dict()->register_anonymous_variables(size, ta_);
std::set<int> free_var;
for (unsigned i = set_num; i < set_num + size; ++i)
free_var.insert(i);
std::map<int, int> used_var;
{
for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i)
{ {
unsigned s = G_F->size(); hash_set* cI = new hash_set;
unsigned num = set_num; cI->insert(*i);
done.push_back(cI);
used_var[set_num] = 1;
free_var.erase(set_num);
state_set_map[*i] = set_num;
set_num++; set_num++;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G_F);
else
done.push_back(G_F);
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
state_set_map[*i] = num;
} }
else
delete G_F;
if (!S->empty()) }
{ delete I;
unsigned s = S->size();
unsigned num = set_num;
set_num++;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(S);
else
done.push_back(S);
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
state_set_map[*i] = num;
}
else
delete S;
// A bdd_states_map is a list of formulae (in a BDD form) associated with a if (!G->empty())
// destination set of states. {
typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map; unsigned s = G->size();
bool did_split = true;
unsigned num = set_num; unsigned num = set_num;
set_num++; set_num++;
used_var[num] = 1; used_var[num] = s;
free_var.erase(num); free_var.erase(num);
bdd bdd_false_acceptance_condition = bdd_ithvar(num); if (s > 1)
cur_run.push_back(G);
else
done.push_back(G);
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
state_set_map[*i] = num;
while (did_split) }
else
delete G;
if (!F->empty())
{
unsigned s = F->size();
unsigned num = set_num;
set_num++;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(F);
else
done.push_back(F);
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
state_set_map[*i] = num;
}
else
delete F;
if (!G_F->empty())
{
unsigned s = G_F->size();
unsigned num = set_num;
set_num++;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G_F);
else
done.push_back(G_F);
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
state_set_map[*i] = num;
}
else
delete G_F;
if (!S->empty())
{
unsigned s = S->size();
unsigned num = set_num;
set_num++;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(S);
else
done.push_back(S);
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
state_set_map[*i] = num;
}
else
delete S;
// A bdd_states_map is a list of formulae (in a BDD form) associated with a
// destination set of states.
typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;
bool did_split = true;
unsigned num = set_num;
set_num++;
used_var[num] = 1;
free_var.erase(num);
bdd bdd_false_acceptance_condition = bdd_ithvar(num);
while (did_split)
{
did_split = false;
while (!cur_run.empty())
{ {
did_split = false; // Get a set to process.
while (!cur_run.empty()) hash_set* cur = cur_run.front();
cur_run.pop_front();
trace
<< "processing " << format_hash_set(cur, ta_) << std::endl;
hash_set::iterator hi;
bdd_states_map bdd_map;
for (hi = cur->begin(); hi != cur->end(); ++hi)
{ {
// Get a set to process. const state* src = *hi;
hash_set* cur = cur_run.front(); bdd f = bddfalse;
cur_run.pop_front(); ta_succ_iterator* si = ta_->succ_iter(src);
trace trace
<< "processing " << format_hash_set(cur, ta_) << std::endl; << "+src: " << src << std::endl;
for (si->first(); !si->done(); si->next())
hash_set::iterator hi;
bdd_states_map bdd_map;
for (hi = cur->begin(); hi != cur->end(); ++hi)
{ {
const state* src = *hi; const state* dst = si->current_state();
bdd f = bddfalse; hash_map::const_iterator i = state_set_map.find(dst);
ta_succ_iterator* si = ta_->succ_iter(src);
trace << "+src: " << src << std::endl;
for (si->first(); !si->done(); si->next())
{
const state* dst = si->current_state();
hash_map::const_iterator i = state_set_map.find(dst);
assert(i != state_set_map.end()); assert(i != state_set_map.end());
bdd current_acceptance_conditions = bdd current_acceptance_conditions =
si->current_acceptance_conditions(); si->current_acceptance_conditions();
if (current_acceptance_conditions == bddfalse) if (current_acceptance_conditions == bddfalse)
current_acceptance_conditions current_acceptance_conditions
= bdd_false_acceptance_condition; = bdd_false_acceptance_condition;
f |= (bdd_ithvar(i->second) & si->current_condition() f |= (bdd_ithvar(i->second) & si->current_condition()
& current_acceptance_conditions); & current_acceptance_conditions);
trace << "+f: " << bdd_format_accset(ta_->get_dict(),f) << std::endl;;
trace << " -bdd_ithvar(i->second): " << bdd_format_accset(ta_->get_dict(),bdd_ithvar(i->second)) << std::endl;;
trace << " -si->current_condition(): " << bdd_format_accset(ta_->get_dict(),si->current_condition()) << std::endl;;
trace << " -current_acceptance_conditions: " << bdd_format_accset(ta_->get_dict(),current_acceptance_conditions) << std::endl;;
}
delete si;
// Have we already seen this formula ?
bdd_states_map::iterator bsi = bdd_map.find(f);
if (bsi == bdd_map.end())
{
// No, create a new set.
hash_set* new_set = new hash_set;
new_set->insert(src);
bdd_map[f] = new_set;
}
else
{
// Yes, add the current state to the set.
bsi->second->insert(src);
}
}
bdd_states_map::iterator bsi = bdd_map.begin();
if (bdd_map.size() == 1)
{
// The set was not split.
trace trace
<< "set " << format_hash_set(bsi->second, ta_) << "+f: " << bdd_format_accset(ta_->get_dict(), f)
<< " was not split" << std::endl; << std::endl;
next_run.push_back(bsi->second); ;
trace
<< " -bdd_ithvar(i->second): " << bdd_format_accset(
ta_->get_dict(), bdd_ithvar(i->second)) << std::endl;
;
trace
<< " -si->current_condition(): "
<< bdd_format_accset(ta_->get_dict(),
si->current_condition()) << std::endl;
;
trace
<< " -current_acceptance_conditions: "
<< bdd_format_accset(ta_->get_dict(),
current_acceptance_conditions) << std::endl;
;
}
delete si;
// Have we already seen this formula ?
bdd_states_map::iterator bsi = bdd_map.find(f);
if (bsi == bdd_map.end())
{
// No, create a new set.
hash_set* new_set = new hash_set;
new_set->insert(src);
bdd_map[f] = new_set;
} }
else else
{ {
did_split = true; // Yes, add the current state to the set.
for (; bsi != bdd_map.end(); ++bsi) bsi->second->insert(src);
}
}
bdd_states_map::iterator bsi = bdd_map.begin();
if (bdd_map.size() == 1)
{
// The set was not split.
trace
<< "set " << format_hash_set(bsi->second, ta_)
<< " was not split" << std::endl;
next_run.push_back(bsi->second);
}
else
{
did_split = true;
for (; bsi != bdd_map.end(); ++bsi)
{
hash_set* set = bsi->second;
// Free the number associated to these states.
unsigned num = state_set_map[*set->begin()];
assert(used_var.find(num) != used_var.end());
unsigned left = (used_var[num] -= set->size());
// Make sure LEFT does not become negative (hence bigger
// than SIZE when read as unsigned)
assert(left < size);
if (left == 0)
{ {
hash_set* set = bsi->second; used_var.erase(num);
// Free the number associated to these states. free_var.insert(num);
unsigned num = state_set_map[*set->begin()]; }
assert(used_var.find(num) != used_var.end()); // Pick a free number
unsigned left = (used_var[num] -= set->size()); assert(!free_var.empty());
// Make sure LEFT does not become negative (hence bigger num = *free_var.begin();
// than SIZE when read as unsigned) free_var.erase(free_var.begin());
assert(left < size); used_var[num] = set->size();
if (left == 0) for (hash_set::iterator hit = set->begin(); hit
{ != set->end(); ++hit)
used_var.erase(num); state_set_map[*hit] = num;
free_var.insert(num); // Trivial sets can't be splitted any further.
