mc: refactor parallel algorithms

* spot/mc/Makefile.am,
spot/mc/bloemen.hh,
spot/mc/bloemen_ec.hh,
spot/mc/cndfs.hh,
spot/mc/deadlock.hh,
spot/mc/ec.hh,
spot/mc/intersect.hh,
spot/mc/mc.hh,
spot/mc/mc_instanciator.hh,
spot/mc/utils.hh,
tests/ltsmin/modelcheck.cc: Here.
This commit is contained in:
Etienne Renault 2020-05-13 11:06:38 +02:00
parent 907a3cfbbf
commit 5bb29d646b
11 changed files with 1169 additions and 1501 deletions

View file

@ -22,7 +22,7 @@ AM_CXXFLAGS = $(WARNING_CXXFLAGS)
mcdir = $(pkgincludedir)/mc
mc_HEADERS = reachability.hh intersect.hh ec.hh unionfind.hh utils.hh\
mc.hh deadlock.hh bloemen.hh bloemen_ec.hh cndfs.hh
mc.hh mc_instanciator.hh deadlock.hh bloemen.hh bloemen_ec.hh cndfs.hh
noinst_LTLIBRARIES = libmc.la

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2017, 2018, 2019 Laboratoire de Recherche et
// Copyright (C) 2015, 2016, 2017, 2018, 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -21,15 +21,16 @@
#include <atomic>
#include <chrono>
#include <spot/bricks/brick-hashset>
#include <stdlib.h>
#include <thread>
#include <vector>
#include <utility>
#include <spot/misc/common.hh>
#include <spot/bricks/brick-hashset>
#include <spot/kripke/kripke.hh>
#include <spot/misc/common.hh>
#include <spot/misc/fixpool.hh>
#include <spot/misc/timer.hh>
#include <spot/mc/mc.hh>
namespace spot
{
@ -405,16 +406,6 @@ namespace spot
fixed_size_pool<pool_type::Unsafe> p_; ///< \brief The allocator
};
/// \brief This object is returned by the algorithm below
struct SPOT_API bloemen_stats
{
unsigned inserted; ///< \brief Number of states inserted
unsigned states; ///< \brief Number of states visited
unsigned transitions; ///< \brief Number of transitions visited
unsigned sccs; ///< \brief Number of SCCs visited
unsigned walltime; ///< \brief Walltime for this thread in ms
};
/// \brief This class implements the SCC decomposition algorithm of bloemen
/// as described in PPOPP'16. It uses a shared union-find augmented to manage
/// work stealing between threads.
@ -426,10 +417,25 @@ namespace spot
swarmed_bloemen() = delete;
public:
swarmed_bloemen(kripkecube<State, SuccIterator>& sys,
iterable_uf<State, StateHash, StateEqual>& uf,
unsigned tid):
sys_(sys), uf_(uf), tid_(tid),
using uf = iterable_uf<State, StateHash, StateEqual>;
using uf_element = typename uf::uf_element;
using shared_struct = uf;
using shared_map = typename uf::shared_map;
static shared_struct* make_shared_st(shared_map m, unsigned i)
{
return new uf(m, i);
}
swarmed_bloemen(kripkecube<State, SuccIterator>& sys,
twacube_ptr, /* useless here */
shared_map& map, /* useless here */
iterable_uf<State, StateHash, StateEqual>* uf,
unsigned tid,
std::atomic<bool>& /*useless here*/):
sys_(sys), uf_(*uf), tid_(tid),
nb_th_(std::thread::hardware_concurrency())
{
static_assert(spot::is_a_kripkecube_ptr<decltype(&sys),
@ -437,13 +443,9 @@ namespace spot
"error: does not match the kripkecube requirements");
}
using uf = iterable_uf<State, StateHash, StateEqual>;
using uf_element = typename uf::uf_element;
void run()
{
tm_.start("DFS thread " + std::to_string(tid_));
setup();
State init = sys_.initial(tid_);
auto pair = uf_.make_claim(init);
todo_.push_back(pair.second);
@ -496,17 +498,53 @@ namespace spot
Rp_.pop_back();
todo_.pop_back();
}
finalize();
}
void setup()
{
tm_.start("DFS thread " + std::to_string(tid_));
}
void finalize()
{
tm_.stop("DFS thread " + std::to_string(tid_));
}
unsigned states()
{
return states_;
}
unsigned transitions()
{
return transitions_;
}
unsigned walltime()
{
return tm_.timer("DFS thread " + std::to_string(tid_)).walltime();
}
bloemen_stats stats()
std::string name()
{
return {uf_.inserted(), states_, transitions_, sccs_, walltime()};
return "bloemen_scc";
}
int sccs()
{
return sccs_;
}
mc_rvalue result()
{
return mc_rvalue::SUCCESS;
}
std::string trace()
{
// Returning a trace has no sense in this algorithm
return "";
}
private:

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2017, 2018, 2019 Laboratoire de Recherche et
// Copyright (C) 2015, 2016, 2017, 2018, 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -31,6 +31,7 @@
#include <spot/misc/fixpool.hh>
#include <spot/misc/timer.hh>
#include <spot/twacube/twacube.hh>
#include <spot/mc/intersect.hh>
namespace spot
{
@ -100,7 +101,6 @@ namespace spot
using shared_map = brick::hashset::FastConcurrent <uf_element*,
uf_element_hasher>;
iterable_uf_ec(shared_map& map, unsigned tid):
map_(map), tid_(tid), size_(std::thread::hardware_concurrency()),
nb_th_(std::thread::hardware_concurrency()), inserted_(0),
@ -446,17 +446,6 @@ namespace spot
fixed_size_pool<pool_type::Unsafe> p_; ///< \brief The allocator
};
/// \brief This object is returned by the algorithm below
struct SPOT_API bloemen_ec_stats
{
unsigned inserted; ///< \brief Number of states inserted
unsigned states; ///< \brief Number of states visited
unsigned transitions; ///< \brief Number of transitions visited
unsigned sccs; ///< \brief Number of SCCs visited
bool is_empty; ///< \brief Is the model empty
unsigned walltime; ///< \brief Walltime for this thread in ms
};
/// \brief This class implements the SCC decomposition algorithm of bloemen
/// as described in PPOPP'16. It uses a shared union-find augmented to manage
/// work stealing between threads.
@ -466,12 +455,24 @@ namespace spot
{
public:
using uf = iterable_uf_ec<State, StateHash, StateEqual>;
using uf_element = typename uf::uf_element;
using shared_struct = uf;
using shared_map = typename uf::shared_map;
static shared_struct* make_shared_st(shared_map m, unsigned i)
{
return new uf(m, i);
}
swarmed_bloemen_ec(kripkecube<State, SuccIterator>& sys,
twacube_ptr twa,
iterable_uf_ec<State, StateHash, StateEqual>& uf,
shared_map& map, /* useless here */
iterable_uf_ec<State, StateHash, StateEqual>* uf,
unsigned tid,
std::atomic<bool>& stop):
sys_(sys), twa_(twa), uf_(uf), tid_(tid),
sys_(sys), twa_(twa), uf_(*uf), tid_(tid),
nb_th_(std::thread::hardware_concurrency()),
stop_(stop)
{
@ -480,12 +481,9 @@ namespace spot
"error: does not match the kripkecube requirements");
}
using uf = iterable_uf_ec<State, StateHash, StateEqual>;
using uf_element = typename uf::uf_element;
void run()
{
tm_.start("DFS thread " + std::to_string(tid_));
setup();
State init_kripke = sys_.initial(tid_);
unsigned init_twa = twa_->get_initial();
auto pair = uf_.make_claim(init_kripke, init_twa);
@ -509,7 +507,7 @@ namespace spot
auto it_kripke = sys_.succ(v_prime->st_kripke, tid_);
auto it_prop = twa_->succ(v_prime->st_prop);
forward_iterators(it_kripke, it_prop, true);
forward_iterators(sys_, twa_, it_kripke, it_prop, true, tid_);
while (!it_kripke->done())
{
auto w = uf_.make_claim(it_kripke->state(),
@ -558,7 +556,8 @@ namespace spot
return;
}
}
forward_iterators(it_kripke, it_prop, false);
forward_iterators(sys_, twa_, it_kripke, it_prop,
false, tid_);
}
uf_.remove_from_list(v_prime);
sys_.recycle(it_kripke, tid_);
@ -568,53 +567,27 @@ namespace spot
Rp_.pop_back();
todo_.pop_back();
}
finalize();
}
void setup()
{
tm_.start("DFS thread " + std::to_string(tid_));
}
void finalize()
{
tm_.stop("DFS thread " + std::to_string(tid_));
}
/// \brief Find the first couple of iterator (from the top of the
/// todo stack) that intersect. The \a parameter indicates wheter
/// the state has just been pushed since the underlying job is
/// slightly different.
void forward_iterators(SuccIterator* it_kripke,
std::shared_ptr<trans_index> it_prop,
bool just_pushed)
unsigned states()
{
SPOT_ASSERT(!(it_prop->done() &&
it_kripke->done()));
return states_;
}
// Sometimes kripke state may have no successors.
if (it_kripke->done())
return;
// The state has just been push and the 2 iterators intersect.
// There is no need to move iterators forward.
SPOT_ASSERT(!(it_prop->done()));
if (just_pushed && twa_->get_cubeset()
.intersect(twa_->trans_data(it_prop, tid_).cube_,
it_kripke->condition()))
return;
// Otherwise we have to compute the next valid successor (if it exits).
// This requires two loops. The most inner one is for the twacube since
// its costless
if (it_prop->done())
it_prop->reset();
else
it_prop->next();
while (!it_kripke->done())
{
while (!it_prop->done())
{
if (SPOT_UNLIKELY(twa_->get_cubeset()
.intersect(twa_->trans_data(it_prop, tid_).cube_,
it_kripke->condition())))
return;
it_prop->next();
}
it_prop->reset();
it_kripke->next();
}
unsigned transitions()
{
return transitions_;
}
unsigned walltime()
@ -622,15 +595,19 @@ namespace spot
return tm_.timer("DFS thread " + std::to_string(tid_)).walltime();
}
bool is_empty()
std::string name()
{
return is_empty_;
return "bloemen_ec";
}
bloemen_ec_stats stats()
int sccs()
{
return {uf_.inserted(), states_, transitions_, sccs_, is_empty_,
walltime()};
return sccs_;
}
mc_rvalue result()
{
return is_empty_ ? mc_rvalue::EMPTY : mc_rvalue::NOT_EMPTY;
}
std::string trace()

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2017, 2018, 2019 Laboratoire de Recherche et
// Copyright (C) 2015, 2016, 2017, 2018, 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -29,22 +29,13 @@
#include <spot/misc/fixpool.hh>
#include <spot/misc/timer.hh>
#include <spot/twacube/twacube.hh>
#include <spot/mc/mc.hh>
namespace spot
{
/// \brief This object is returned by the algorithm below
struct SPOT_API cndfs_stats
{
unsigned states; ///< \brief Number of states visited
unsigned transitions; ///< \brief Number of transitions visited
unsigned instack_dfs; ///< \brief Maximum DFS stack
bool is_empty; ///< \brief Is the model empty
unsigned walltime; ///< \brief Walltime for this thread in ms
};
template<typename State, typename SuccIterator,
typename StateHash, typename StateEqual>
class swarmed_cndfs
class SPOT_API swarmed_cndfs
{
struct local_colors
{
@ -95,7 +86,7 @@ namespace spot
}
};
struct todo__element
struct todo_element
{
product_state st;
SuccIterator* it_kripke;
@ -108,9 +99,16 @@ namespace spot
///< \brief Shortcut to ease shared map manipulation
using shared_map = brick::hashset::FastConcurrent <product_state,
state_hasher>;
using shared_struct = shared_map;
static shared_struct* make_shared_st(shared_map m, unsigned i)
{
return nullptr; // Useless here.
