Massage the AST so that identical sub-formula share the same

reference-counted formula*.  One can't call constructors for AST
items anymore, everything need to be acquired through instance()
class methods.

* src/ltlast/formula.cc, src/ltlast/refformula.cc,
src/ltlast/refformula.hh: New files.
* src/ltlast/Makefile.am (libltlast_la_SOURCES): Add them.
* src/ltlast/atomic_prop.cc, src/ltlast/atomic_prop.hh,
src/ltlast/unop.cc, src/ltlast/unop.hh,
src/ltlast/binop.cc, src/ltlast/binop.hh: Make the constructor
and destructor protected.  Define a static function `instance()'
to get an instance with specific argument.  Use a map called
`instances' to store all known instances.  Inherit from
ref_formula.
* src/ltlast/constant.hh, src/ltlast/constant.cc: Protect
the constructor and destructor.  Provide the false_instance()
and true_instance() functions instead.
* src/formula.hh (ref, unref, ref_, unref_): New methods.
* src/ltlast/multop.cc, src/ltlast/multop.hh: Protect
the constructor, destructor, as well as the add() method.
Provides the instance(), and add() class methods instead.
Store children_ as a pointer.
* src/ltlenv/defaultenv.cc (require): Adjust to
call atomic_prop::instance.
* src/ltlparse/ltlparse.yy: Adjust to call instance() functions
instead of constructors.
* src/ltltest/Makefile.am (LDADD): Tweak library ordering.
* src/ltlvisit/clone.hh (clone_visitor): Inherit from visitor,
not const_visitor, and adjust all prototypes appropriately.
* src/ltlvisit/clone.cc (clone_visitor): Likewise.
Call ref() or instance() methods instead of copy constructors.
* src/ltlvisit/equals.cc: Simplify atomic_prop and constant
cases.
* src/ltlvisit/lunabbrev.hh, src/ltlvisit/lunabbrev.cc,
src/ltlvisit/tunabbrev.hh, src/ltlvisit/tunabbrev.cc,
src/ltlvisit/nenoform.hh, src/ltlvisit/nenoform.cc: Use instance()
methods instead of constructor.  Make these children of visitor, not
const_visitor.
* src/ltltest/readltl.c (main): Do not delete the formula.
This commit is contained in:
Alexandre Duret-Lutz 2003-05-15 13:39:39 +00:00
parent f1838ab8ef
commit 5f6d8b6234
29 changed files with 548 additions and 253 deletions

View file

@ -1,7 +1,7 @@
#include "ltlast/allnodes.hh"
#include "clone.hh"
namespace spot
namespace spot
{
namespace ltl
{
@ -18,52 +18,52 @@ namespace spot
{
return result_;
}
void
clone_visitor::visit(const atomic_prop* ap)
void
clone_visitor::visit(atomic_prop* ap)
{
result_ = new atomic_prop(ap->name(), ap->env());
result_ = ap->ref();
}
void
clone_visitor::visit(const constant* c)
void
clone_visitor::visit(constant* c)
{
result_ = new constant(c->val());
result_ = c->ref();
}
void
clone_visitor::visit(const unop* uo)
void
clone_visitor::visit(unop* uo)
{
result_ = new unop(uo->op(), recurse(uo->child()));
result_ = unop::instance(uo->op(), recurse(uo->child()));
}
void
clone_visitor::visit(const binop* bo)
void
clone_visitor::visit(binop* bo)
{
result_ = new binop(bo->op(),
recurse(bo->first()), recurse(bo->second()));
result_ = binop::instance(bo->op(),
recurse(bo->first()), recurse(bo->second()));
}
void
clone_visitor::visit(const multop* mo)
void
clone_visitor::visit(multop* mo)
{
multop* res = new multop(mo->op());
multop* res = multop::instance(mo->op());
unsigned mos = mo->size();
for (unsigned i = 0; i < mos; ++i)
{
res->add(recurse(mo->nth(i)));
multop::add(&res, recurse(mo->nth(i)));
}
result_ = res;
}
formula*
clone_visitor::recurse(const formula* f)
formula*
clone_visitor::recurse(formula* f)
{
return clone(f);
}
formula*
clone(const formula* f)
formula*
clone(formula* f)
{
clone_visitor v;
f->accept(v);