} if (set->size() == 1)
// Pick a free number {
assert(!free_var.empty()); trace
num = *free_var.begin(); << "set " << format_hash_set(set, ta_)
free_var.erase(free_var.begin()); << " is minimal" << std::endl;
used_var[num] = set->size(); done.push_back(set);
for (hash_set::iterator hit = set->begin(); hit }
!= set->end(); ++hit) else
state_set_map[*hit] = num; {
// Trivial sets can't be splitted any further. trace
if (set->size() == 1) << "set " << format_hash_set(set, ta_)
{ << " should be processed further" << std::endl;
trace next_run.push_back(set);
<< "set " << format_hash_set(set, ta_)
<< " is minimal" << std::endl;
done.push_back(set);
}
else
{
trace
<< "set " << format_hash_set(set, ta_)
<< " should be processed further" << std::endl;
next_run.push_back(set);
}
} }
} }
delete cur;
} }
if (did_split) delete cur;
trace
<< "splitting did occur during this pass." << std::endl;
//elsetrace << "splitting did not occur during this pass." << std::endl;
std::swap(cur_run, next_run);
} }
if (did_split)
trace
<< "splitting did occur during this pass." << std::endl;
//elsetrace << "splitting did not occur during this pass." << std::endl;
std::swap(cur_run, next_run);
}
done.splice(done.end(), cur_run); done.splice(done.end(), cur_run);
#ifdef TRACE #ifdef TRACE
trace << "Final partition: "; trace << "Final partition: ";
for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i) for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
trace << format_hash_set(*i, ta_) << " "; trace << format_hash_set(*i, ta_) << " ";
trace << std::endl; trace << std::endl;
#endif #endif
return done; return done;
} }
ta* ta*
@ -486,11 +504,8 @@ namespace spot
ta_explicit* res = new ta_explicit(tgba, ta_->all_acceptance_conditions()); ta_explicit* res = new ta_explicit(tgba, ta_->all_acceptance_conditions());
partition_t partition = build_partition(ta_); partition_t partition = build_partition(ta_);
// Build the ta automata result. // Build the ta automata result.
build_result(ta_, partition, tgba, res); build_result(ta_, partition, tgba, res);
@ -503,32 +518,30 @@ namespace spot
return res; return res;
} }
tgbta* tgta*
minimize_tgbta(const tgbta* tgbta_) minimize_tgta(const tgta* tgta_)
{ {
tgba_explicit_number* tgba = new tgba_explicit_number(tgbta_->get_dict()); tgba_explicit_number* tgba = new tgba_explicit_number(tgta_->get_dict());
tgbta_explicit* res = new tgbta_explicit(tgba, tgbta_->all_acceptance_conditions(),0); tgta_explicit* res = new tgta_explicit(tgba,
tgta_->all_acceptance_conditions(), 0);
const ta_explicit* tgbta = dynamic_cast <const tgbta_explicit*> (tgbta_); //TODO copier le tgta_ dans un tgta_explicit au lieu de faire un cast...
const ta_explicit* tgta = dynamic_cast<const tgta_explicit*> (tgta_);
partition_t partition = build_partition(tgbta); partition_t partition = build_partition(tgta);
// Build the minimal tgta automaton.
build_result(tgta, partition, tgba, res);
// Free all the allocated memory.
std::list<hash_set*>::iterator itdone;
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
delete *itdone;
//delete ta_;
// Build the tgbault. return res;
build_result(tgbta, partition,tgba, res); }
// Free all the allocated memory.
std::list<hash_set*>::iterator itdone;
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
delete *itdone;
//delete ta_;
return res;
}
} }

View file

@ -22,19 +22,58 @@
# define SPOT_TAALGOS_MINIMIZE_HH # define SPOT_TAALGOS_MINIMIZE_HH
# include "ta/ta.hh" # include "ta/ta.hh"
# include "ta/tgbta.hh" # include "ta/tgta.hh"
# include "ta/taexplicit.hh" # include "ta/taexplicit.hh"
namespace spot namespace spot
{ {
/// \addtogroup ta_reduction
/// @{
/// \brief Construct a simplified TA by merging bisimilar states.
///
/// A TA automaton can be simplified by merging bisimilar states:
/// Two states are bisimilar if the automaton can accept the
/// same executions starting for either of these states. This can be
/// achieved using any algorithm based on partition refinement
///
/// For more detail about this type of algorithm, see the following paper:
/// \verbatim
/// @InProceedings{valmari.09.icatpn,
/// author = {Antti Valmari},
/// title = {Bisimilarity Minimization in in O(m logn) Time},
/// booktitle = {Proceedings of the 30th International Conference on
/// the Applications and Theory of Petri Nets
/// (ICATPN'09)},
/// series = {Lecture Notes in Computer Science},
/// publisher = {Springer},
/// isbn = {978-3-642-02423-8},
/// pages = {123--142},
/// volume = 5606,
/// url = {http://dx.doi.org/10.1007/978-3-642-02424-5_9},
/// year = {2009}
/// }
/// \endverbatim
///
/// \param ta_ the TA automaton to convert into a simplified TA
ta* ta*
minimize_ta(const ta* ta_); minimize_ta(const ta* ta_);
tgbta*
minimize_tgbta(const tgbta* tgbta_);
/// \brief Construct a simplified TGTA by merging bisimilar states.
///
/// A TGTA automaton can be simplified by merging bisimilar states:
/// Two states are bisimilar if the automaton can accept the
/// same executions starting for either of these states. This can be
/// achieved using same algorithm used to simplify a TA taking into account
/// the acceptance conditions of the outgoing transitions.