}
swarmed_cndfs(kripkecube<State, SuccIterator>& sys, twacube_ptr twa,
shared_map& map, unsigned tid, std::atomic<bool>& stop):
shared_map& map, shared_struct* /* useless here*/,
unsigned tid, std::atomic<bool>& stop):
sys_(sys), twa_(twa), tid_(tid), map_(map),
nb_th_(std::thread::hardware_concurrency()),
p_colors_(sizeof(cndfs_colors) +
@ -120,6 +118,7 @@ namespace spot
static_assert(spot::is_a_kripkecube_ptr<decltype(&sys),
State, SuccIterator>::value,
"error: does not match the kripkecube requirements");
SPOT_ASSERT(nb_th_ > tid);
}
virtual ~swarmed_cndfs()
@ -136,6 +135,13 @@ namespace spot
}
}
void run()
{
setup();
blue_dfs();
finalize();
}
void setup()
{
tm_.start("DFS thread " + std::to_string(tid_));
@ -180,17 +186,6 @@ namespace spot
return {true, *it};
}
bool pop_blue()
{
// Track maximum dfs size
dfs_ = todo_blue_.size() > dfs_ ? todo_blue_.size() : dfs_;
todo_blue_.back().st.colors->l[tid_].cyan = false;
sys_.recycle(todo_blue_.back().it_kripke, tid_);
todo_blue_.pop_back();
return true;
}
std::pair<bool, product_state>
push_red(product_state s, bool ignore_cyan)
{
@ -216,6 +211,17 @@ namespace spot
return {true, *it};
}
bool pop_blue()
{
// Track maximum dfs size
dfs_ = todo_blue_.size() > dfs_ ? todo_blue_.size() : dfs_;
todo_blue_.back().st.colors->l[tid_].cyan = false;
sys_.recycle(todo_blue_.back().it_kripke, tid_);
todo_blue_.pop_back();
return true;
}
bool pop_red()
{
// Track maximum dfs size
@ -243,13 +249,73 @@ namespace spot
return transitions_;
}
void run()
unsigned walltime()
{
setup();
blue_dfs();
finalize();
return tm_.timer("DFS thread " + std::to_string(tid_)).walltime();
}
std::string name()
{
return "cndfs";
}
int sccs()
{
return -1;
}
mc_rvalue result()
{
return is_empty_ ? mc_rvalue::EMPTY : mc_rvalue::NOT_EMPTY;
}
std::string trace()
{
SPOT_ASSERT(!is_empty_);
StateEqual equal;
auto state_equal = [equal](product_state a, product_state b)
{
return a.st_prop == b.st_prop
&& equal(a.st_kripke, b.st_kripke);
};
std::string res = "Prefix:\n";
auto it = todo_blue_.begin();
while (it != todo_blue_.end())
{
if (state_equal(((*it)).st, cycle_start_))
break;
res += " " + std::to_string(((*it)).st.st_prop)
+ "*" + sys_.to_string(((*it)).st.st_kripke) + "\n";
++it;
}
res += "Cycle:\n";
while (it != todo_blue_.end())
{
res += " " + std::to_string(((*it)).st.st_prop)
+ "*" + sys_.to_string(((*it)).st.st_kripke) + "\n";
++it;
}
if (!todo_red_.empty())
{
it = todo_red_.begin() + 1; // skip first element, also in blue
while (it != todo_red_.end())
{
res += " " + std::to_string(((*it)).st.st_prop)
+ "*" + sys_.to_string(((*it)).st.st_kripke) + "\n";
++it;
}
}
res += " " + std::to_string(cycle_start_.st_prop)
+ "*" + sys_.to_string(cycle_start_.st_kripke) + "\n";
return res;
}
private:
void blue_dfs()
{
product_state initial = {sys_.initial(tid_),
@ -262,7 +328,8 @@ namespace spot
if (todo_blue_.back().it_prop->done())
return;
forward_iterators(todo_blue_, true);
forward_iterators(sys_, twa_, todo_blue_.back().it_kripke,
todo_blue_.back().it_prop, true, tid_);
while (!todo_blue_.empty() && !stop_.load(std::memory_order_relaxed))
{
@ -278,11 +345,13 @@ namespace spot
};
bool acc = (bool) twa_->trans_storage(current.it_prop, tid_).acc_;
forward_iterators(todo_blue_, false);
forward_iterators(sys_, twa_, todo_blue_.back().it_kripke,
todo_blue_.back().it_prop, false, tid_);
auto tmp = push_blue(s, acc);
if (tmp.first)
forward_iterators(todo_blue_, true);
forward_iterators(sys_, twa_, todo_blue_.back().it_kripke,
todo_blue_.back().it_prop, true, tid_);
else if (acc)
{
// The state cyan and we can reach it throught an
@ -324,14 +393,14 @@ namespace spot
void post_red_dfs()
{
for (product_state& s : Rp_acc_)
for (product_state& s: Rp_acc_)
{
while (s.colors->red.load() && !stop_.load())
{
// await
}
}
for (product_state& s : Rp_)
for (product_state& s: Rp_)
{
s.colors->red.store(true);
s.colors->l[tid_].is_in_Rp = false; // empty Rp
@ -349,7 +418,8 @@ namespace spot
if (!init_push.first)
return;
forward_iterators(todo_red_, true);
forward_iterators(sys_, twa_, todo_red_.back().it_kripke,
todo_red_.back().it_prop, true, tid_);
while (!todo_red_.empty() && !stop_.load(std::memory_order_relaxed))
{
@ -364,12 +434,14 @@ namespace spot
nullptr
};
bool acc = (bool) twa_->trans_storage(current.it_prop, tid_).acc_;
forward_iterators(todo_red_, false);
forward_iterators(sys_, twa_, todo_red_.back().it_kripke,
todo_red_.back().it_prop, false, tid_);
auto res = push_red(s, false);
if (res.first) // could push properly
{
forward_iterators(todo_red_, true);
forward_iterators(sys_, twa_, todo_red_.back().it_kripke,
todo_red_.back().it_prop, true, tid_);
SPOT_ASSERT(res.second.colors->blue);
@ -419,130 +491,22 @@ namespace spot
}
}
std::string trace()
{
SPOT_ASSERT(!is_empty());
StateEqual equal;
auto state_equal = [equal](product_state a, product_state b)
{
return a.st_prop == b.st_prop
&& equal(a.st_kripke, b.st_kripke);
};
std::string res = "Prefix:\n";
auto it = todo_blue_.begin();
while (it != todo_blue_.end())
{
if (state_equal(((*it)).st, cycle_start_))
break;
res += " " + std::to_string(((*it)).st.st_prop)
+ "*" + sys_.to_string(((*it)).st.st_kripke) + "\n";
++it;
}
res += "Cycle:\n";
while (it != todo_blue_.end())
{
res += " " + std::to_string(((*it)).st.st_prop)
+ "*" + sys_.to_string(((*it)).st.st_kripke) + "\n";
++it;
}
if (!todo_red_.empty())
{
it = todo_red_.begin() + 1; // skip first element, also in blue
while (it != todo_red_.end())
{
res += " " + std::to_string(((*it)).st.st_prop)
+ "*" + sys_.to_string(((*it)).st.st_kripke) + "\n";
++it;
}
}
res += " " + std::to_string(cycle_start_.st_prop)
+ "*" + sys_.to_string(cycle_start_.st_kripke) + "\n";
return res;
}
bool is_empty()
{
return is_empty_;
}
unsigned walltime()
{
return tm_.timer("DFS thread " + std::to_string(tid_)).walltime();
}
cndfs_stats stats()
{
return {states(), transitions(), dfs_, is_empty(), walltime()};
}
protected:
void forward_iterators(std::vector<todo__element>& todo, bool just_pushed)
{
SPOT_ASSERT(!todo.empty());
auto top = todo.back();
SPOT_ASSERT(!(top.it_prop->done() &&
top.it_kripke->done()));
// Sometimes kripke state may have no successors.
if (top.it_kripke->done())
return;
// The state has just been push and the 2 iterators intersect.
// There is no need to move iterators forward.
SPOT_ASSERT(!(top.it_prop->done()));
if (just_pushed && twa_->get_cubeset()
.intersect(twa_->trans_data(top.it_prop, tid_).cube_,
top.it_kripke->condition()))
return;
// Otherwise we have to compute the next valid successor (if it exits).
// This requires two loops. The most inner one is for the twacube since
// its costless
if (top.it_prop->done())
top.it_prop->reset();
else
top.it_prop->next();
while (!top.it_kripke->done())
{
while (!top.it_prop->done())
{
if (twa_->get_cubeset()
.intersect(twa_->trans_data(top.it_prop, tid_).cube_,
top.it_kripke->condition()))
return;
top.it_prop->next();
}
top.it_prop->reset();
top.it_kripke->next();
}
}
private:
kripkecube<State, SuccIterator>& sys_;
twacube_ptr twa_;
std::vector<todo__element> todo_blue_;
std::vector<todo__element> todo_red_;
unsigned transitions_ = 0; ///< \brief Number of transitions
unsigned tid_; ///< \brief Thread's current ID
kripkecube<State, SuccIterator>& sys_; ///< \brief The system to check
twacube_ptr twa_; ///< \brief The propertu to check
std::vector<todo_element> todo_blue_; ///< \brief Blue Stack
std::vector<todo_element> todo_red_; ///< \ brief Red Stack
unsigned transitions_ = 0; ///< \brief Number of transitions
unsigned tid_; ///< \brief Thread's current ID
shared_map map_; ///< \brief Map shared by threads
spot::timer_map tm_; ///< \brief Time execution
unsigned states_ = 0; ///< \brief Number of states
unsigned dfs_ = 0; ///< \brief Maximum DFS stack size
/// \brief Maximum number of threads that can be handled by this algorithm
unsigned nb_th_ = 0;
fixed_size_pool<pool_type::Unsafe> p_colors_;
bool is_empty_ = true; ///< \brief Accepting cycle detected?
unsigned nb_th_ = 0; /// \brief Maximum number of threads
fixed_size_pool<pool_type::Unsafe> p_colors_; /// \brief Memory pool
bool is_empty_ = true; ///< \brief Accepting cycle detected?
std::atomic<bool>& stop_; ///< \brief Stop-the-world boolean
std::vector<product_state> Rp_;
std::vector<product_state> Rp_acc_;
product_state cycle_start_;
std::vector<product_state> Rp_; ///< \brief Rp stack
std::vector<product_state> Rp_acc_; ///< \brief Rp acc stack
product_state cycle_start_; ///< \brief Begining of a cycle
};
}

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2017, 2018, 2019 Laboratoire de Recherche et
// Copyright (C) 2015, 2016, 2017, 2018, 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -32,22 +32,12 @@
namespace spot
{
/// \brief This object is returned by the algorithm below
struct SPOT_API deadlock_stats
{
unsigned states; ///< \brief Number of states visited
unsigned transitions; ///< \brief Number of transitions visited
unsigned instack_dfs; ///< \brief Maximum DFS stack
bool has_deadlock; ///< \brief Does the model contains a deadlock
unsigned walltime; ///< \brief Walltime for this thread in ms
};
/// \brief This class aims to explore a model to detect wether it
/// contains a deadlock. This deadlock detection performs a DFS traversal
/// sharing information shared among multiple threads.