View file

@ -4,7 +4,7 @@
#include "ltlast/formula.hh"
#include "ltlast/visitor.hh"
namespace spot
namespace spot
{
namespace ltl
{
@ -14,28 +14,28 @@ namespace spot
/// to derive from it and override part of its methods.
/// But if you just want the functionality, consider using
/// spot::ltl::clone instead.
class clone_visitor : public const_visitor
class clone_visitor : public visitor
{
public:
clone_visitor();
virtual ~clone_visitor();
formula* result() const;
void visit(const atomic_prop* ap);
void visit(const unop* uo);
void visit(const binop* bo);
void visit(const multop* mo);
void visit(const constant* c);
virtual formula* recurse(const formula* f);
void visit(atomic_prop* ap);
void visit(unop* uo);
void visit(binop* bo);
void visit(multop* mo);
void visit(constant* c);
virtual formula* recurse(formula* f);
protected:
formula* result_;
};
/// \brief Clone a formula.
formula* clone(const formula* f);
formula* clone(formula* f);
}
}

View file

@ -2,7 +2,7 @@
#include "equals.hh"
#include "ltlast/allnodes.hh"
namespace spot
namespace spot
{
namespace ltl
{
@ -15,26 +15,22 @@ namespace spot
{
}
bool
bool
equals_visitor::result() const
{
return result_;
}
void
equals_visitor::visit(const atomic_prop* ap)
{
const atomic_prop* p = dynamic_cast<const atomic_prop*>(f_);
if (p && p->name() == ap->name())
result_ = true;
result_ = f_ == ap;
}
void
equals_visitor::visit(const constant* c)
{
const constant* p = dynamic_cast<const constant*>(f_);
if (p && p->val() == c->val())
result_ = true;
result_ = f_ == c;
}
void
@ -53,34 +49,34 @@ namespace spot
const binop* p = dynamic_cast<const binop*>(f_);
if (!p || p->op() != bo->op())
return;
// The current visitor will descend the left branch.
// Build a second visitor for the right branch.
equals_visitor v2(p->second());
f_ = p->first();
bo->first()->accept(*this);
if (result_ == false)
return;
bo->second()->accept(v2);
result_ = v2.result();
}
void
equals_visitor::visit(const multop* m)
{
const multop* p = dynamic_cast<const multop*>(f_);
if (!p || p->op() != m->op())
return;
// This check is a bit more complicated than other checks
// because And(a, b, c) is equal to And(c, a, b, a).
unsigned m_size = m->size();
unsigned p_size = p->size();
std::vector<bool> p_seen(p_size, false);
for (unsigned nf = 0; nf < m_size; ++nf)
{
unsigned np;
@ -102,7 +98,7 @@ namespace spot
// of `p'. That doesn't means that both formula are equal.
// Condider m = And(a, b, c) against p = And(c, d, a, b).
// We should now check if any unmarked (accodring to p_seen)
// child of `p' has an counterpart in `m'. Because `m' might
// child of `p' has an counterpart in `m'. Because `m' might
// contain duplicate children, its faster to test that
// unmarked children of `p' have a counterpart in marked children
// of `p'.
@ -111,25 +107,25 @@ namespace spot
// Consider only unmarked children.
if (p_seen[np])
continue;
// Compare with marked children.
unsigned np2;
const formula *pnth = p->nth(np);
for (np2 = 0; np2 < p_size; ++np2)
if (p_seen[np2] && equals(p->nth(np2), pnth))
break;
// No match? Too bad.
if (np2 == p_size)
if (np2 == p_size)
return;
}
// The two formulas match.
result_ = true;
}
bool
bool
equals(const formula* f1, const formula* f2)
{
equals_visitor v(f1);