///
/// \param tgta_ the TGTA automaton to convert into a simplified TGTA
tgta*
minimize_tgta(const tgta* tgta_);
/// @} /// @}
} }

View file

@ -1,454 +0,0 @@
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "ltlast/atomic_prop.hh"
#include "ltlast/constant.hh"
#include "tgba/formula2bdd.hh"
#include "misc/bddop.hh"
#include <cassert>
#include "ltlvisit/tostring.hh"
#include <iostream>
#include "tgba/bddprint.hh"
#include "tgbaalgos/gtec/nsheap.hh"
#include <stack>
#include "sba2ta.hh"
#include "taalgos/statessetbuilder.hh"
using namespace std;
namespace spot
{
ta*
sba_to_ta(const tgba_sba_proxy* tgba_, bdd atomic_propositions_set_,
bool artificial_initial_state_mode,
bool artificial_livelock_accepting_state_mode)
{
ta_explicit* ta;
std::stack<state_ta_explicit*> todo;
// build Initial states set:
state* tgba_init_state = tgba_->get_init_state();
if (artificial_initial_state_mode)
{
state_ta_explicit* ta_init_state = new state_ta_explicit(
tgba_init_state->clone(), bddtrue, true);
ta = new spot::ta_explicit(tgba_, ta_init_state);
}
else
{
ta = new spot::ta_explicit(tgba_);
}
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state = new state_ta_explicit(
tgba_init_state->clone(), satone_tgba_condition, true,
tgba_->state_is_accepting(tgba_init_state));
state_ta_explicit* s = ta->add_state(init_state);
assert(s == init_state);
ta->add_to_initial_states_set(s);
todo.push(init_state);
}
tgba_init_state->destroy();
while (!todo.empty())
{
state_ta_explicit* source = todo.top();
todo.pop();
tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter(
source->get_tgba_state());
for (tgba_succ_it->first(); !tgba_succ_it->done(); tgba_succ_it->next())
{
const state* tgba_state = tgba_succ_it->current_state();
bdd tgba_condition = tgba_succ_it->current_condition();
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
bdd all_props = bddtrue;
bdd dest_condition;
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition = bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest = new state_ta_explicit(
tgba_state->clone(), dest_condition, false,
tgba_->state_is_accepting(tgba_state));
state_ta_explicit* dest = ta->add_state(new_dest);
if (dest != new_dest)
{
// the state dest already exists in the testing automata
new_dest->get_tgba_state()->destroy();
delete new_dest;
}
else
{
todo.push(dest);
}
ta->create_transition(source, bdd_setxor(
source->get_tgba_condition(),
dest->get_tgba_condition()), bddfalse, dest);
}
}
tgba_state->destroy();
}
delete tgba_succ_it;
}
compute_livelock_acceptance_states(ta);
if (artificial_livelock_accepting_state_mode)
{
state_ta_explicit* artificial_livelock_accepting_state =
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddfalse,
false, false, true, 0, true);
add_artificial_livelock_accepting_state(ta,
artificial_livelock_accepting_state);
}
return ta;
}
void
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state)
{
testing_automata->add_state(artificial_livelock_accepting_state);
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
std::set<bdd, bdd_less_than>* conditions_to_livelock_accepting_states =
new std::set<bdd, bdd_less_than>;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
conditions_to_livelock_accepting_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
state_ta_explicit* dest = (*it_trans)->dest;
if (dest->is_livelock_accepting_state())
{
conditions_to_livelock_accepting_states->insert(
(*it_trans)->condition);
}
//remove hole successors states
state_ta_explicit::transitions* dest_trans =
(dest)->get_transitions();
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
if (dest_trans_empty)
{
source->get_transitions((*it_trans)->condition)->remove(
*it_trans);
delete (*it_trans);
it_trans = trans->erase(it_trans);
}
else
{
it_trans++;
}
}
if (conditions_to_livelock_accepting_states != 0)
{
std::set<bdd, bdd_less_than>::iterator it_conditions;
for (it_conditions
= conditions_to_livelock_accepting_states->begin(); it_conditions
!= conditions_to_livelock_accepting_states->end(); it_conditions++)
{
testing_automata->create_transition(source, (*it_conditions),bddfalse,
artificial_livelock_accepting_state);
}
}
}
delete conditions_to_livelock_accepting_states;
}
namespace
{
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
}
void
compute_livelock_acceptance_states(ta_explicit* testing_automata)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h =
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::stack<state*> init_set;
ta::states_set_t::const_iterator it;
ta::states_set_t init_states = testing_automata->get_initial_states_set();
for (it = init_states.begin(); it != init_states.end(); it++)
{
state* init_state = (*it);
init_set.push(init_state);
}
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
state_ta_explicit* init =
down_cast<state_ta_explicit*> (init_set.top());
init_set.pop();
state_ta_explicit* init_clone = init->clone();
numbered_state_heap::state_index_p h_init = h->find(init_clone);
if (h_init.first)
continue;
h->insert(init_clone, ++num);
sscc.push(num);
sscc.top().is_accepting
= testing_automata->is_accepting_state(init);
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
}
while (!todo.empty())
{
state* curr = todo.top().first;
numbered_state_heap::state_index_p spi = h->find(curr->clone());
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
numbered_state_heap::state_index_p spi =
h->index(curr->clone());
assert(spi.first);
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == *spi.second)
{
// removing states
std::list<state*>::iterator i;
bool is_livelock_accepting_sscc = (sscc.top().is_accepting
&& (sscc.rem().size() > 1));
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = h->index(
(*i)->clone());
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1);
*spi.second = -1;
if (is_livelock_accepting_sscc)
{//if it is an accepting sscc
//add the state to G (=the livelock-accepting states set)
state_ta_explicit * livelock_accepting_state =
down_cast<state_ta_explicit*> (*i);
livelock_accepting_state->set_livelock_accepting_state(
true);
}
}
sscc.pop();
}
// automata reduction
testing_automata->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_automata->get_state_condition(curr)
== testing_automata->get_state_condition(dest);
state* dest_clone = dest->clone();
spi = h->find(dest_clone);
// Is this a new state?
if (!spi.first)
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest_clone->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h->insert(dest_clone, ++num);
sscc.push(num);
sscc.top().is_accepting = testing_automata->is_accepting_state(
dest);
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
if (!curr->compare(dest))
{
state_ta_explicit * self_loop_state =
down_cast<state_ta_explicit*> (curr);
assert(self_loop_state);
if (testing_automata->is_accepting_state(self_loop_state))
self_loop_state->set_livelock_accepting_state(true);
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = *spi.second;
std::list<state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
acc |= sscc.top().is_accepting;
rem.splice(rem.end(), sscc.rem());
sscc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.rem().splice(sscc.rem().end(), rem);
}
}
delete h;
}
}

View file

@ -1,49 +0,0 @@
// Copyright (C) 2010 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#ifndef SPOT_TGBAALGOS_SBA2TA_HH
# define SPOT_TGBAALGOS_SBA2TA_HH
#include "misc/hash.hh"
#include <list>
#include <map>
#include <set>
#include "tgba/tgbatba.hh"
#include "ltlast/formula.hh"
#include <cassert>
#include "misc/bddlt.hh"
#include "ta/taexplicit.hh"
namespace spot
{
ta*
sba_to_ta(const tgba_sba_proxy* tgba_to_convert, bdd atomic_propositions_set, bool artificial_initial_state_mode = true,
bool artificial_livelock_accepting_state_mode = false);
void
compute_livelock_acceptance_states(ta_explicit* testing_automata);
void
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state);
}
#endif // SPOT_TGBAALGOS_SBA2TA_HH

View file

@ -39,16 +39,412 @@
#include <stack> #include <stack>
#include "tgba2ta.hh" #include "tgba2ta.hh"
#include "taalgos/statessetbuilder.hh" #include "taalgos/statessetbuilder.hh"
#include "ta/tgbtaexplicit.hh" #include "ta/tgtaexplicit.hh"
using namespace std; using namespace std;