template<typename State, typename SuccIterator,
typename StateHash, typename StateEqual>
class swarmed_deadlock
class SPOT_API swarmed_deadlock
{
/// \brief Describes the status of a state
enum st_status
@ -94,9 +84,18 @@ namespace spot
///< \brief Shortcut to ease shared map manipulation
using shared_map = brick::hashset::FastConcurrent <deadlock_pair*,
pair_hasher>;
using shared_struct = shared_map;
static shared_struct* make_shared_st(shared_map, unsigned)
{
return nullptr; // Useless
}
swarmed_deadlock(kripkecube<State, SuccIterator>& sys,
shared_map& map, unsigned tid, std::atomic<bool>& stop):
twacube_ptr, /* useless here */
shared_map& map, shared_struct* /* useless here */,
unsigned tid,
std::atomic<bool>& stop):
sys_(sys), tid_(tid), map_(map),
nb_th_(std::thread::hardware_concurrency()),
p_(sizeof(int)*std::thread::hardware_concurrency()),
@ -106,6 +105,7 @@ namespace spot
static_assert(spot::is_a_kripkecube_ptr<decltype(&sys),
State, SuccIterator>::value,
"error: does not match the kripkecube requirements");
SPOT_ASSERT(nb_th_ > tid);
}
virtual ~swarmed_deadlock()
@ -117,6 +117,46 @@ namespace spot
}
}
void run()
{
setup();
State initial = sys_.initial(tid_);
if (SPOT_LIKELY(push(initial)))
{
todo_.push_back({initial, sys_.succ(initial, tid_), transitions_});
}
while (!todo_.empty() && !stop_.load(std::memory_order_relaxed))
{
if (todo_.back().it->done())
{
if (SPOT_LIKELY(pop()))
{
deadlock_ = todo_.back().current_tr == transitions_;
if (deadlock_)
break;
sys_.recycle(todo_.back().it, tid_);
todo_.pop_back();
}
}
else
{
++transitions_;
State dst = todo_.back().it->state();
if (SPOT_LIKELY(push(dst)))
{
todo_.back().it->next();
todo_.push_back({dst, sys_.succ(dst, tid_), transitions_});
}
else
{
todo_.back().it->next();
}
}
}
finalize();
}
void setup()
{
tm_.start("DFS thread " + std::to_string(tid_));
@ -187,72 +227,45 @@ namespace spot
return transitions_;
}
void run()
{
setup();
State initial = sys_.initial(tid_);
if (SPOT_LIKELY(push(initial)))
{
todo_.push_back({initial, sys_.succ(initial, tid_), transitions_});
}
while (!todo_.empty() && !stop_.load(std::memory_order_relaxed))
{
if (todo_.back().it->done())
{
if (SPOT_LIKELY(pop()))
{
deadlock_ = todo_.back().current_tr == transitions_;
if (deadlock_)
break;
sys_.recycle(todo_.back().it, tid_);
todo_.pop_back();
}
}
else
{
++transitions_;
State dst = todo_.back().it->state();
if (SPOT_LIKELY(push(dst)))
{
todo_.back().it->next();
todo_.push_back({dst, sys_.succ(dst, tid_), transitions_});
}
else
{
todo_.back().it->next();
}
}
}
finalize();
}
bool has_deadlock()
{
return deadlock_;
}
unsigned walltime()
{
return tm_.timer("DFS thread " + std::to_string(tid_)).walltime();
}
deadlock_stats stats()
std::string name()
{
return {states(), transitions(), dfs_, has_deadlock(), walltime()};
return "deadlock";
}
int sccs()
{
return -1;
}
mc_rvalue result()
{
return deadlock_ ? mc_rvalue::DEADLOCK : mc_rvalue::NO_DEADLOCK;
}
std::string trace()
{
std::string result;
for (auto& e: todo_)
result += sys_.to_string(e.s, tid_);
return result;
}
private:
struct todo__element
struct todo_element
{
State s;
SuccIterator* it;
unsigned current_tr;
};
kripkecube<State, SuccIterator>& sys_; ///< \brief The system to check
std::vector<todo__element> todo_; ///< \brief The DFS stack
unsigned transitions_ = 0; ///< \brief Number of transitions
unsigned tid_; ///< \brief Thread's current ID
std::vector<todo_element> todo_; ///< \brief The DFS stack
unsigned transitions_ = 0; ///< \brief Number of transitions
unsigned tid_; ///< \brief Thread's current ID
shared_map map_; ///< \brief Map shared by threads
spot::timer_map tm_; ///< \brief Time execution
unsigned states_ = 0; ///< \brief Number of states

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2018 Laboratoire de Recherche et
// Copyright (C) 2015, 2016, 2018, 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -22,6 +22,7 @@
#include <spot/twa/acc.hh>
#include <spot/mc/unionfind.hh>
#include <spot/mc/intersect.hh>
#include <spot/mc/mc.hh>
namespace spot
{
@ -32,50 +33,148 @@ namespace spot
/// the Gabow's one.
template<typename State, typename SuccIterator,
typename StateHash, typename StateEqual>
class ec_renault13lpar : public intersect<State, SuccIterator,
StateHash, StateEqual,
ec_renault13lpar<State, SuccIterator,
StateHash, StateEqual>>
class SPOT_API ec_renault13lpar
{
// Ease the manipulation
using typename intersect<State, SuccIterator, StateHash, StateEqual,
ec_renault13lpar<State, SuccIterator,
StateHash,
StateEqual>>::product_state;
struct product_state
{
State st_kripke;
unsigned st_prop;
};
struct product_state_equal
{
bool
operator()(const product_state lhs,
const product_state rhs) const
{
StateEqual equal;
return (lhs.st_prop == rhs.st_prop) &&
equal(lhs.st_kripke, rhs.st_kripke);
}
};
struct product_state_hash
{
size_t
operator()(const product_state that) const noexcept
{
// FIXME! wang32_hash(that.st_prop) could have
// been pre-calculated!
StateHash hasher;
return wang32_hash(that.st_prop) ^ hasher(that.st_kripke);
}
};
public:
ec_renault13lpar() = delete;
ec_renault13lpar(const ec_renault13lpar<State, SuccIterator,
StateHash, StateEqual>&) = default;
ec_renault13lpar(ec_renault13lpar<State, SuccIterator,
StateHash, StateEqual>&) = delete;
using shared_map = int; // Useless here.
using shared_struct = int; // Useless here.
static shared_struct* make_shared_st(shared_map m, unsigned i)
{
return nullptr; // Useless
}
ec_renault13lpar(kripkecube<State, SuccIterator>& sys,
twacube_ptr twa, unsigned tid, bool stop)
: intersect<State, SuccIterator, StateHash, StateEqual,
ec_renault13lpar<State, SuccIterator,
StateHash, StateEqual>>(sys, twa, tid, stop),
acc_(twa->acc()), sccs_(0U)
twacube_ptr twa,
shared_map& map, /* useless here */
shared_struct*, /* useless here */
unsigned tid,
std::atomic<bool>& stop)
: sys_(sys), twa_(twa), tid_(tid), stop_(stop),
acc_(twa->acc()), sccs_(0U)
{
static_assert(spot::is_a_kripkecube_ptr<decltype(&sys),
State, SuccIterator>::value,
"error: does not match the kripkecube requirements");
}
virtual ~ec_renault13lpar()
{
map.clear();
}
bool run()
{
setup();
product_state initial = {sys_.initial(tid_), twa_->get_initial()};
if (SPOT_LIKELY(push_state(initial, dfs_number+1, {})))
{
todo.push_back({initial, sys_.succ(initial.st_kripke, tid_),
twa_->succ(initial.st_prop)});
// Not going further! It's a product with a single state.
if (todo.back().it_prop->done())
return false;
forward_iterators(sys_, twa_, todo.back().it_kripke,
todo.back().it_prop, true, 0);
map[initial] = ++dfs_number;
}
while (!todo.empty() && !stop_.load(std::memory_order_relaxed))
{
// Check the kripke is enough since it's the outer loop. More
// details in forward_iterators.
if (todo.back().it_kripke->done())
{
bool is_init = todo.size() == 1;
auto newtop = is_init? todo.back().st: todo[todo.size() -2].st;
if (SPOT_LIKELY(pop_state(todo.back().st,
map[todo.back().st],
is_init,
newtop,
map[newtop])))
{
sys_.recycle(todo.back().it_kripke, tid_);
// FIXME a local storage for twacube iterator?
todo.pop_back();
if (SPOT_UNLIKELY(found_))
{
finalize();
return true;
}
}
}
else
{
++trans_;
product_state dst =
{
todo.back().it_kripke->state(),
twa_->trans_storage(todo.back().it_prop, tid_).dst
};
auto acc = twa_->trans_data(todo.back().it_prop, tid_).acc_;
forward_iterators(sys_, twa_, todo.back().it_kripke,
todo.back().it_prop, false, 0);
auto it = map.find(dst);
if (it == map.end())
{
if (SPOT_LIKELY(push_state(dst, dfs_number+1, acc)))
{
map[dst] = ++dfs_number;
todo.push_back({dst, sys_.succ(dst.st_kripke, tid_),
twa_->succ(dst.st_prop)});
forward_iterators(sys_, twa_, todo.back().it_kripke,
todo.back().it_prop, true, 0);
}
}
else if (SPOT_UNLIKELY(update(todo.back().st,
dfs_number,
dst, map[dst], acc)))
{
finalize();
return true;
}
}
}
return false;
}
/// \brief This method is called at the begining of the exploration.
/// here we do not need to setup any information.
void setup()
{
tm_.start("DFS thread " + std::to_string(tid_));
}
/// \brief This method is called to notify the emptiness checks
/// that a new state has been discovered. If this method return
/// false, the state will not be explored. The parameter \a dfsnum
/// specify a unique id for the state. Parameter \a cond represents
/// The value on the ingoing edge to \a s.
bool push_state(product_state, unsigned dfsnum, acc_cond::mark_t cond)
{
uf_.makeset(dfsnum);
@ -99,7 +198,7 @@ namespace spot
++sccs_;
uf_.markdead(top_dfsnum);
}
dfs_ = this->todo.size() > dfs_ ? this->todo.size() : dfs_;
dfs_ = todo.size() > dfs_ ? todo.size() : dfs_;
return true;
}
@ -122,24 +221,54 @@ namespace spot
roots_.back().acc |= cond;
found_ = acc_.accepting(roots_.back().acc);
if (SPOT_UNLIKELY(found_))
this->stop_ = true;
stop_ = true;
return found_;
}
bool counterexample_found()
void finalize()
{
return found_;
tm_.stop("DFS thread " + std::to_string(tid_));
}
unsigned int states()
{
return dfs_number;
}
unsigned int transitions()
{
return trans_;
}
unsigned walltime()
{
return tm_.timer("DFS thread " + std::to_string(tid_)).walltime();
}
std::string name()
{
return "renault_lpar13";
}
int sccs()
{
return sccs_;
}
mc_rvalue result()
{
return !found_ ? mc_rvalue::EMPTY : mc_rvalue::NOT_EMPTY;
}
std::string trace()
{
SPOT_ASSERT(counterexample_found());
SPOT_ASSERT(found_);
std::string res = "Prefix:\n";
// Compute the prefix of the accepting run
for (auto& s : this->todo)
for (auto& s : todo)
res += " " + std::to_string(s.st.st_prop) +
+ "*" + this->sys_.to_string(s.st.st_kripke) + "\n";
+ "*" + sys_.to_string(s.st.st_kripke) + "\n";
// Compute the accepting cycle
res += "Cycle:\n";
@ -155,9 +284,9 @@ namespace spot
acc_cond::mark_t acc = {};
bfs.push(new ctrx_element({&this->todo.back().st, nullptr,
this->sys_.succ(this->todo.back().st.st_kripke, this->tid_),
this->twa_->succ(this->todo.back().st.st_prop)}));
bfs.push(new ctrx_element({&todo.back().st, nullptr,
sys_.succ(todo.back().st.st_kripke, tid_),
twa_->succ(todo.back().st.st_prop)}));
while (true)
{
here:
@ -168,20 +297,20 @@ namespace spot
{
while (!front->it_prop->done())
{
if (this->twa_->get_cubeset().intersect
(this->twa_->trans_data(front->it_prop, this->tid_).cube_,
if (twa_->get_cubeset().intersect
(twa_->trans_data(front->it_prop, tid_).cube_,
front->it_kripke->condition()))
{
const product_state dst = {
front->it_kripke->state(),
this->twa_->trans_storage(front->it_prop).dst
twa_->trans_storage(front->it_prop).dst
};
// Skip Unknown states or not same SCC
auto it = this->map.find(dst);
if (it == this->map.end() ||
auto it = map.find(dst);
if (it == map.end() ||
!uf_.sameset(it->second,
this->map[this->todo.back().st]))
map[todo.back().st]))
{
front->it_prop->next();
continue;
@ -190,8 +319,8 @@ namespace spot
// This is a valid transition. If this transition
// is the one we are looking for, update the counter-
// -example and flush the bfs queue.
auto mark = this->twa_->trans_data(front->it_prop,
this->tid_).acc_;
auto mark = twa_->trans_data(front->it_prop,
tid_).acc_;
if (!(acc & mark))
{
ctrx_element* current = front;
@ -201,8 +330,7 @@ namespace spot
res = res + " " +
std::to_string(current->prod_st->st_prop) +
+ "*" +
this->sys_. to_string(current->prod_st
->st_kripke) +
sys_. to_string(current->prod_st->st_kripke) +
"\n";
current = current->parent_st;
}
@ -217,14 +345,14 @@ namespace spot
// update acceptance
acc |= mark;
if (this->twa_->acc().accepting(acc))
if (twa_->acc().accepting(acc))
return res;
const product_state* q = &(it->first);
ctrx_element* root = new ctrx_element({
q , nullptr,
this->sys_.succ(q->st_kripke, this->tid_),
this->twa_->succ(q->st_prop)
sys_.succ(q->st_kripke, tid_),
twa_->succ(q->st_prop)
});
bfs.push(root);
goto here;
@ -234,8 +362,8 @@ namespace spot
const product_state* q = &(it->first);
ctrx_element* root = new ctrx_element({
q , nullptr,
this->sys_.succ(q->st_kripke, this->tid_),
this->twa_->succ(q->st_prop)
sys_.succ(q->st_kripke, tid_),
twa_->succ(q->st_prop)
});
bfs.push(root);
}
@ -250,15 +378,14 @@ namespace spot
return res;
}
virtual istats stats() override
{
return {this->states(), this->trans(), sccs_,
(unsigned) roots_.size(), dfs_, found_};
}
private:
bool found_ = false; ///< \brief A counterexample is detected?
struct todo_element
{
product_state st;
SuccIterator* it_kripke;
std::shared_ptr<trans_index> it_prop;
};
struct root_element {
unsigned dfsnum;
@ -266,11 +393,24 @@ namespace spot
acc_cond::mark_t acc;
};
/// \brief the root stack.
typedef std::unordered_map<const product_state, int,
product_state_hash,
product_state_equal> visited_map;
kripkecube<State, SuccIterator>& sys_;
twacube_ptr twa_;
std::vector<todo_element> todo;
visited_map map;
unsigned int dfs_number = 0;
unsigned int trans_ = 0;
unsigned tid_;
std::atomic<bool>& stop_; ///< \brief Stop-the-world boolean
bool found_ = false;
std::vector<root_element> roots_;
int_unionfind uf_;
acc_cond acc_;
unsigned sccs_;
unsigned dfs_;
spot::timer_map tm_;
};
}

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2018, 2019 Laboratoire de Recherche et
// Copyright (C) 2015, 2016, 2018, 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -25,251 +25,54 @@
namespace spot
{
/// \brief Wrapper to accumulate results from intersection
/// and emptiness checks
struct SPOT_API istats
/// \brief Find the first couple of iterator (from a given pair of
/// interators) that intersect. This method can be used in any
/// DFS/BFS-like exploration algorithm. The \a parameter indicates
/// wheter the state has just been visited since the underlying job
/// is slightly different.
template<typename SuccIterator, typename State>
static void forward_iterators(kripkecube<State, SuccIterator>& sys,
twacube_ptr twa,
SuccIterator* it_kripke,
std::shared_ptr<trans_index> it_prop,
bool just_visited,
unsigned tid)
{
unsigned states;
unsigned transitions;
unsigned sccs;
unsigned instack_sccs;
unsigned instack_item;
bool is_empty;
};
(void) sys; // System is useless, but the API is clearer
SPOT_ASSERT(!(it_prop->done() && it_kripke->done()));
/// \brief This class explores (with a DFS) a product between a
/// system and a twa. This exploration is performed on-the-fly.