namespace spot namespace spot
{ {
namespace
{
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
}
void
transform_to_single_pass_automaton(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state = 0)
{
if (artificial_livelock_accepting_state != 0)
{
state_ta_explicit* artificial_livelock_accepting_state_added =
testing_automata->add_state(artificial_livelock_accepting_state);
// unique artificial_livelock_accepting_state
assert(artificial_livelock_accepting_state_added
== artificial_livelock_accepting_state);
artificial_livelock_accepting_state->set_livelock_accepting_state(true);
artificial_livelock_accepting_state->free_transitions();
}
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
state_ta_explicit::transitions* transitions_to_livelock_states =
new state_ta_explicit::transitions;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
transitions_to_livelock_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
state_ta_explicit* dest = (*it_trans)->dest;
state_ta_explicit::transitions* dest_trans =
(dest)->get_transitions();
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
//select transitions where a destination is a livelock state
// which isn't a Buchi accepting state and has successors
if (dest->is_livelock_accepting_state()
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
{
transitions_to_livelock_states->push_front(*it_trans);
}
//optimization to have, after
// minimization, an unique livelock state which has no successors
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
{
dest->set_accepting_state(false);
}
it_trans++;
}
if (transitions_to_livelock_states != 0)
{
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = transitions_to_livelock_states->begin(); it_trans
!= transitions_to_livelock_states->end(); it_trans++)
{
if (artificial_livelock_accepting_state != 0)
{
testing_automata->create_transition(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
artificial_livelock_accepting_state, true);
}
else
{
testing_automata->create_transition(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
((*it_trans)->dest)->stuttering_reachable_livelock,
true);
}
}
}
}
delete transitions_to_livelock_states;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
state_ta_explicit::transitions* state_trans =
(state)->get_transitions();
bool state_trans_empty = state_trans == 0 || state_trans->empty();
if (state->is_livelock_accepting_state()
&& (!state->is_accepting_state()) && (!state_trans_empty))
state->set_livelock_accepting_state(false);
}
}
void
compute_livelock_acceptance_states(ta_explicit* testing_automata,
bool single_pass_emptiness_check,
state_ta_explicit* artificial_livelock_accepting_state)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<bdd> arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h =
numbered_state_heap_hash_map_factory::instance()->build();
///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::stack<state*> init_set;
ta::states_set_t::const_iterator it;
ta::states_set_t init_states = testing_automata->get_initial_states_set();
for (it = init_states.begin(); it != init_states.end(); it++)
{
state* init_state = (*it);
init_set.push(init_state);
}
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
state_ta_explicit* init =
down_cast<state_ta_explicit*> (init_set.top());
init_set.pop();
state_ta_explicit* init_clone = init;
numbered_state_heap::state_index_p h_init = h->find(init_clone);
if (h_init.first)
continue;
h->insert(init_clone, ++num);
sscc.push(num);
arc.push(bddfalse);
sscc.top().is_accepting
= testing_automata->is_accepting_state(init);
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
}
while (!todo.empty())
{
state* curr = todo.top().first;
numbered_state_heap::state_index_p spi = h->find(curr);
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
numbered_state_heap::state_index_p spi = h->index(curr);
assert(spi.first);
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == *spi.second)
{
// removing states
std::list<state*>::iterator i;
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
&& ((sscc.top().is_accepting) || (sscc.top().condition
== testing_automata->all_acceptance_conditions()));
trace
<< "*** sscc.size() = ***"
<< sscc.size() << std::endl;
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = h->index((*i));
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1);
*spi.second = -1;
if (is_livelock_accepting_sscc)
{//if it is an accepting sscc add the state to
//G (=the livelock-accepting states set)
trace << "*** sscc.size() > 1: states: ***"
<< testing_automata->format_state(*i)
<< std::endl;
state_ta_explicit * livelock_accepting_state =
down_cast<state_ta_explicit*> (*i);
livelock_accepting_state->set_livelock_accepting_state(
true);
if (single_pass_emptiness_check)
{
livelock_accepting_state->set_accepting_state(
true);
livelock_accepting_state->stuttering_reachable_livelock
= livelock_accepting_state;
}
}
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
// automata reduction
testing_automata->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
bdd acc_cond = succ->current_acceptance_conditions();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_automata->get_state_condition(curr)
== testing_automata->get_state_condition(dest);
state* dest_clone = dest;
spi = h->find(dest_clone);
// Is this a new state?
if (!spi.first)
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest_clone->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h->insert(dest_clone, ++num);
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting = testing_automata->is_accepting_state(
dest);
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
trace
<< "***compute_livelock_acceptance_states: CYCLE***" << std::endl;
if (!curr->compare(dest))
{
state_ta_explicit * self_loop_state =
down_cast<state_ta_explicit*> (curr);
assert(self_loop_state);
if (testing_automata->is_accepting_state(self_loop_state)
|| (acc_cond
== testing_automata->all_acceptance_conditions()))
{
self_loop_state->set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
self_loop_state->set_accepting_state(true);
self_loop_state->stuttering_reachable_livelock
= self_loop_state;
}
}
trace
<< "***compute_livelock_acceptance_states: CYCLE: self_loop_state***"
<< std::endl;
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = *spi.second;
std::list<state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
sscc.rem().splice(sscc.rem().end(), rem);
}
}
delete h;
if ((artificial_livelock_accepting_state != 0)
|| single_pass_emptiness_check)
transform_to_single_pass_automaton(testing_automata,
artificial_livelock_accepting_state);
}
ta_explicit* ta_explicit*
build_ta(ta_explicit* ta, bdd atomic_propositions_set_, build_ta(ta_explicit* ta, bdd atomic_propositions_set_, bool degeneralized,
bool artificial_livelock_accepting_state_mode, bool degeneralized) bool single_pass_emptiness_check, bool artificial_livelock_state_mode)
{ {
std::stack<state_ta_explicit*> todo; std::stack<state_ta_explicit*> todo;
@ -115,17 +511,17 @@ namespace spot
all_props -= dest_condition; all_props -= dest_condition;
state_ta_explicit* new_dest; state_ta_explicit* new_dest;
if (degeneralized) if (degeneralized)
{ {
new_dest new_dest
= new state_ta_explicit( = new state_ta_explicit(
tgba_state->clone(), tgba_state->clone(),
dest_condition, dest_condition,
false, false,
((const tgba_sba_proxy*) tgba_)->state_is_accepting( ((const tgba_sba_proxy*) tgba_)->state_is_accepting(
tgba_state)); tgba_state));
} }
else else
{ {
new_dest = new state_ta_explicit(tgba_state->clone(), new_dest = new state_ta_explicit(tgba_state->clone(),
@ -136,7 +532,7 @@ namespace spot
if (dest != new_dest) if (dest != new_dest)
{ {
// the state dest already exists in the testing automata // the state dest already exists in the automaton
new_dest->get_tgba_state()->destroy(); new_dest->get_tgba_state()->destroy();
delete new_dest; delete new_dest;
} }
@ -163,11 +559,11 @@ namespace spot
trace trace
<< "*** build_ta: artificial_livelock_accepting_state_mode = ***" << "*** build_ta: artificial_livelock_accepting_state_mode = ***"
<< artificial_livelock_accepting_state_mode << std::endl; << artificial_livelock_state_mode << std::endl;
if (artificial_livelock_accepting_state_mode) if (artificial_livelock_state_mode)
{ {
single_pass_emptiness_check = true;
artificial_livelock_accepting_state = new state_ta_explicit( artificial_livelock_accepting_state = new state_ta_explicit(
ta->get_tgba()->get_init_state(), bddtrue, false, false, true, 0); ta->get_tgba()->get_init_state(), bddtrue, false, false, true, 0);
trace trace
@ -176,7 +572,8 @@ namespace spot
} }
compute_livelock_acceptance_states(ta, artificial_livelock_accepting_state); compute_livelock_acceptance_states(ta, single_pass_emptiness_check,
artificial_livelock_accepting_state);
return ta; return ta;
@ -184,19 +581,19 @@ namespace spot
ta_explicit* ta_explicit*
tgba_to_ta(const tgba* tgba_, bdd atomic_propositions_set_, tgba_to_ta(const tgba* tgba_, bdd atomic_propositions_set_,
bool artificial_initial_state_mode, bool degeneralized, bool artificial_initial_state_mode,
bool artificial_livelock_accepting_state_mode, bool degeneralized) bool single_pass_emptiness_check, bool artificial_livelock_state_mode)
{ {
ta_explicit* ta; ta_explicit* ta;
state* tgba_init_state = tgba_->get_init_state(); state* tgba_init_state = tgba_->get_init_state();
if (artificial_initial_state_mode) if (artificial_initial_state_mode)
{ {
state_ta_explicit* ta_init_state = new state_ta_explicit( state_ta_explicit* artificial_init_state = new state_ta_explicit(
tgba_init_state->clone(), bddfalse, true); tgba_init_state->clone(), bddfalse, true);
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions(), ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions(),
ta_init_state); artificial_init_state);
} }
else else
{ {
@ -205,413 +602,38 @@ namespace spot
tgba_init_state->destroy(); tgba_init_state->destroy();
// build ta automata: // build ta automata:
build_ta(ta, atomic_propositions_set_, build_ta(ta, atomic_propositions_set_, degeneralized,
artificial_livelock_accepting_state_mode, degeneralized); single_pass_emptiness_check, artificial_livelock_state_mode);
return ta; return ta;
} }
void tgta_explicit*
add_artificial_livelock_accepting_state(ta_explicit* testing_automata, tgba_to_tgta(const tgba* tgba_, bdd atomic_propositions_set_)
state_ta_explicit* artificial_livelock_accepting_state)
{
state_ta_explicit* artificial_livelock_accepting_state_added =
testing_automata->add_state(artificial_livelock_accepting_state);
// unique artificial_livelock_accepting_state
assert(artificial_livelock_accepting_state_added
== artificial_livelock_accepting_state);
trace
<< "*** add_artificial_livelock_accepting_state: "
<< "assert(artificial_livelock_accepting_state_added == "
<< "artificial_livelock_accepting_state) = ***"
<< (artificial_livelock_accepting_state_added
== artificial_livelock_accepting_state) << std::endl;
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
std::set<bdd, bdd_less_than>* conditions_to_livelock_accepting_states =
new std::set<bdd, bdd_less_than>;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
conditions_to_livelock_accepting_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
state_ta_explicit* dest = (*it_trans)->dest;
state_ta_explicit::transitions* dest_trans =
(dest)->get_transitions();
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
//TA++
if (dest->is_livelock_accepting_state()
&& (!dest->is_accepting_state() || dest_trans_empty))
{
conditions_to_livelock_accepting_states->insert(
(*it_trans)->condition);
}
//remove hole successors states
if (dest_trans_empty)
{
source->get_transitions((*it_trans)->condition)->remove(
*it_trans);
delete (*it_trans);
it_trans = trans->erase(it_trans);
}
else
{
it_trans++;
}
}
if (conditions_to_livelock_accepting_states != 0)
{
std::set<bdd, bdd_less_than>::iterator it_conditions;
for (it_conditions
= conditions_to_livelock_accepting_states->begin(); it_conditions
!= conditions_to_livelock_accepting_states->end(); it_conditions++)
{
testing_automata->create_transition(source, (*it_conditions),
bddfalse, artificial_livelock_accepting_state, true);
}
}
}
delete conditions_to_livelock_accepting_states;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
state_ta_explicit::transitions* state_trans =
(state)->get_transitions();
bool state_trans_empty = state_trans == 0 || state_trans->empty();
if (state->is_livelock_accepting_state()
&& (!state->is_accepting_state()) && (!state_trans_empty))
state->set_livelock_accepting_state(false);
}
}
namespace
{
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
}
void
compute_livelock_acceptance_states(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<bdd> arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h =
numbered_state_heap_hash_map_factory::instance()->build();
///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::stack<state*> init_set;
ta::states_set_t::const_iterator it;
ta::states_set_t init_states = testing_automata->get_initial_states_set();
for (it = init_states.begin(); it != init_states.end(); it++)
{
state* init_state = (*it);
init_set.push(init_state);
}
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
state_ta_explicit* init =
down_cast<state_ta_explicit*> (init_set.top());
init_set.pop();
state_ta_explicit* init_clone = init;
numbered_state_heap::state_index_p h_init = h->find(init_clone);
if (h_init.first)
continue;
h->insert(init_clone, ++num);
sscc.push(num);
arc.push(bddfalse);
sscc.top().is_accepting
= testing_automata->is_accepting_state(init);
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
}
while (!todo.empty())
{
state* curr = todo.top().first;
numbered_state_heap::state_index_p spi = h->find(curr);
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
numbered_state_heap::state_index_p spi = h->index(curr);
assert(spi.first);
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == *spi.second)
{
// removing states
std::list<state*>::iterator i;
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
&& ((sscc.top().is_accepting) || (sscc.top().condition
== testing_automata->all_acceptance_conditions()));
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = h->index((*i));
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1);
*spi.second = -1;
if (is_livelock_accepting_sscc)
{//if it is an accepting sscc add the state to
//G (=the livelock-accepting states set)
state_ta_explicit * livelock_accepting_state =
down_cast<state_ta_explicit*> (*i);
livelock_accepting_state->set_livelock_accepting_state(
true);
//case STA (Single-pass Testing Automata) or case
//STGTA (Single-pass Transition-based Generalised Testing Automata)
if (artificial_livelock_accepting_state != 0)
livelock_accepting_state->set_accepting_state(
true);
}
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
// automata reduction
testing_automata->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
bdd acc_cond = succ->current_acceptance_conditions();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_automata->get_state_condition(curr)
== testing_automata->get_state_condition(dest);
state* dest_clone = dest;
spi = h->find(dest_clone);
// Is this a new state?
if (!spi.first)
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest_clone->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h->insert(dest_clone, ++num);
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting = testing_automata->is_accepting_state(
dest);
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
trace
<< "***compute_livelock_acceptance_states: CYCLE***" << std::endl;
if (!curr->compare(dest))
{
state_ta_explicit * self_loop_state =
down_cast<state_ta_explicit*> (curr);
assert(self_loop_state);
if (testing_automata->is_accepting_state(self_loop_state)
|| (acc_cond
== testing_automata->all_acceptance_conditions()))
{
self_loop_state->set_livelock_accepting_state(true);
if (artificial_livelock_accepting_state != 0)
self_loop_state->set_accepting_state(true);
}
trace
<< "***compute_livelock_acceptance_states: CYCLE: self_loop_state***"
<< std::endl;
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = *spi.second;
std::list<state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
sscc.rem().splice(sscc.rem().end(), rem);
}
}
delete h;
trace
<< "*** compute_livelock_acceptance_states: PRE call add_artificial_livelock_accepting_state() method ... (artificial_livelock_accepting_state != 0) :***"