/// Since this exploration aims to be a generic we need to define
/// hooks to the various emptiness checks.
/// Actually, we use "mixins templates" in order to efficiently
/// call emptiness check procedure. This means that we add
/// a template \a EmptinessCheck that will be called though
/// four functions:
/// - setup: called before any operation
/// - push: called for every new state
/// - pop: called every time a state leave the DFS stack
/// - update: called for every closing edge
/// - trace: must return a counterexample (if exists)
///
/// The other template parameters allows to consider any kind
/// of state (and so any kind of kripke structures).
template<typename State, typename SuccIterator,
typename StateHash, typename StateEqual,
typename EmptinessCheck>
class SPOT_API intersect
{
public:
intersect(const intersect<State, SuccIterator, StateHash,
StateEqual, EmptinessCheck>& i) = default;
// Sometimes kripke state may have no successors.
if (it_kripke->done())
return;
intersect(kripkecube<State, SuccIterator>& sys,
twacube_ptr twa, unsigned tid, bool& stop):
sys_(sys), twa_(twa), tid_(tid), stop_(stop)
{
static_assert(spot::is_a_kripkecube_ptr<decltype(&sys),
State, SuccIterator>::value,
"error: does not match the kripkecube requirements");
map.reserve(2000000);
todo.reserve(100000);
}
// The state has just been visited and the 2 iterators intersect.
// There is no need to move iterators forward.
SPOT_ASSERT(!(it_prop->done()));
if (just_visited && twa->get_cubeset()
.intersect(twa->trans_data(it_prop, tid).cube_,
it_kripke->condition()))
return;
~intersect()
{
map.clear();
}
// Otherwise we have to compute the next valid successor (if it exits).
// This requires two loops. The most inner one is for the twacube since
// its costless
if (it_prop->done())
it_prop->reset();
else
it_prop->next();
/// \brief In order to implement "mixin paradigm", we
/// must be abble to access the acual definition of
/// the emptiness check that, in turn, has to access
/// local variables.
EmptinessCheck& self()
{
return static_cast<EmptinessCheck&>(*this);
}
/// \brief The main function that will perform the
/// product on-the-fly and call the emptiness check
/// when necessary.
bool run()
{
self().setup();
product_state initial = {sys_.initial(tid_), twa_->get_initial()};
if (SPOT_LIKELY(self().push_state(initial, dfs_number+1, {})))
{
todo.push_back({initial, sys_.succ(initial.st_kripke, tid_),
twa_->succ(initial.st_prop)});
// Not going further! It's a product with a single state.
if (todo.back().it_prop->done())
return false;
forward_iterators(true);
map[initial] = ++dfs_number;
}
while (!todo.empty() && !stop_)
{
// Check the kripke is enough since it's the outer loop. More
// details in forward_iterators.
if (todo.back().it_kripke->done())
{
bool is_init = todo.size() == 1;
auto newtop = is_init? todo.back().st: todo[todo.size() -2].st;
if (SPOT_LIKELY(self().pop_state(todo.back().st,
map[todo.back().st],
is_init,
newtop,
map[newtop])))
{
sys_.recycle(todo.back().it_kripke, tid_);
// FIXME a local storage for twacube iterator?
todo.pop_back();
if (SPOT_UNLIKELY(self().counterexample_found()))
return true;
}
}
else
{
++transitions;
product_state dst = {
todo.back().it_kripke->state(),
twa_->trans_storage(todo.back().it_prop, tid_).dst
};
auto acc = twa_->trans_data(todo.back().it_prop, tid_).acc_;
forward_iterators(false);
auto it = map.find(dst);
if (it == map.end())
{
if (SPOT_LIKELY(self().push_state(dst, dfs_number+1, acc)))
{
map[dst] = ++dfs_number;
todo.push_back({dst, sys_.succ(dst.st_kripke, tid_),
twa_->succ(dst.st_prop)});
forward_iterators(true);
}
}
else if (SPOT_UNLIKELY(self().update(todo.back().st,
dfs_number,
dst, map[dst], acc)))
return true;
}
}
return false;
}
unsigned int states()
{
return dfs_number;
}
unsigned int trans()
{
return transitions;
}
std::string counterexample()
{
return self().trace();
}
virtual istats stats()
{
return {dfs_number, transitions, 0U, 0U, 0U, false};
}
protected:
/// \brief Find the first couple of iterator (from the top of the
/// todo stack) that intersect. The \a parameter indicates wheter
/// the state has just been pushed since the underlying job
/// is slightly different.
void forward_iterators(bool just_pushed)
{
SPOT_ASSERT(!todo.empty());
SPOT_ASSERT(!(todo.back().it_prop->done() &&
todo.back().it_kripke->done()));
// Sometimes kripke state may have no successors.
if (todo.back().it_kripke->done())
return;
// The state has just been push and the 2 iterators intersect.
// There is no need to move iterators forward.
SPOT_ASSERT(!(todo.back().it_prop->done()));
if (just_pushed && twa_->get_cubeset()
.intersect(twa_->trans_data(todo.back().it_prop, tid_).cube_,
todo.back().it_kripke->condition()))
return;
// Otherwise we have to compute the next valid successor (if it exits).
// This requires two loops. The most inner one is for the twacube since
// its costless
if (todo.back().it_prop->done())
todo.back().it_prop->reset();
else
todo.back().it_prop->next();
while (!todo.back().it_kripke->done())
{
while (!todo.back().it_prop->done())
{
if (SPOT_UNLIKELY(twa_->get_cubeset()
.intersect(twa_->trans_data(todo.back().it_prop, tid_).cube_,
todo.back().it_kripke->condition())))
return;
todo.back().it_prop->next();
}
todo.back().it_prop->reset();
todo.back().it_kripke->next();
}
}
public:
struct product_state
{
State st_kripke;
unsigned st_prop;
};
struct product_state_equal
{
bool
operator()(const product_state lhs,
const product_state rhs) const
while (!it_kripke->done())
{
StateEqual equal;
return (lhs.st_prop == rhs.st_prop) &&
equal(lhs.st_kripke, rhs.st_kripke);
while (!it_prop->done())
{
if (SPOT_UNLIKELY(twa->get_cubeset()
.intersect(twa->trans_data(it_prop, tid).cube_,
it_kripke->condition())))
return;
it_prop->next();
}
it_prop->reset();
it_kripke->next();
}
};
struct product_state_hash
{
size_t
operator()(const product_state that) const noexcept
{
// FIXME! wang32_hash(that.st_prop) could have
// been pre-calculated!
StateHash hasher;
return wang32_hash(that.st_prop) ^ hasher(that.st_kripke);
}
};
struct todo_element
{
product_state st;
SuccIterator* it_kripke;
std::shared_ptr<trans_index> it_prop;
};
kripkecube<State, SuccIterator>& sys_;
twacube_ptr twa_;
std::vector<todo_element> todo;
typedef std::unordered_map<const product_state, int,
product_state_hash,
product_state_equal> visited_map;
visited_map map;
unsigned int dfs_number = 0;
unsigned int transitions = 0;
unsigned tid_;
bool& stop_; // Do not need to be atomic.
};
}
}

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2017, 2019 Laboratoire de Recherche et
// Copyright (C) 2015, 2016, 2017, 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -19,398 +19,133 @@
#pragma once
#include <functional>
#include <string>
#include <thread>
#include <tuple>
#include <vector>
#include <utility>
#include <spot/kripke/kripke.hh>
#include <spot/mc/ec.hh>
#include <spot/mc/deadlock.hh>
#include <spot/mc/cndfs.hh>
#include <spot/mc/bloemen.hh>
#include <spot/mc/bloemen_ec.hh>
#include <spot/misc/common.hh>
#include <spot/misc/timer.hh>
namespace spot
{
/// \brief Check for the emptiness between a system and a twa.
/// Return a pair containing a boolean indicating wether a counterexample
/// has been found and a string representing the counterexample if the
/// computation have been required
template<typename kripke_ptr, typename State,
typename Iterator, typename Hash, typename Equal>
static std::tuple<bool, std::string, std::vector<istats>>
modelcheck(kripke_ptr sys, spot::twacube_ptr twa, bool compute_ctrx = false)
/// \brief The list of parallel model-checking algorithms available
enum SPOT_API class mc_algorithm
{
BLOEMEN_EC, ///< \brief Bloemen.16.hvc emptiness check
BLOEMEN_SCC, ///< \brief Bloemen.16.ppopp SCC computation
CNDFS, ///< \brief Evangelista.12.atva emptiness check
DEADLOCK, ///< \brief Check wether there is a deadlock
SWARMING, ///< \brief Holzmann.11.ieee applied to renault.13.lpar
};
enum SPOT_API class mc_rvalue
{
DEADLOCK, ///< \brief A deadlock has been found
EMPTY, ///< \brief The product is empty
FAILURE, ///< \brief The Algorithm finished abnormally
NO_DEADLOCK, ///< \brief No deadlock has been found
NOT_EMPTY, ///< \brief The product is not empty
SUCCESS, ///< \brief The Algorithm finished normally
};
/// \brief This structure contains, for each thread, the collected information
/// during the traversal
struct SPOT_API ec_stats
{
// Must ensure that the two automata are working on the same
// set of atomic propositions.