<< (artificial_livelock_accepting_state != 0) << std::endl;
if (artificial_livelock_accepting_state != 0)
add_artificial_livelock_accepting_state(testing_automata,
artificial_livelock_accepting_state);
trace
<< "*** compute_livelock_acceptance_states: POST call add_artificial_livelock_accepting_state() method ***"
<< std::endl;
}
tgbta_explicit*
tgba_to_tgbta(const tgba* tgba_, bdd atomic_propositions_set_)
{ {
state* tgba_init_state = tgba_->get_init_state(); state* tgba_init_state = tgba_->get_init_state();
state_ta_explicit* ta_init_state = new state_ta_explicit( state_ta_explicit* artificial_init_state = new state_ta_explicit(
tgba_init_state->clone(), bddfalse, true); tgba_init_state->clone(), bddfalse, true);
tgba_init_state->destroy(); tgba_init_state->destroy();
tgbta_explicit* tgbta = new spot::tgbta_explicit(tgba_, tgta_explicit* tgta = new spot::tgta_explicit(tgba_,
tgba_->all_acceptance_conditions(), ta_init_state); tgba_->all_acceptance_conditions(), artificial_init_state);
// build ta automata: // build a Generalized TA automaton involving a single_pass_emptiness_check
build_ta(tgbta, atomic_propositions_set_, true, false); // (without an artificial livelock state):
build_ta(tgta, atomic_propositions_set_, false, true, false);
trace trace
<< "***tgba_to_tgbta: POST build_ta***" << std::endl; << "***tgba_to_tgbta: POST build_ta***" << std::endl;
// adapt a ta automata to build tgbta automata : // adapt a ta automata to build tgta automata :
ta::states_set_t states_set = tgbta->get_states_set(); ta::states_set_t states_set = tgta->get_states_set();
ta::states_set_t::iterator it; ta::states_set_t::iterator it;
tgba_succ_iterator* initial_states_iter = tgbta->succ_iter( tgba_succ_iterator* initial_states_iter = tgta->succ_iter(
tgbta->get_artificial_initial_state()); tgta->get_artificial_initial_state());
initial_states_iter->first(); initial_states_iter->first();
if (initial_states_iter->done()) if (initial_states_iter->done())
return tgbta; return tgta;
bdd first_state_condition = (initial_states_iter)->current_condition(); bdd first_state_condition = (initial_states_iter)->current_condition();
delete initial_states_iter; delete initial_states_iter;
@ -630,21 +652,14 @@ namespace spot
bool trans_empty = (trans == 0 || trans->empty()); bool trans_empty = (trans == 0 || trans->empty());
if (trans_empty || state->is_accepting_state()) if (trans_empty || state->is_accepting_state())
{ {
trace tgta->create_transition(state, bdd_stutering_transition,
<< "***tgba_to_tgbta: PRE if (state->is_livelock_accepting_state()) ... create_transition ***" tgta->all_acceptance_conditions(), state);
<< std::endl;
tgbta->create_transition(state, bdd_stutering_transition,
tgbta->all_acceptance_conditions(), state);
trace
<< "***tgba_to_tgbta: POST if (state->is_livelock_accepting_state()) ... create_transition ***"
<< std::endl;
} }
} }
if (state->compare(tgbta->get_artificial_initial_state())) if (state->compare(tgta->get_artificial_initial_state()))
tgbta->create_transition(state, bdd_stutering_transition, bddfalse, tgta->create_transition(state, bdd_stutering_transition, bddfalse,
state); state);
state->set_livelock_accepting_state(false); state->set_livelock_accepting_state(false);
@ -654,7 +669,7 @@ namespace spot
} }
return tgbta; return tgta;
} }

View file

@ -30,11 +30,11 @@
#include <cassert> #include <cassert>
#include "misc/bddlt.hh" #include "misc/bddlt.hh"
#include "ta/taexplicit.hh" #include "ta/taexplicit.hh"
#include "ta/tgbtaexplicit.hh" #include "ta/tgtaexplicit.hh"
namespace spot namespace spot
{ {
/// \brief Build a spot::tgba_explicit* from an LTL formula. /// \brief Build a spot::ta_explicit* (TA) from an LTL formula.
/// \ingroup tgba_ta /// \ingroup tgba_ta
/// ///
/// This is based on the following paper. /// This is based on the following paper.
@ -57,50 +57,53 @@ namespace spot
/// \param atomic_propositions_set The set of atomic propositions used in the /// \param atomic_propositions_set The set of atomic propositions used in the
/// input TGBA \a tgba_to_convert /// input TGBA \a tgba_to_convert
/// ///
/// \param degeneralized When false, the returned automaton is a generalized
/// form of TA, called GTA (Generalized Testing Automaton).
/// Like TGBA, GTA use Generalized Büchi acceptance
/// conditions intead of Buchi-accepting states: there are several acceptance
/// sets (of transitions), and a path is accepted if it traverses
/// at least one transition of each set infinitely often or if it contains a
/// livelock-accepting cycle (like a TA). The spot emptiness check algorithm
/// for TA (spot::ta_check::check) can also be used to check GTA.
///
/// \param artificial_initial_state_mode When set, the algorithm will build /// \param artificial_initial_state_mode When set, the algorithm will build
/// a TA automaton with an unique initial state. This /// a TA automaton with an unique initial state. This
/// artificial initial state have one transition to each real initial state, /// artificial initial state have one transition to each real initial state,
/// and this transition is labeled by the corresponding initial condition. /// and this transition is labeled by the corresponding initial condition.
/// (see spot::ta::get_artificial_initial_state()) /// (see spot::ta::get_artificial_initial_state())
/// ///
/// \param STA_mode When set, the returned TA /// \param single_pass_emptiness_check When set, the product between the
/// automaton is a STA (Single-pass Testing Automata): a STA automaton is a TA /// returned automaton and a kripke structure requires only the fist pass of
/// the emptiness check algorithm (see the parameter \c disable_second_pass
/// of the method spot::ta_check::check)
///
///
/// \param artificial_livelock_state_mode When set, the returned TA automaton
/// is a STA (Single-pass Testing Automata): a STA automaton is a TA
/// where: for every livelock-accepting state s, if s is not also a /// where: for every livelock-accepting state s, if s is not also a
/// Buchi-accepting state, then s has no successors. A STA product requires /// Buchi-accepting state, then s has no successors. A STA product requires
/// only one-pass emptiness check algorithm (see spot::ta_check::check) /// only one-pass emptiness check algorithm (see spot::ta_check::check)
/// ///
/// \param degeneralized When false, the returned automaton is a generalized
/// form of TA, called TGTA (Transition-based Generalized Testing Automaton).
/// Like TGBA, TGTA use Generalized Büchi acceptance
/// conditions intead of Büchi-accepting states: there are several acceptance
/// sets (of transitions), and a path is accepted if it traverses
/// at least one transition of each set infinitely often or if it contains a
/// livelock-accepting cycle.
/// ///
/// \return A spot::ta_explicit that recognizes the same language as the /// \return A spot::ta_explicit that recognizes the same language as the
/// TGBA \a tgba_to_convert. /// TGBA \a tgba_to_convert.
ta_explicit* ta_explicit*
tgba_to_ta(const tgba* tgba_to_convert, bdd atomic_propositions_set, tgba_to_ta(const tgba* tgba_to_convert, bdd atomic_propositions_set,
bool artificial_initial_state_mode = true, bool STA_mode = false, bool degeneralized = true, bool artificial_initial_state_mode = true,
bool degeneralized = true); bool single_pass_emptiness_check = false,
bool artificial_livelock_state_mode = false);
stgta_explicit* /// \brief Build a spot::tgta_explicit* (TGTA) from an LTL formula.
tgba_to_stgta(const tgba* tgba_to_convert, bdd atomic_propositions_set); /// \ingroup tgba_ta
/// \param tgba_to_convert The TGBA automaton to convert into a TGTA automaton
///
//artificial_livelock_accepting_state is used in the case of /// \param atomic_propositions_set The set of atomic propositions used in the
//STA (Single-pass Testing Automata) or in the case /// input TGBA \a tgba_to_convert
//STGTA (Single-pass Transition-based Generalised Testing Automata) ///
void /// \return A spot::tgta_explicit (spot::tgta) that recognizes the same
compute_livelock_acceptance_states(ta_explicit* testing_automata, /// language as the TGBA \a tgba_to_convert.