SPOT_ASSERT(sys->get_ap().size() == twa->get_ap().size());
for (unsigned int i = 0; i < sys->get_ap().size(); ++i)
SPOT_ASSERT(sys->get_ap()[i].compare(twa->get_ap()[i]) == 0);
std::vector<std::string> name; ///< \brief The name of the algorithm used
std::vector<unsigned> walltime; ///< \brief Walltime for this thread in ms
std::vector<unsigned> states; ///< \brief Number of states visited
std::vector<unsigned> transitions; ///< \brief Number of transitions visited
std::vector<int> sccs; ///< \brief Number of SCCs or -1
std::vector<mc_rvalue> value; ///< \brief The return status
std::string trace; ///< \brief The output trace
};
bool stop = false;
std::vector<ec_renault13lpar<State, Iterator, Hash, Equal>> ecs;
for (unsigned i = 0; i < sys->get_threads(); ++i)
ecs.push_back({*sys, twa, i, stop});
std::vector<std::thread> threads;
for (unsigned i = 0; i < sys->get_threads(); ++i)
threads.push_back
(std::thread(&ec_renault13lpar<State, Iterator, Hash, Equal>::run,
&ecs[i]));
for (unsigned i = 0; i < sys->get_threads(); ++i)
threads[i].join();
bool has_ctrx = false;
std::string trace = "";
std::vector<istats> stats;
for (unsigned i = 0; i < sys->get_threads(); ++i)
SPOT_API std::ostream& operator<<(std::ostream& os, const mc_algorithm& ma)
{
switch (ma)
{
has_ctrx |= ecs[i].counterexample_found();
if (compute_ctrx && ecs[i].counterexample_found()
&& trace.compare("") == 0)
trace = ecs[i].trace(); // Pick randomly one !
stats.push_back(ecs[i].stats());
case mc_algorithm::BLOEMEN_EC:
os << "bloemen_ec"; break;
case mc_algorithm::BLOEMEN_SCC:
os << "bloemen_scc"; break;
case mc_algorithm::CNDFS:
os << "cndfs"; break;
case mc_algorithm::DEADLOCK:
os << "deadlock"; break;
case mc_algorithm::SWARMING:
os << "swarming"; break;
}
return std::make_tuple(has_ctrx, trace, stats);
return os;
}
/// \bief Check wether the system contains a deadlock. The algorithm
/// spawns multiple threads performing a classical swarming DFS. As
/// soon one thread detects a deadlock all the other threads are stopped.
template<typename kripke_ptr, typename State,
typename Iterator, typename Hash, typename Equal>
static std::tuple<bool, std::vector<deadlock_stats>, spot::timer_map>
has_deadlock(kripke_ptr sys)
SPOT_API std::ostream& operator<<(std::ostream& os, const mc_rvalue& mr)
{
spot::timer_map tm;
using algo_name = spot::swarmed_deadlock<State, Iterator, Hash, Equal>;
unsigned nbth = sys->get_threads();
typename algo_name::shared_map map;
std::atomic<bool> stop(false);
tm.start("Initialisation");
std::vector<algo_name*> swarmed(nbth);
for (unsigned i = 0; i < nbth; ++i)
swarmed[i] = new algo_name(*sys, map, i, stop);
tm.stop("Initialisation");
std::mutex iomutex;
std::atomic<bool> barrier(true);
std::vector<std::thread> threads(nbth);
for (unsigned i = 0; i < nbth; ++i)
switch (mr)
{
threads[i] = std::thread ([&swarmed, &iomutex, i, & barrier]
{
#if defined(unix) || defined(__unix__) || defined(__unix)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cout << "Thread #" << i
<< ": on CPU " << sched_getcpu() << '\n';
}
#endif
// Wait all threads to be instanciated.
while (barrier)
continue;
swarmed[i]->run();
});
#if defined(unix) || defined(__unix__) || defined(__unix)
// Pins threads to a dedicated core.
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(i, &cpuset);
int rc = pthread_setaffinity_np(threads[i].native_handle(),
sizeof(cpu_set_t), &cpuset);
if (rc != 0)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cerr << "Error calling pthread_setaffinity_np: " << rc << '\n';
}
#endif
case mc_rvalue::DEADLOCK:
os << "deadlock"; break;
case mc_rvalue::EMPTY:
os << "empty"; break;
case mc_rvalue::FAILURE:
os << "failure"; break;
case mc_rvalue::NO_DEADLOCK:
os << "no_deadlock"; break;
case mc_rvalue::NOT_EMPTY:
os << "not_empty"; break;
case mc_rvalue::SUCCESS:
os << "success"; break;
}
tm.start("Run");
barrier.store(false);
for (auto& t : threads)
t.join();
tm.stop("Run");
std::vector<deadlock_stats> stats;
bool has_deadlock = false;
for (unsigned i = 0; i < sys->get_threads(); ++i)
{
has_deadlock |= swarmed[i]->has_deadlock();
stats.push_back(swarmed[i]->stats());
}
for (unsigned i = 0; i < nbth; ++i)
delete swarmed[i];
return std::make_tuple(has_deadlock, stats, tm);
return os;
}
/// \brief Perform the SCC computation algorithm of bloemen.16.ppopp
template<typename kripke_ptr, typename State,
typename Iterator, typename Hash, typename Equal>
static std::pair<std::vector<bloemen_stats>, spot::timer_map>
bloemen(kripke_ptr sys)
SPOT_API std::ostream& operator<<(std::ostream& os, const ec_stats& es)
{
spot::timer_map tm;
using algo_name = spot::swarmed_bloemen<State, Iterator, Hash, Equal>;
using uf_name = spot::iterable_uf<State, Hash, Equal>;
unsigned nbth = sys->get_threads();
typename uf_name::shared_map map;
tm.start("Initialisation");
std::vector<algo_name*> swarmed(nbth);
std::vector<uf_name*> ufs(nbth);
for (unsigned i = 0; i < nbth; ++i)
for (unsigned i = 0; i < es.name.size(); ++i)
{
ufs[i] = new uf_name(map, i);
swarmed[i] = new algo_name(*sys, *ufs[i], i);
os << "---- Thread number:\t" << i << '\n'
<< " - Algorithm:\t\t" << es.name[i] << '\n'
<< " - Walltime (ms):\t" << es.walltime[i] <<'\n'
<< " - States:\t\t" << es.states[i] << '\n'
<< " - Transitions:\t" << es.transitions[i] << '\n'
<< " - Result:\t\t" << es.value[i] << '\n';
os << "CSV: tid,algorithm,walltime,states,transitions,result\n"
<< "@th_" << i << ',' << es.name[i] << ',' << es.walltime[i] << ','
<< es.states[i] << ',' << es.transitions[i] << ','
<< es.value[i] << "\n\n";
}
tm.stop("Initialisation");
std::mutex iomutex;
std::atomic<bool> barrier(true);
std::vector<std::thread> threads(nbth);
for (unsigned i = 0; i < nbth; ++i)
{
threads[i] = std::thread ([&swarmed, &iomutex, i, & barrier]
{
#if defined(unix) || defined(__unix__) || defined(__unix)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cout << "Thread #" << i
<< ": on CPU " << sched_getcpu() << '\n';
}
#endif
// Wait all threads to be instanciated.
while (barrier)
continue;
swarmed[i]->run();
});
#if defined(unix) || defined(__unix__) || defined(__unix)
// Pins threads to a dedicated core.
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(i, &cpuset);
int rc = pthread_setaffinity_np(threads[i].native_handle(),
sizeof(cpu_set_t), &cpuset);
if (rc != 0)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cerr << "Error calling pthread_setaffinity_np: " << rc << '\n';
}
#endif
}
tm.start("Run");
barrier.store(false);
for (auto& t : threads)
t.join();
tm.stop("Run");
std::vector<bloemen_stats> stats;
for (unsigned i = 0; i < sys->get_threads(); ++i)
stats.push_back(swarmed[i]->stats());
for (unsigned i = 0; i < nbth; ++i)
{
delete swarmed[i];
delete ufs[i];
}
return std::make_pair(stats, tm);
return os;
}
/// \brief Perform the SCC computation algorithm of bloemen.16.ppopp
/// with emptiness check
template<typename kripke_ptr, typename State,
typename Iterator, typename Hash, typename Equal>
static std::tuple<bool,
std::string,
std::vector<bloemen_ec_stats>,
spot::timer_map>
bloemen_ec(kripke_ptr sys, spot::twacube_ptr prop, bool compute_ctrx = false)
/// \brief This function helps to find the output value from a set of threads
/// that may have different values.
SPOT_API const mc_rvalue operator|(const mc_rvalue& lhs, const mc_rvalue& rhs)
{
spot::timer_map tm;
using algo_name = spot::swarmed_bloemen_ec<State, Iterator, Hash, Equal>;
using uf_name = spot::iterable_uf_ec<State, Hash, Equal>;
// Handle Deadlocks
if (lhs == mc_rvalue::DEADLOCK && rhs == mc_rvalue::DEADLOCK)
return mc_rvalue::DEADLOCK;
if (lhs == mc_rvalue::NO_DEADLOCK && rhs == mc_rvalue::NO_DEADLOCK)
return mc_rvalue::NO_DEADLOCK;
if ((lhs == mc_rvalue::DEADLOCK && rhs == mc_rvalue::NO_DEADLOCK) ||
(lhs == mc_rvalue::NO_DEADLOCK && rhs == mc_rvalue::DEADLOCK))
return mc_rvalue::DEADLOCK;
unsigned nbth = sys->get_threads();
typename uf_name::shared_map map;
// Handle Emptiness
if (lhs == mc_rvalue::EMPTY && rhs == mc_rvalue::EMPTY)
return mc_rvalue::EMPTY;
if (lhs == mc_rvalue::NOT_EMPTY && rhs == mc_rvalue::NOT_EMPTY)
return mc_rvalue::NOT_EMPTY;
if ((lhs == mc_rvalue::EMPTY && rhs == mc_rvalue::NOT_EMPTY) ||
(lhs == mc_rvalue::NOT_EMPTY && rhs == mc_rvalue::EMPTY))
return mc_rvalue::EMPTY;
tm.start("Initialisation");
std::vector<algo_name*> swarmed(nbth);
std::vector<uf_name*> ufs(nbth);
std::atomic<bool> stop(false);
for (unsigned i = 0; i < nbth; ++i)
{
ufs[i] = new uf_name(map, i);
swarmed[i] = new algo_name(*sys, prop, *ufs[i], i, stop);
}
tm.stop("Initialisation");
// Handle Failure / Success
if (lhs == mc_rvalue::FAILURE && rhs == mc_rvalue::FAILURE)
return mc_rvalue::FAILURE;
if (lhs == mc_rvalue::SUCCESS && rhs == mc_rvalue::SUCCESS)
return mc_rvalue::SUCCESS;
if ((lhs == mc_rvalue::FAILURE && rhs == mc_rvalue::SUCCESS) ||
(lhs == mc_rvalue::SUCCESS && rhs == mc_rvalue::FAILURE))
return mc_rvalue::FAILURE;
std::mutex iomutex;
std::atomic<bool> barrier(true);
std::vector<std::thread> threads(nbth);
for (unsigned i = 0; i < nbth; ++i)
{
threads[i] = std::thread ([&swarmed, &iomutex, i, & barrier]
{
#if defined(unix) || defined(__unix__) || defined(__unix)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cout << "Thread #" << i
<< ": on CPU " << sched_getcpu() << '\n';
}
#endif
// Wait all threads to be instanciated.
while (barrier)
continue;
swarmed[i]->run();
});
#if defined(unix) || defined(__unix__) || defined(__unix)
// Pins threads to a dedicated core.
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(i, &cpuset);
int rc = pthread_setaffinity_np(threads[i].native_handle(),
sizeof(cpu_set_t), &cpuset);
if (rc != 0)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cerr << "Error calling pthread_setaffinity_np: " << rc << '\n';
}
#endif
}
tm.start("Run");
barrier.store(false);
for (auto& t : threads)
t.join();
tm.stop("Run");
std::string trace;
std::vector<bloemen_ec_stats> stats;
bool is_empty = true;
for (unsigned i = 0; i < sys->get_threads(); ++i)
{
if (!swarmed[i]->is_empty())
{
is_empty = false;
if (compute_ctrx)
trace = swarmed[i]->trace();
}
stats.push_back(swarmed[i]->stats());
}
for (unsigned i = 0; i < nbth; ++i)
{
delete swarmed[i];
delete ufs[i];
}
return std::make_tuple(is_empty, trace, stats, tm);
}
/// \brief CNDFS
template<typename kripke_ptr, typename State,
typename Iterator, typename Hash, typename Equal>
static std::tuple<bool,
std::string,
std::vector<cndfs_stats>,
spot::timer_map>
cndfs(kripke_ptr sys, twacube_ptr prop, bool compute_ctrx = false)
{
spot::timer_map tm;
using algo_name = spot::swarmed_cndfs<State, Iterator, Hash, Equal>;
unsigned nbth = sys->get_threads();
typename algo_name::shared_map map;
std::atomic<bool> stop(false);
tm.start("Initialisation");
std::vector<algo_name*> swarmed(nbth);
for (unsigned i = 0; i < nbth; ++i)
swarmed[i] = new algo_name(*sys, prop, map, i, stop);
tm.stop("Initialisation");
std::mutex iomutex;
std::atomic<bool> barrier(true);
std::vector<std::thread> threads(nbth);
for (unsigned i = 0; i < nbth; ++i)
{
threads[i] = std::thread ([&swarmed, &iomutex, i, & barrier]
{
#if defined(unix) || defined(__unix__) || defined(__unix)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cout << "Thread #" << i
<< ": on CPU " << sched_getcpu() << '\n';
}
#endif
// Wait all threads to be instanciated.
while (barrier)
continue;
swarmed[i]->run();
});
#if defined(unix) || defined(__unix__) || defined(__unix)
// Pins threads to a dedicated core.
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(i, &cpuset);
int rc = pthread_setaffinity_np(threads[i].native_handle(),
sizeof(cpu_set_t), &cpuset);
if (rc != 0)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cerr << "Error calling pthread_setaffinity_np: " << rc << '\n';
}
#endif
}
tm.start("Run");
barrier.store(false);
for (auto& t : threads)
t.join();
tm.stop("Run");
std::string trace;
std::vector<cndfs_stats> stats;
bool is_empty = true;
for (unsigned i = 0; i < sys->get_threads(); ++i)
{
if (!swarmed[i]->is_empty())
{
is_empty = false;
if (compute_ctrx)
trace = swarmed[i]->trace();
}
stats.push_back(swarmed[i]->stats());
}
for (unsigned i = 0; i < nbth; ++i)
delete swarmed[i];
return std::make_tuple(is_empty, trace, stats, tm);
throw std::runtime_error("Unable to compare these elements!");
}
}

198
spot/mc/mc_instanciator.hh Normal file
View file

@ -0,0 +1,198 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2019, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <string>
#include <thread>
#include <vector>
#include <utility>
#include <spot/kripke/kripke.hh>
#include <spot/mc/mc.hh>
#include <spot/mc/ec.hh>
#include <spot/mc/deadlock.hh>
#include <spot/mc/cndfs.hh>
#include <spot/mc/bloemen.hh>
#include <spot/mc/bloemen_ec.hh>
#include <spot/misc/common.hh>
#include <spot/misc/timer.hh>
namespace spot
{
template<typename algo_name, typename kripke_ptr, typename State,
typename Iterator, typename Hash, typename Equal>
static SPOT_API ec_stats instanciate(kripke_ptr sys,
spot::twacube_ptr prop = nullptr,
bool trace = false)
{
// FIXME ensure that algo_name contains all methods
spot::timer_map tm;
std::atomic<bool> stop(false);
unsigned nbth = sys->get_threads();
typename algo_name::shared_map map;
std::vector<algo_name*> swarmed(nbth);
// The shared structure requires sometime one instance per thread
using struct_name = typename algo_name::shared_struct;
std::vector<struct_name*> ss(nbth);
tm.start("Initialisation");
for (unsigned i = 0; i < nbth; ++i)
{
ss[i] = algo_name::make_shared_st(map, i);
swarmed[i] = new algo_name(*sys, prop, map, ss[i], i, stop);
}
tm.stop("Initialisation");
// Spawn Threads
std::mutex iomutex;
std::atomic<bool> barrier(true);
std::vector<std::thread> threads(nbth);
for (unsigned i = 0; i < nbth; ++i)
{
threads[i] = std::thread ([&swarmed, &iomutex, i, &barrier]
{
#if defined(unix) || defined(__unix__) || defined(__unix)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cout << "Thread #" << i
<< ": on CPU " << sched_getcpu() << '\n';
}
#endif
// Wait all threads to be instanciated.
while (barrier)
continue;
swarmed[i]->run();
});
#if defined(unix) || defined(__unix__) || defined(__unix)
// Pins threads to a dedicated core.
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(i, &cpuset);
int rc = pthread_setaffinity_np(threads[i].native_handle(),
sizeof(cpu_set_t), &cpuset);
if (rc != 0)
{
std::lock_guard<std::mutex> iolock(iomutex);
std::cerr << "Error calling pthread_setaffinity_np: " << rc << '\n';
}
#endif
}
tm.start("Run");
barrier.store(false);
for (auto& t: threads)
t.join();
tm.stop("Run");
// Build the result
ec_stats result;
for (unsigned i = 0; i < nbth; ++i)
{
result.name.emplace_back(swarmed[i]->name());
result.walltime.emplace_back(swarmed[i]->walltime());
result.states.emplace_back(swarmed[i]->states());
result.transitions.emplace_back(swarmed[i]->transitions());
result.sccs.emplace_back(swarmed[i]->sccs());
result.value.emplace_back(swarmed[i]->result());
}
if (trace)
{
bool go_on = true;
for (unsigned i = 0; i < nbth && go_on; ++i)
{
// Enumerate cases where a trace can be extraced
// Here we use a switch so that adding new algortihm
// with new return status will trigger an error that
// should the be fixed here.
switch (result.value[i])
{
// A (partial?) trace has been computed
case mc_rvalue::DEADLOCK:
case mc_rvalue::NOT_EMPTY:
result.trace = swarmed[i]->trace();
go_on = false;
break;
// Nothing to do here.
case mc_rvalue::NO_DEADLOCK:
case mc_rvalue::EMPTY:
case mc_rvalue::SUCCESS:
case mc_rvalue::FAILURE:
break;
}
}
}
for (unsigned i = 0; i < nbth; ++i)
{
delete swarmed[i];
delete ss[i];
}
return result;
}
template<typename kripke_ptr, typename State,
typename Iterator, typename Hash, typename Equal>
static ec_stats ec_instanciator(const mc_algorithm algo, kripke_ptr sys,
spot::twacube_ptr prop = nullptr,
bool trace = false)
{
if (algo == mc_algorithm::BLOEMEN_EC || algo == mc_algorithm::CNDFS ||
algo == mc_algorithm::SWARMING)
{
SPOT_ASSERT(prop != nullptr);
SPOT_ASSERT(sys->get_ap().size() == prop->get_ap().size());
for (unsigned int i = 0; i < sys->get_ap().size(); ++i)
SPOT_ASSERT(sys->get_ap()[i].compare(prop->get_ap()[i]) == 0);
}
switch (algo)
{
case mc_algorithm::BLOEMEN_SCC:
return instanciate<spot::swarmed_bloemen<State, Iterator, Hash, Equal>,
kripke_ptr, State, Iterator, Hash, Equal> (sys, prop, trace);
case mc_algorithm::BLOEMEN_EC:
return
instanciate<spot::swarmed_bloemen_ec<State, Iterator, Hash, Equal>,
kripke_ptr, State, Iterator, Hash, Equal> (sys, prop, trace);
case mc_algorithm::CNDFS:
return instanciate<spot::swarmed_cndfs<State, Iterator, Hash, Equal>,
kripke_ptr, State, Iterator, Hash, Equal> (sys, prop, trace);
case mc_algorithm::DEADLOCK:
return instanciate<spot::swarmed_deadlock<State, Iterator, Hash, Equal>,
kripke_ptr, State, Iterator, Hash, Equal> (sys, prop, trace);
case mc_algorithm::SWARMING:
return instanciate<spot::ec_renault13lpar<State, Iterator, Hash, Equal>,
kripke_ptr, State, Iterator, Hash, Equal> (sys, prop, trace);
}
}
}

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2016 Laboratoire de Recherche et
// Copyright (C) 2016, 2020 Laboratoire de Recherche et
// Developpement de l'Epita
//
// This file is part of Spot, a model checking library.
@ -97,6 +97,212 @@ namespace spot
std::unordered_map<int, int> reverse_binder_;
};
// FIXME: should be merge into the next algorithm.
/// \brief This class explores (with a DFS) a product between a
/// system and a twa. This exploration is performed on-the-fly.
/// Since this exploration aims to be a generic we need to define
/// hooks to the various emptiness checks.
/// Actually, we use "mixins templates" in order to efficiently
/// call emptiness check procedure. This means that we add
/// a template \a EmptinessCheck that will be called though
/// four functions:
/// - setup: called before any operation
/// - push: called for every new state
/// - pop: called every time a state leave the DFS stack
/// - update: called for every closing edge
/// - trace: must return a counterexample (if exists)
///
/// The other template parameters allows to consider any kind
/// of state (and so any kind of kripke structures).
template<typename State, typename SuccIterator,
typename StateHash, typename StateEqual,
typename EmptinessCheck>
class SPOT_API intersect
{
public:
intersect(const intersect<State, SuccIterator, StateHash,
StateEqual, EmptinessCheck>& i) = default;
intersect(kripkecube<State, SuccIterator>& sys,
twacube_ptr twa, unsigned tid, bool& stop):
sys_(sys), twa_(twa), tid_(tid), stop_(stop)
{
static_assert(spot::is_a_kripkecube_ptr<decltype(&sys),
State, SuccIterator>::value,
"error: does not match the kripkecube requirements");
map.reserve(2000000);
todo.reserve(100000);
}
~intersect()
{
map.clear();
}
/// \brief In order to implement "mixin paradigm", we
/// must be abble to access the acual definition of
/// the emptiness check that, in turn, has to access
/// local variables.
EmptinessCheck& self()
{
return static_cast<EmptinessCheck&>(*this);
}
/// \brief The main function that will perform the
/// product on-the-fly and call the emptiness check
/// when necessary.
bool run()
{
self().setup();
product_state initial = {sys_.initial(tid_), twa_->get_initial()};
if (SPOT_LIKELY(self().push_state(initial, dfs_number+1, {})))
{
todo.push_back({initial, sys_.succ(initial.st_kripke, tid_),
twa_->succ(initial.st_prop)});
// Not going further! It's a product with a single state.
if (todo.back().it_prop->done())
return false;
forward_iterators(sys_, twa_, todo.back().it_kripke,
todo.back().it_prop, true, 0);
map[initial] = ++dfs_number;
}
while (!todo.empty() && !stop_)
{
// Check the kripke is enough since it's the outer loop. More
// details in forward_iterators.
if (todo.back().it_kripke->done())
{
bool is_init = todo.size() == 1;
auto newtop = is_init? todo.back().st: todo[todo.size() -2].st;
if (SPOT_LIKELY(self().pop_state(todo.back().st,
map[todo.back().st],
is_init,
newtop,
map[newtop])))
{
sys_.recycle(todo.back().it_kripke, tid_);
// FIXME a local storage for twacube iterator?
todo.pop_back();
if (SPOT_UNLIKELY(self().counterexample_found()))
return true;
}
}
else
{
++transitions;
product_state dst = {
todo.back().it_kripke->state(),
twa_->trans_storage(todo.back().it_prop, tid_).dst
};
auto acc = twa_->trans_data(todo.back().it_prop, tid_).acc_;
forward_iterators(sys_, twa_, todo.back().it_kripke,
todo.back().it_prop, false, 0);
auto it = map.find(dst);
if (it == map.end())
{
if (SPOT_LIKELY(self().push_state(dst, dfs_number+1, acc)))
{
map[dst] = ++dfs_number;
todo.push_back({dst, sys_.succ(dst.st_kripke, tid_),
twa_->succ(dst.st_prop)});
forward_iterators(sys_, twa_, todo.back().it_kripke,
todo.back().it_prop, true, 0);
}
}
else if (SPOT_UNLIKELY(self().update(todo.back().st,
dfs_number,
dst, map[dst], acc)))
return true;
}
}
return false;
}
unsigned int states()
{
return dfs_number;
}
unsigned int trans()
{
return transitions;
}
std::string counterexample()
{
return self().trace();
}
public:
struct product_state
{
State st_kripke;
unsigned st_prop;
};
struct product_state_equal
{
bool
operator()(const product_state lhs,
const product_state rhs) const
{
StateEqual equal;
return (lhs.st_prop == rhs.st_prop) &&
equal(lhs.st_kripke, rhs.st_kripke);
}
};
struct product_state_hash
{
size_t
operator()(const product_state that) const noexcept
{
// FIXME! wang32_hash(that.st_prop) could have
// been pre-calculated!
StateHash hasher;
return wang32_hash(that.st_prop) ^ hasher(that.st_kripke);
}
};
struct todo_element
{
product_state st;
SuccIterator* it_kripke;
std::shared_ptr<trans_index> it_prop;
};
kripkecube<State, SuccIterator>& sys_;
twacube_ptr twa_;
std::vector<todo_element> todo;
typedef std::unordered_map<const product_state, int,
product_state_hash,
product_state_equal> visited_map;
visited_map map;
unsigned int dfs_number = 0;
unsigned int transitions = 0;
unsigned tid_;
bool& stop_; // Do not need to be atomic.
};
template<typename State, typename SuccIterator,

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2011-2019 Laboratoire de Recherche et Developpement
// Copyright (C) 2011-2020 Laboratoire de Recherche et Developpement
// de l'Epita (LRDE)
//
// This file is part of Spot, a model checking library.