state_ta_explicit* artificial_livelock_accepting_state = 0); tgta_explicit*
tgba_to_tgta(const tgba* tgba_to_convert, bdd atomic_propositions_set);
//artificial_livelock_accepting_state is added to transform TA into
//STA (Single-pass Testing Automata) or to transform TGTA into
//STGTA (Single-pass Transition-based Generalised Testing Automata)
void
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state);
} }

View file

@ -1,9 +1,6 @@
#!/bin/sh #!/bin/sh
# Copyright (C) 2009, 2010, 2011 Laboratoire de Recherche et Développement # Copyright (C) 2010, 2011 Laboratoire de Recherche et Développement
# de l'Epita (LRDE). # de l'Epita (LRDE).
# Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
# département Systèmes Répartis Coopératifs (SRC), Université Pierre
# et Marie Curie.
# #
# This file is part of Spot, a model checking library. # This file is part of Spot, a model checking library.
# #
@ -29,8 +26,22 @@ set -e
check () check ()
{ {
run 0 ../ltl2tgba -TA "$1" run 0 ../ltl2tgba -TA -ks "$1"
run 0 ../ltl2tgba -TM "$1" run 0 ../ltl2tgba -TA -Rm -ks "$1"
run 0 ../ltl2tgba -TA -lv -ks "$1"
run 0 ../ltl2tgba -TA -sp -ks "$1"
run 0 ../ltl2tgba -TA -Rm -lv "$1"
run 0 ../ltl2tgba -TA -Rm -sp -ks "$1"
run 0 ../ltl2tgba -TA -lv -sp -ks "$1"
run 0 ../ltl2tgba -TA -DS -ks "$1"
run 0 ../ltl2tgba -TA -Rm -DS -ks "$1"
run 0 ../ltl2tgba -TA -lv -DS -ks "$1"
run 0 ../ltl2tgba -TA -sp -DS -ks "$1"
run 0 ../ltl2tgba -TA -Rm -sp -DS -ks "$1"
run 0 ../ltl2tgba -TA -Rm -lv -DS -ks "$1"
run 0 ../ltl2tgba -TA -Rm -sp -lv -DS -ks "$1"
run 0 ../ltl2tgba -TGTA -ks "$1"
run 0 ../ltl2tgba -TGTA -Rm -ks "$1"
} }
# We don't check the output, but just running these might be enough to # We don't check the output, but just running these might be enough to
@ -52,8 +63,6 @@ check '((Gp2)U(F(1)))&(p1 R(p2 R p0))'
# Make sure 'a U (b U c)' has 21 states and 144 transitions,
# before and after degeneralization.
for opt in -TA; do for opt in -TA; do
../ltl2tgba -ks $opt -in 'a U (b U c)' > stdout ../ltl2tgba -ks $opt -in 'a U (b U c)' > stdout
grep 'transitions: 144$' stdout grep 'transitions: 144$' stdout
@ -61,24 +70,23 @@ for opt in -TA; do
done done
for opt in -TM; do for opt in -TA; do
../ltl2tgba -ks $opt -in -DS 'a U (b U c)' > stdout ../ltl2tgba -ks $opt -Rm -in -DS 'a U (b U c)' > stdout
grep 'transitions: 69$' stdout grep 'transitions: 69$' stdout
grep 'states: 10$' stdout grep 'states: 10$' stdout
done done
for opt in -TM; do for opt in -TA; do
../ltl2tgba -ks $opt -DS '!(Ga U b)' > stdout ../ltl2tgba -ks $opt -Rm -DS '!(Ga U b)' > stdout
grep 'transitions: 15$' stdout grep 'transitions: 15$' stdout
grep 'states: 5$' stdout grep 'states: 5$' stdout
done done
# Make sure 'Ga U b' has 6 states and 12 transitions,
# before and after degeneralization. for opt in -TA; do
for opt in -TM; do ../ltl2tgba -ks $opt -Rm -DS 'Ga U b' > stdout
../ltl2tgba -ks $opt -DS 'Ga U b' > stdout
grep 'transitions: 13$' stdout grep 'transitions: 13$' stdout
grep 'states: 6$' stdout grep 'states: 6$' stdout
done done
@ -92,26 +100,21 @@ f='(G (p -> F q)) && ((X (p) U q) || ! X (p U (p && q)))'
grep 'transitions: 96$' stdout grep 'transitions: 96$' stdout
grep 'states: 21$' stdout grep 'states: 21$' stdout
# Note: after minimization with -TM. # Note: after minimization with -TA -Rm.
# has 20 states and 89 transitions, after minimization. # has 20 states and 89 transitions, after minimization.
../ltl2tgba -ks -TM -DS "$f" > stdout ../ltl2tgba -ks -TA -Rm -DS "$f" > stdout
grep 'transitions: 89$' stdout grep 'transitions: 89$' stdout
grep 'states: 20$' stdout grep 'states: 20$' stdout
# Make sure 'GFa & GFb & GFc & GFd & GFe & GFf'
# has 448 states and 28224 transitions.
f='GFa & GFb & GFc & GFd & GFe & GFg' f='GFa & GFb & GFc & GFd & GFe & GFg'
../ltl2tgba -ks -TA -DS -x "$f" > stdout ../ltl2tgba -ks -TA -DS -x "$f" > stdout
grep 'transitions: 28351$' stdout grep 'transitions: 28351$' stdout
grep 'states: 449$' stdout grep 'states: 449$' stdout
# Make sure 'GFa & GFb & GFc & GFd & GFe & GFf'
# has 290 states and 18527 transitions with artificial livelock state.
f='GFa & GFb & GFc & GFd & GFe & GFg' f='GFa & GFb & GFc & GFd & GFe & GFg'
../ltl2tgba -ks -TM -x -lv -DS "$f" > stdout ../ltl2tgba -ks -TA -Rm -x -lv -DS "$f" > stdout
grep 'transitions: 18496$' stdout grep 'transitions: 18496$' stdout
grep 'states: 290$' stdout grep 'states: 290$' stdout
@ -121,61 +124,71 @@ run 0 ../ltl2tgba -ks -TA -lv -DS "Gq|Gr|(G(q|FGp)&G(r|FG!p))" >stdout
grep 'transitions: 882$' stdout grep 'transitions: 882$' stdout
grep 'states: 78$' stdout grep 'states: 78$' stdout
run 0 ../ltl2tgba -TM -ks -lv -DS "Gq|Gr|(G(q|FGp)&G(r|FG!p))" >stdout run 0 ../ltl2tgba -TA -Rm -ks -lv -DS "Gq|Gr|(G(q|FGp)&G(r|FG!p))" >stdout
grep 'transitions: 440$' stdout grep 'transitions: 440$' stdout
grep 'states: 28$' stdout grep 'states: 28$' stdout
run 0 ../ltl2tgba -TGTA -Rm -ks 'Gq|Gr|(G(q|FGp)&G(r|FG!p))' >stdout
grep 'transitions: 294$' stdout
grep 'states: 21$' stdout
run 0 ../ltl2tgba -TM -ks -in -R3f -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout run 0 ../ltl2tgba -TA -Rm -ks -in -R3f -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 521$' stdout grep 'transitions: 521$' stdout
grep 'states: 43$' stdout grep 'states: 43$' stdout
run 0 ../ltl2tgba -TM -ks -lv -R3f -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout run 0 ../ltl2tgba -TA -Rm -ks -lv -R3f -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 636$' stdout grep 'transitions: 636$' stdout
grep 'states: 45$' stdout grep 'states: 45$' stdout
run 0 ../ltl2tgba -TM -ks -DS "G(F(GWaitLeft7 U Idle4) U (WaitLeft2 M IsEating2))" >stdout run 0 ../ltl2tgba -TA -Rm -ks "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 2779$' stdout
grep 'states: 127$' stdout
run 0 ../ltl2tgba -TM -ks -lv -DS "G(F(GWaitLeft7 U Idle4) U (WaitLeft2 M IsEating2))" >stdout
grep 'transitions: 2831$' stdout
grep 'states: 128$' stdout
run 0 ../ltl2tgba -TM -ks "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 498$' stdout grep 'transitions: 498$' stdout
grep 'states: 34$' stdout grep 'states: 34$' stdout
run 0 ../ltl2tgba -TM -ks -lv -in "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout run 0 ../ltl2tgba -TA -Rm -ks -sp -lv -in "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 566$' stdout grep 'transitions: 566$' stdout