@ -24,7 +24,7 @@
#include <spot/ltsmin/ltsmin.hh>
#include <spot/ltsmin/spins_kripke.hh>
#include <spot/mc/mc.hh>
#include <spot/mc/mc_instanciator.hh>
#include <spot/twaalgos/dot.hh>
#include <spot/tl/defaultenv.hh>
#include <spot/tl/parse.hh>
@ -40,6 +40,7 @@
#include <spot/kripke/kripkegraph.hh>
#include <spot/twaalgos/hoa.hh>
#include <algorithm>
#include <thread>
#include <spot/twacube/twacube.hh>
#include <spot/twacube_algos/convert.hh>
@ -70,13 +71,10 @@ struct mc_options_
char* dead_ap = nullptr;
bool use_timer = false;
unsigned compress = 0;
bool kripke_output = false;
unsigned nb_threads = 1;
bool csv = false;
bool has_deadlock = false;
bool bloemen = false;
bool bloemen_ec = false;
bool cndfs = false;
spot::mc_algorithm algorithm = spot::mc_algorithm::BLOEMEN_EC;
bool force_parallel = false;
} mc_options;
@ -90,16 +88,20 @@ parse_opt_finput(int key, char* arg, struct argp_state*)
mc_options.csv = true;
break;
case 'B':
mc_options.bloemen_ec = true;
mc_options.algorithm = spot::mc_algorithm::BLOEMEN_EC;
mc_options.force_parallel = true;
break;
case 'b':
mc_options.bloemen = true;
// FIXME Differenciate bloemen and bloemen_ec: -b/-B is not enough
mc_options.algorithm = spot::mc_algorithm::BLOEMEN_SCC;
mc_options.force_parallel = true;
break;
case 'c':
mc_options.compute_counterexample = true;
break;
case 'C':
mc_options.cndfs = true;
mc_options.algorithm = spot::mc_algorithm::CNDFS;
mc_options.force_parallel = true;
break;
case 'd':
if (strcmp(arg, "model") == 0)
@ -122,17 +124,16 @@ parse_opt_finput(int key, char* arg, struct argp_state*)
mc_options.formula = arg;
break;
case 'h':
mc_options.has_deadlock = true;
mc_options.algorithm = spot::mc_algorithm::DEADLOCK;
mc_options.force_parallel = true;
mc_options.selfloopize = false;
break;
case 'k':
mc_options.kripke_output = true;
break;
case 'm':
mc_options.model = arg;
break;
case 'p':
mc_options.nb_threads = to_unsigned(arg, "-p/--parallel");
mc_options.force_parallel = true;
break;
case 's':
mc_options.dead_ap = arg;
@ -140,6 +141,10 @@ parse_opt_finput(int key, char* arg, struct argp_state*)
case 't':
mc_options.use_timer = true;
break;
case 'w':
mc_options.algorithm = spot::mc_algorithm::SWARMING;
mc_options.force_parallel = true;
break;
case 'z':
mc_options.compress = to_unsigned(arg, "-z/--compress");
break;
@ -160,35 +165,41 @@ static const argp_option options[] =
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "Process options:", 2 },
{ "bloemen-ec", 'B', nullptr, 0,
"run the SCC computation of Bloemen et al. (PPOPP'16) with EC", 0},
"run the emptiness-check of Bloemen et al. (HVC'16). Return 1 "
"if a counterexample is found.", 0},
{ "bloemen", 'b', nullptr, 0,
"run the SCC computation of Bloemen et al. (PPOPP'16)", 0 },
"run the SCC computation of Bloemen et al. (PPOPP'16). Return 1 "
"if a counterexample is found.", 0 },
{ "cndfs", 'C', nullptr, 0,
"run CNDFS", 0 },
"run the emptiness check of Evangelista et al. (ATVA'12). Return 1 "
"if a counterexample is found.", 0 },
{ "counterexample", 'c', nullptr, 0,
"compute an accepting counterexample (if it exists)", 0 },
{ "is-empty", 'e', nullptr, 0,
"check if the model meets its specification. "
"Return 1 if a counterexample is found."
, 0 },
{ "has-deadlock", 'h', nullptr, 0,
"check if the model has a deadlock. "
"Return 1 if the model contains a deadlock."
, 0 },
{ "is-empty", 'e', nullptr, 0,
"check if the model meets its specification. Uses Cou99 in sequential "
"and bloemen-ec in pallel (option -p). Return 1 if a counterexample "
"is found."
, 0 },
{ "parallel", 'p', "INT", 0, "use INT threads (when possible)", 0 },
{ "selfloopize", 's', "STRING", 0,
"use STRING as property for marking deadlock "
"states (by default selfloopize is activated with STRING='true')", 0 },
{ "swarming", 'w', nullptr, 0,
"run the technique of of Holzmann et al. (IEEE'11) with the emptiness-"
"check of Renault et al. (LPAR'13). Returns 1 if a counterexample "
"is found.", 0 },
{ "timer", 't', nullptr, 0,
"time the different phases of the execution", 0 },
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "Output options:", 3 },
{ "dot", 'd', "[model|product|formula]", 0,
"output the associated automaton in dot format", 0 },
{ "kripke", 'k', nullptr, 0,
"output the associated automaton in (internal) kripke format", 0 },
{ "csv", CSV, nullptr, 0,
"output a CSV containing interesting values", 0 },
{ "dot", 'd', "[model|product|formula]", 0,
"output the associated automaton in dot format", 0 },
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "Optimization options:", 4 },
{ "compress", 'z', "INT", 0, "specify the level of compression\n"
@ -210,16 +221,14 @@ const struct argp_child children[] =
{ nullptr, 0, nullptr, 0 }
};
static std::string split_filename(const std::string& str) {
static std::string split_filename(const std::string& str) {
unsigned found = str.find_last_of("/");
return str.substr(found+1);
}
static int checked_main()
{
spot::default_environment& env =
spot::default_environment::instance();
spot::default_environment& env = spot::default_environment::instance();
spot::atomic_prop_set ap;
auto dict = spot::make_bdd_dict();
spot::const_kripke_ptr model = nullptr;
@ -243,7 +252,6 @@ static int checked_main()
deadf = env.require(mc_options.dead_ap);
}
if (mc_options.formula != nullptr)
{
tm.start("parsing formula");
@ -299,20 +307,14 @@ static int checked_main()
spot::print_dot(std::cout, model);
tm.stop("dot output");
}
if (mc_options.kripke_output)
{
tm.start("kripke output");
spot::print_hoa(std::cout, model);
tm.stop("kripke output");
}
}
if (mc_options.nb_threads == 1 &&
if (mc_options.force_parallel == false &&
mc_options.formula != nullptr &&
mc_options.model != nullptr &&
!mc_options.bloemen_ec &&
!mc_options.cndfs)
mc_options.model != nullptr)
{
std::cout << "Warning : using sequential algorithms (BDD-based)\n\n";
product = spot::otf_product(model, prop);
if (mc_options.is_empty)
@ -419,230 +421,45 @@ static int checked_main()
tm.stop("dot output");
}
}
if (mc_options.nb_threads != 1 &&
mc_options.formula != nullptr &&
mc_options.model != nullptr &&
!mc_options.bloemen_ec &&
!mc_options.cndfs)
// FIXME : handle here swarming
else if (mc_options.force_parallel && mc_options.model != nullptr)
{
unsigned int hc = std::thread::hardware_concurrency();
if (mc_options.nb_threads > hc)
std::cerr << "Warning: you require " << mc_options.nb_threads
<< " threads, but your computer only support " << hc
<< ". This could slow down parallel algorithms.\n";
std::cout << "Warning : using parallel algorithms (CUBE-based)\n\n";
tm.start("twa to twacube");
auto propcube = spot::twa_to_twacube(prop);
tm.stop("twa to twacube");
tm.start("load kripkecube");
spot::ltsmin_kripkecube_ptr modelcube = nullptr;
try
{
modelcube = spot::ltsmin_model::load(mc_options.model)
.kripkecube(propcube->get_ap(), deadf, mc_options.compress,
mc_options.nb_threads);
}
catch (const std::runtime_error& e)
{
std::cerr << e.what() << '\n';
}
tm.stop("load kripkecube");
int memused = spot::memusage();
tm.start("emptiness check");
auto res = spot::modelcheck<spot::ltsmin_kripkecube_ptr,
spot::cspins_state,
spot::cspins_iterator,
spot::cspins_state_hash,
spot::cspins_state_equal>
(modelcube, propcube, mc_options.compute_counterexample);
tm.stop("emptiness check");
memused = spot::memusage() - memused;
if (!modelcube)
if (mc_options.dot_output & DOT_PRODUCT)
{
std::cerr << "\nERROR: Parallel algorithm doesn't support DOT"
" output for the synchronous product.\n"
" Please consider removing '-p' option\n";
exit_code = 2;
goto safe_exit;
}
// Display statistics
unsigned smallest = 0;
for (unsigned i = 0; i < std::get<2>(res).size(); ++i)
{
if (std::get<2>(res)[i].states < std::get<2>(res)[smallest].states)
smallest = i;
std::cout << "\n---- Thread number : " << i << '\n';
std::cout << std::get<2>(res)[i].states << " unique states visited\n";
std::cout << std::get<2>(res)[i].instack_sccs
<< " strongly connected components in search stack\n";
std::cout << std::get<2>(res)[i].transitions
<< " transitions explored\n";
std::cout << std::get<2>(res)[i].instack_item
<< " items max in DFS search stack\n";
// FIXME: produce walltime for each threads.
if (mc_options.csv)
{
std::cout << "Find following the csv: "
<< "thread_id,walltimems,type,"
<< "states,transitions\n";
std::cout << "@th_" << i << ','
<< tm.timer("emptiness check").walltime() << ','
<< (!std::get<2>(res)[i].is_empty ?
"EMPTY," : "NONEMPTY,")
<< std::get<2>(res)[i].states << ','
<< std::get<2>(res)[i].transitions
<< std::endl;
}
}
if (mc_options.csv)
{
std::cout << "\nSummary :\n";
if (!std::get<0>(res))
std::cout << "no accepting run found\n";
else if (!mc_options.compute_counterexample)
{
std::cout << "an accepting run exists "
<< "(use -c to print it)" << std::endl;
exit_code = 1;
}
else
std::cout << "an accepting run exists!\n" << std::get<1>(res)
<< '\n';
std::cout << "Find following the csv: "
<< "model,formula,walltimems,memused,type"
<< "states,transitions\n";
std::cout << '#'
<< split_filename(mc_options.model)
<< ','
<< mc_options.formula << ','
<< tm.timer("emptiness check").walltime() << ','
<< memused << ','
<< (!std::get<0>(res) ? "EMPTY," : "NONEMPTY,")
<< std::get<2>(res)[smallest].states << ','
<< std::get<2>(res)[smallest].transitions
<< '\n';
}
}
if (mc_options.has_deadlock && mc_options.model != nullptr)
{
assert(!mc_options.selfloopize);
unsigned int hc = std::thread::hardware_concurrency();
if (mc_options.nb_threads > hc)
std::cerr << "Warning: you require " << mc_options.nb_threads
<< " threads, but your computer only support " << hc
<< ". This could slow down parallel algorithms.\n";
tm.start("load kripkecube");
spot::ltsmin_kripkecube_ptr modelcube = nullptr;
try
{
modelcube = spot::ltsmin_model::load(mc_options.model)
.kripkecube({}, spot::formula::ff(), mc_options.compress,
mc_options.nb_threads);
}
catch (const std::runtime_error& e)
{
std::cerr << e.what() << '\n';
}
tm.stop("load kripkecube");
int memused = spot::memusage();
tm.start("deadlock check");
auto res = spot::has_deadlock<spot::ltsmin_kripkecube_ptr,
spot::cspins_state,
spot::cspins_iterator,
spot::cspins_state_hash,
spot::cspins_state_equal>(modelcube);
tm.stop("deadlock check");
memused = spot::memusage() - memused;
if (!modelcube)
if (prop == nullptr &&
(mc_options.algorithm == spot::mc_algorithm::CNDFS ||
mc_options.algorithm == spot::mc_algorithm::BLOEMEN_EC ||
mc_options.algorithm == spot::mc_algorithm::SWARMING))
{
std::cerr << "\nERROR: Algorithm " << mc_options.algorithm
<< " requires to provide a formula (--formula)\n";
exit_code = 2;
goto safe_exit;
}
// Display statistics
unsigned smallest = 0;
for (unsigned i = 0; i < std::get<1>(res).size(); ++i)
{
if (std::get<1>(res)[i].states < std::get<1>(res)[smallest].states)
smallest = i;
std::cout << "\n---- Thread number : " << i << '\n';
std::cout << std::get<1>(res)[i].states << " unique states visited\n";
std::cout << std::get<1>(res)[i].transitions
<< " transitions explored\n";
std::cout << std::get<1>(res)[i].instack_dfs
<< " items max in DFS search stack\n";
std::cout << std::get<1>(res)[i].walltime
<< " milliseconds\n";
if (mc_options.csv)
{
std::cout << "Find following the csv: "
<< "thread_id,walltimems,type,"
<< "states,transitions\n";
std::cout << "@th_" << i << ','
<< std::get<1>(res)[i].walltime << ','
<< (std::get<1>(res)[i].has_deadlock ?