grep 'states: 35$' stdout grep 'states: 35$' stdout
run 0 ../ltl2tgba -TM -ks -in -R3 -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout run 0 ../ltl2tgba -TA -Rm -ks -in -R3 -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 464$' stdout grep 'transitions: 464$' stdout
grep 'states: 36$' stdout grep 'states: 36$' stdout
run 0 ../ltl2tgba -TM -ks -lv -R3 -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout run 0 ../ltl2tgba -TA -Rm -ks -sp -lv -R3 -x -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 565$' stdout grep 'transitions: 565$' stdout
grep 'states: 38$' stdout grep 'states: 38$' stdout
run 0 ../ltl2tgba -TA -ks -lv -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout run 0 ../ltl2tgba -TA -ks -sp -lv -DS "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 831$' stdout grep 'transitions: 831$' stdout
grep 'states: 56$' stdout grep 'states: 56$' stdout
run 0 ../ltl2tgba -TM -ks -lv "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout run 0 ../ltl2tgba -TA -Rm -ks -sp -lv "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 585$' stdout grep 'transitions: 585$' stdout
grep 'states: 36$' stdout grep 'states: 36$' stdout
run 0 ../ltl2tgba -TGTA -Rm -ks "FG((WaitRight4 M (HasRight1 W GWaitLeft0)) M HasLeft4)" >stdout
grep 'transitions: 598$' stdout
grep 'states: 35$' stdout
run 0 ../ltl2tgba -TA -Rm -ks -DS "G(F(GWaitLeft7 U Idle4) U (WaitLeft2 M IsEating2))" >stdout
grep 'transitions: 2779$' stdout
grep 'states: 127$' stdout
run 0 ../ltl2tgba -TA -Rm -ks -sp "G(F(GWaitLeft7 U Idle4) U (WaitLeft2 M IsEating2))" >stdout
grep 'transitions: 1219$' stdout
grep 'states: 65$' stdout
run 0 ../ltl2tgba -TGTA -Rm -ks "G(F(GWaitLeft7 U Idle4) U (WaitLeft2 M IsEating2))" >stdout
grep 'transitions: 1283$' stdout
grep 'states: 65$' stdout
echo '.................. TESTs: OK' echo '.................. TESTs: OK'

View file

@ -282,19 +282,20 @@ syntax(char* prog)
<< "Options for Testing Automata:" << "Options for Testing Automata:"
<< std::endl << std::endl
<< " -TA Translate an LTL formula into a Testing automata" << " -TA Translate an LTL formula into a TA (Testing automata)"
<< std::endl << std::endl
<< std::endl << std::endl
<< " -TM Translate an LTL formula into a minimal Testing automata" << " -sp convert into a TA involving a single-pass emptiness check"
<< std::endl << std::endl
<< " -lv convert into a TA with an artificial livelock accepting"
<< "state (single-pass emptiness check)"
<< std::endl << std::endl
<< std::endl << std::endl
<< " -lv Translate an LTL formula into a Testing automata with an artificial livelock accepting state (Single-pass Testing Automata)" << " -in convert into a TA without an artificial initial state"
<< std::endl << std::endl
<< std::endl << std::endl
<< " -in Translate an LTL formula into a Testing automata without artificial initial state" << " -TGTA Translate an LTL formula into a TGTA"
<< std::endl << "(Transition-based Generalised Testing Automata)"
<< std::endl
<< " -STGTA Translate an LTL formula into a STGTA (Single-pass Transition-based Generalised Testing Automata)"
<< std::endl; << std::endl;
@ -357,9 +358,10 @@ main(int argc, char** argv)
bool reduction_dir_sim = false; bool reduction_dir_sim = false;
spot::tgba* temp_dir_sim = 0; spot::tgba* temp_dir_sim = 0;
bool ta_opt = false; bool ta_opt = false;
bool tgbta_opt = false; bool tgta_opt = false;
bool opt_with_artificial_livelock = false;
bool opt_with_artificial_initial_state = true; bool opt_with_artificial_initial_state = true;
bool opt_single_pass_emptiness_check = false;
bool opt_with_artificial_livelock = false;
for (;;) for (;;)
@ -692,19 +694,18 @@ main(int argc, char** argv)
{ {
ta_opt = true; ta_opt = true;
} }
else if (!strcmp(argv[formula_index], "-TM")) else if (!strcmp(argv[formula_index], "-TGTA"))
{ {
ta_opt = true; tgta_opt = true;
opt_minimize = true;
}
else if (!strcmp(argv[formula_index], "-STGTA"))
{
tgbta_opt = true;
} }
else if (!strcmp(argv[formula_index], "-lv")) else if (!strcmp(argv[formula_index], "-lv"))
{ {
opt_with_artificial_livelock = true; opt_with_artificial_livelock = true;
} }
else if (!strcmp(argv[formula_index], "-sp"))
{
opt_single_pass_emptiness_check = true;
}
else if (!strcmp(argv[formula_index], "-in")) else if (!strcmp(argv[formula_index], "-in"))
{ {
opt_with_artificial_initial_state = false; opt_with_artificial_initial_state = false;
@ -1004,7 +1005,7 @@ main(int argc, char** argv)
const spot::tgba* degeneralized = 0; const spot::tgba* degeneralized = 0;
spot::tgba* minimized = 0; spot::tgba* minimized = 0;
if (opt_minimize && !ta_opt) if (opt_minimize && !ta_opt && !tgta_opt)
{ {
tm.start("obligation minimization"); tm.start("obligation minimization");
minimized = minimize_obligation(a, f); minimized = minimize_obligation(a, f);
@ -1113,24 +1114,14 @@ main(int argc, char** argv)
if (ta_opt) if (ta_opt)
{ {
// const spot::tgba_sba_proxy* degeneralized_new = 0;
// const spot::tgba_sba_proxy* degeneralized =
// dynamic_cast<const spot::tgba_sba_proxy*> (a);
// if (degeneralized == 0)
// degeneralized_new = degeneralized = new spot::tgba_sba_proxy(a);
spot::ta* testing_automata = 0; spot::ta* testing_automata = 0;
if (tgbta_opt)
{
testing_automata = (spot::ta_explicit *) tgba_to_tgbta(a, atomic_props_set_bdd);
} testing_automata
else { = tgba_to_ta(a, atomic_props_set_bdd, degeneralize_opt
testing_automata = tgba_to_ta(a, atomic_props_set_bdd, opt_with_artificial_initial_state, opt_with_artificial_livelock, degeneralize_opt == DegenSBA); == DegenSBA, opt_with_artificial_initial_state,
opt_single_pass_emptiness_check,
opt_with_artificial_livelock);
}
spot::ta* testing_automata_nm = 0; spot::ta* testing_automata_nm = 0;
if (opt_minimize) { if (opt_minimize) {
testing_automata_nm = testing_automata; testing_automata_nm = testing_automata;
@ -1163,11 +1154,20 @@ main(int argc, char** argv)
aut_red = 0; aut_red = 0;
output = -1; output = -1;
} else if (tgbta_opt) } else if (tgta_opt)
{ {
a = tgba_to_tgbta(a, atomic_props_set_bdd); spot::tgta* tgta = tgba_to_tgta(a, atomic_props_set_bdd);
to_free = a; if (opt_minimize)
{
a = minimize_tgta(tgta);
minimized = a;
}
else
{
a = tgta;
}
to_free = tgta;
} }
spot::tgba* product_degeneralized = 0; spot::tgba* product_degeneralized = 0;