"DEADLOCK," : "NO-DEADLOCK,")
<< std::get<1>(res)[i].states << ','
<< std::get<1>(res)[i].transitions
<< std::endl;
}
}
if (mc_options.csv)
{
std::cout << "\nSummary :\n";
if (!std::get<0>(res))
std::cout << "No no deadlock found!\n";
else
{
std::cout << "A deadlock exists!\n";
exit_code = 1;
}
std::cout << "Find following the csv: "
<< "model,walltimems,memused,type,"
<< "states,transitions\n";
std::cout << '#'
<< split_filename(mc_options.model)
<< ','
<< tm.timer("deadlock check").walltime() << ','
<< memused << ','
<< (std::get<0>(res) ? "DEADLOCK," : "NO-DEADLOCK,")
<< std::get<1>(res)[smallest].states << ','
<< std::get<1>(res)[smallest].transitions
<< '\n';
}
}
if (mc_options.cndfs &&
mc_options.model != nullptr && mc_options.formula != nullptr)
{
unsigned int hc = std::thread::hardware_concurrency();
if (mc_options.nb_threads > hc)
std::cerr << "Warning: you require " << mc_options.nb_threads
<< " threads, but your computer only support " << hc
<< ". This could slow down parallel algorithms.\n";
// Only support Single Acceptance Conditions
tm.start("degeneralize");
auto prop_degen = spot::degeneralize_tba(prop);
tm.stop("degeneralize");
auto prop_degen = prop;
if (mc_options.algorithm == spot::mc_algorithm::CNDFS)
{
// Only support Single Acceptance Conditions
tm.start("degeneralize");
prop_degen = spot::degeneralize_tba(prop);
tm.stop("degeneralize");
}
tm.start("twa to twacube");
auto propcube = spot::twa_to_twacube(prop_degen);
@ -652,9 +469,12 @@ static int checked_main()
spot::ltsmin_kripkecube_ptr modelcube = nullptr;
try
{
std::vector<std::string> aps = {};
if (propcube != nullptr)
aps = propcube->get_ap();
modelcube = spot::ltsmin_model::load(mc_options.model)
.kripkecube(propcube->get_ap(), deadf, mc_options.compress,
mc_options.nb_threads);
.kripkecube(aps, deadf, mc_options.compress, mc_options.nb_threads);
}
catch (const std::runtime_error& e)
{
@ -663,14 +483,16 @@ static int checked_main()
tm.stop("load kripkecube");
int memused = spot::memusage();
tm.start("cndfs");
auto res = spot::cndfs<spot::ltsmin_kripkecube_ptr,
spot::cspins_state,
spot::cspins_iterator,
spot::cspins_state_hash,
spot::cspins_state_equal>
(modelcube, propcube, mc_options.compute_counterexample);
tm.stop("cndfs");
tm.start("exploration");
auto result =
spot::ec_instanciator<spot::ltsmin_kripkecube_ptr, spot::cspins_state,
spot::cspins_iterator, spot::cspins_state_hash,
spot::cspins_state_equal>
(mc_options.algorithm, modelcube, propcube,
mc_options.compute_counterexample);
tm.stop("exploration");
memused = spot::memusage() - memused;
if (!modelcube)
@ -680,41 +502,22 @@ static int checked_main()
}
// Display statistics
unsigned smallest = 0;
for (unsigned i = 0; i < std::get<2>(res).size(); ++i)
{
if (std::get<2>(res)[i].states < std::get<2>(res)[smallest].states)
smallest = i;
std::cout << result << '\n';
std::cout << memused << " pages allocated for "
<< mc_options.algorithm << '\n';
std::cout << "\n---- Thread number : " << i << '\n';
std::cout << std::get<2>(res)[i].states << " unique states visited\n";
std::cout << std::get<2>(res)[i].transitions
<< " transitions explored\n";
std::cout << std::get<2>(res)[i].instack_dfs
<< " items max in DFS search stack\n";
std::cout << std::get<2>(res)[i].walltime
<< " milliseconds\n";
if (mc_options.csv)
{
std::cout << "Find following the csv: "
<< "thread_id,walltimems,type,"
<< "states,transitions\n";
std::cout << "@th_" << i << ','
<< std::get<2>(res)[i].walltime << ','
<< (std::get<2>(res)[i].is_empty ?
"EMPTY," : "NONEMPTY,")
<< std::get<2>(res)[i].states << ','
<< std::get<2>(res)[i].transitions
<< std::endl;
}
}
if (mc_options.csv)
{
std::cout << "\nSummary :\n";
if (std::get<0>(res))
std::cout << "no accepting run found\n";
auto rval = result.value[0];
std::for_each(result.value.rbegin(), result.value.rend(),
[&](spot::mc_rvalue n) { rval = rval | n; });
if (rval == spot::mc_rvalue::NO_DEADLOCK ||
rval == spot::mc_rvalue::EMPTY ||
rval == spot::mc_rvalue::SUCCESS)
std::cout << "no accepting run / counterexample found\n";
else if (!mc_options.compute_counterexample)
{
std::cout << "an accepting run exists "
@ -722,241 +525,33 @@ static int checked_main()
exit_code = 1;
}
else
std::cout << "an accepting run exists\n"
<< std::get<1>(res) << '\n';
std::cout << "an accepting run exists\n" << result.trace << '\n';
// Grab The informations to display into the CSV
// FIXME: The CSV can be inconsistent since it may return
// time of one thread and SCC of another.
auto walltime = std::min_element(result.walltime.rbegin(),
result.walltime.rend());
auto states = std::min_element(result.states.rbegin(),
result.states.rend());
auto trans = std::min_element(result.transitions.rbegin(),
result.transitions.rend());
auto sccs = std::max_element(result.sccs.rbegin(),
result.sccs.rend());
std::cout << "Find following the csv: "
<< "model,walltimems,memused,type,"
<< "states,transitions\n";
<< "model,formula,walltimems,memused,type,"
<< "states,transitions,sccs\n";
std::cout << '#'
<< split_filename(mc_options.model)
<< ','
<< tm.timer("cndfs").walltime() << ','
<< memused << ','
<< (std::get<0>(res) ? "EMPTY," : "NONEMPTY,")
<< std::get<2>(res)[smallest].states << ','
<< std::get<2>(res)[smallest].transitions
<< '\n';
<< split_filename(mc_options.model) << ','
<< mc_options.formula << ','
<< *walltime << ',' << memused << ','
<< rval << ',' << *states << ',' << *trans << ','
<< *sccs << '\n';
}
}
if (mc_options.bloemen && mc_options.model != nullptr)
{
unsigned int hc = std::thread::hardware_concurrency();
if (mc_options.nb_threads > hc)
std::cerr << "Warning: you require " << mc_options.nb_threads
<< " threads, but your computer only support " << hc
<< ". This could slow down parallel algorithms.\n";
tm.start("load kripkecube");
spot::ltsmin_kripkecube_ptr modelcube = nullptr;
try
{
modelcube = spot::ltsmin_model::load(mc_options.model)
.kripkecube({}, deadf, mc_options.compress,
mc_options.nb_threads);
}
catch (const std::runtime_error& e)
{
std::cerr << e.what() << '\n';
}
tm.stop("load kripkecube");
int memused = spot::memusage();
tm.start("bloemen");
auto res = spot::bloemen<spot::ltsmin_kripkecube_ptr,
spot::cspins_state,
spot::cspins_iterator,
spot::cspins_state_hash,
spot::cspins_state_equal>(modelcube);
tm.stop("bloemen");
memused = spot::memusage() - memused;
if (!modelcube)
{
exit_code = 2;
goto safe_exit;
}
// Display statistics
unsigned sccs = 0;
unsigned st = 0;
unsigned tr = 0;
unsigned inserted = 0;
for (unsigned i = 0; i < res.first.size(); ++i)
{
std::cout << "\n---- Thread number : " << i << '\n';
std::cout << res.first[i].states << " unique states visited\n";
std::cout << res.first[i].inserted << " unique states inserted\n";
std::cout << res.first[i].transitions
<< " transitions explored\n";
std::cout << res.first[i].sccs << " sccs found\n";
std::cout << res.first[i].walltime
<< " milliseconds\n";
sccs += res.first[i].sccs;
st += res.first[i].states;
tr += res.first[i].transitions;
inserted += res.first[i].inserted;
if (mc_options.csv)
{
std::cout << "Find following the csv: "
<< "thread_id,walltimems,"
<< "states,transitions,sccs\n";
std::cout << "@th_" << i << ','
<< res.first[i].walltime << ','
<< res.first[i].states << ','
<< res.first[i].inserted << ','
<< res.first[i].transitions << ','
<< res.first[i].sccs
<< std::endl;
}
}
if (mc_options.csv)
{
std::cout << "\nSummary :\n";
std::cout << "Find following the csv: "
<< "model,walltimems,memused,"
<< "inserted_states,"
<< "cumulated_states,cumulated_transitions,"
<< "cumulated_sccs\n";
std::cout << '#'
<< split_filename(mc_options.model)
<< ','
<< tm.timer("bloemen").walltime() << ','
<< memused << ','
<< inserted << ','
<< st << ','
<< tr << ','
<< sccs
<< '\n';
}
}
if (mc_options.bloemen_ec
&& mc_options.model != nullptr && mc_options.formula != nullptr)
{
unsigned int hc = std::thread::hardware_concurrency();
if (mc_options.nb_threads > hc)
std::cerr << "Warning: you require " << mc_options.nb_threads
<< " threads, but your computer only support " << hc
<< ". This could slow down parallel algorithms.\n";
tm.start("twa to twacube");
auto propcube = spot::twa_to_twacube(prop);
tm.stop("twa to twacube");
tm.start("load kripkecube");
spot::ltsmin_kripkecube_ptr modelcube = nullptr;
try
{
modelcube = spot::ltsmin_model::load(mc_options.model)
.kripkecube(propcube->get_ap(), deadf, mc_options.compress,
mc_options.nb_threads);
}
catch (const std::runtime_error& e)
{
std::cerr << e.what() << '\n';
}
tm.stop("load kripkecube");
int memused = spot::memusage();
tm.start("bloemen emptiness check");
auto res = spot::bloemen_ec<spot::ltsmin_kripkecube_ptr,
spot::cspins_state,
spot::cspins_iterator,
spot::cspins_state_hash,
spot::cspins_state_equal>
(modelcube, propcube);
tm.stop("bloemen emptiness check");
memused = spot::memusage() - memused;
if (!modelcube)
{
exit_code = 2;
goto safe_exit;
}
// Display statistics
unsigned sccs = 0;
unsigned st = 0;
unsigned tr = 0;
unsigned inserted = 0;
for (unsigned i = 0; i < std::get<2>(res).size(); ++i)
{
std::cout << "\n---- Thread number : " << i << '\n';
std::cout << std::get<2>(res)[i].states
<< " unique states visited\n";
std::cout << std::get<2>(res)[i].inserted
<< " unique states inserted\n";
std::cout << std::get<2>(res)[i].transitions
<< " transitions explored\n";
std::cout << std::get<2>(res)[i].sccs << " sccs found\n";
std::cout << std::get<2>(res)[i].walltime
<< " milliseconds\n";
sccs += std::get<2>(res)[i].sccs;
st += std::get<2>(res)[i].states;
tr += std::get<2>(res)[i].transitions;
inserted += std::get<2>(res)[i].inserted;
if (mc_options.csv)
{
std::cout << "Find following the csv: "
<< "thread_id,walltimems,type,"
<< "states,transitions,sccs\n";
std::cout << "@th_" << i << ','
<< std::get<2>(res)[i].walltime << ','
<< (std::get<2>(res)[i].is_empty ?
"EMPTY," : "NONEMPTY,")
<< std::get<2>(res)[i].states << ','
<< std::get<2>(res)[i].inserted << ','
<< std::get<2>(res)[i].transitions << ','
<< std::get<2>(res)[i].sccs
<< std::endl;
}
}
if (mc_options.csv)
{
std::cout << "\nSummary :\n";
if (std::get<0>(res))
std::cout << "no accepting run found\n";
else if (!mc_options.compute_counterexample)
{
std::cout << "an accepting run exists "
<< "(use -c to print it)" << std::endl;
exit_code = 1;
}
else
std::cout << "an accepting run exists\n"
<< std::get<1>(res) << '\n';
std::cout << "Find following the csv: "
<< "model,walltimems,memused,"
<< "type,inserted_states,"
<< "cumulated_states,cumulated_transitions,"
<< "cumulated_sccs\n";
std::cout << '#'
<< split_filename(mc_options.model)
<< ','
<< tm.timer("bloemen emptiness check").walltime() << ','
<< memused << ','
<< (std::get<0>(res) ? "EMPTY," : "NONEMPTY,")
<< inserted << ','
<< st << ','
<< tr << ','
<< sccs
<< '\n';
}
}
safe_exit:
if (mc_options.use_timer)
tm.print(std::cout);
@ -964,7 +559,6 @@ static int checked_main()
return exit_code;
}
int
main(int argc, char** argv)
{