View file

@ -1,7 +1,7 @@
#include "ltlast/allnodes.hh"
#include "lunabbrev.hh"
namespace spot
namespace spot
{
namespace ltl
{
@ -13,8 +13,8 @@ namespace spot
{
}
void
unabbreviate_logic_visitor::visit(const binop* bo)
void
unabbreviate_logic_visitor::visit(binop* bo)
{
formula* f1 = recurse(bo->first());
formula* f2 = recurse(bo->second());
@ -22,43 +22,48 @@ namespace spot
{
/* f1 ^ f2 == (f1 & !f2) | (f2 & !f1) */
case binop::Xor:
result_ = new multop(multop::Or,
new multop(multop::And, f1,
new unop(unop::Not, f2)),
new multop(multop::And, f2,
new unop(unop::Not, f1)));
result_ = multop::instance(multop::Or,
multop::instance(multop::And, f1,
unop::instance(unop::Not,
f2)),
multop::instance(multop::And, f2,
unop::instance(unop::Not,
f1)));
return;
/* f1 => f2 == !f1 | f2 */
case binop::Implies:
result_ = new multop(multop::Or, new unop(unop::Not, f1), f2);
result_ = multop::instance(multop::Or,
unop::instance(unop::Not, f1), f2);
return;
/* f1 <=> f2 == (f1 & f2) | (!f1 & !f2) */
case binop::Equiv:
result_ = new multop(multop::Or,
new multop(multop::And, f1, f2),
new multop(multop::And,
new unop(unop::Not, f1),
new unop(unop::Not, f2)));
result_ = multop::instance(multop::Or,
multop::instance(multop::And, f1, f2),
multop::instance(multop::And,
unop::instance(unop::Not,
f1),
unop::instance(unop::Not,
f2)));
return;
/* f1 U f2 == f1 U f2 */
/* f1 R f2 == f1 R f2 */
case binop::U:
case binop::R:
result_ = new binop(bo->op(), f1, f2);
result_ = binop::instance(bo->op(), f1, f2);
return;
}
/* Unreachable code. */
assert(0);
}
formula*
unabbreviate_logic_visitor::recurse(const formula* f)
formula*
unabbreviate_logic_visitor::recurse(formula* f)
{
return unabbreviate_logic(f);
}
formula*
unabbreviate_logic(const formula* f)
formula*
unabbreviate_logic(formula* f)
{
unabbreviate_logic_visitor v;
f->accept(v);

View file

@ -3,11 +3,11 @@
#include "clone.hh"
namespace spot
namespace spot
{
namespace ltl
{
/// \brief Clone and rewrite a formula to remove most of the
/// \brief Clone and rewrite a formula to remove most of the
/// abbreviated logical operators.
///
/// This will rewrite binary operators such as binop::Implies,
@ -26,18 +26,18 @@ namespace spot
virtual ~unabbreviate_logic_visitor();
using super::visit;
void visit(const binop* bo);
void visit(binop* bo);
virtual formula* recurse(const formula* f);
virtual formula* recurse(formula* f);
};
/// \brief Clone rewrite a formula to remove most of the abbreviated
/// \brief Clone rewrite a formula to remove most of the abbreviated
/// logical operators.
///
/// This will rewrite binary operators such as binop::Implies,
/// binop::Equals, and binop::Xor, using only unop::Not, multop::Or,
/// and multop::And.
formula* unabbreviate_logic(const formula* f);
formula* unabbreviate_logic(formula* f);
}
}

View file

@ -6,7 +6,7 @@ namespace spot
namespace ltl
{
class negative_normal_form_visitor : public const_visitor
class negative_normal_form_visitor : public visitor
{
public:
negative_normal_form_visitor(bool negated)
@ -14,7 +14,7 @@ namespace spot
{
}
virtual
virtual
~negative_normal_form_visitor()
{
}
@ -23,43 +23,43 @@ namespace spot
{
return result_;
}
void
visit(const atomic_prop* ap)
void
visit(atomic_prop* ap)
{
formula* f = new atomic_prop(ap->name(), ap->env());
formula* f = ap->ref();
if (negated_)
result_ = new unop(unop::Not, f);
result_ = unop::instance(unop::Not, f);
else
result_ = f;
}
void
visit(const constant* c)
void
visit(constant* c)
{
if (! negated_)
{
result_ = new constant(c->val());
result_ = c;
return;
}
switch (c->val())
{
case constant::True:
result_ = new constant(constant::False);
result_ = constant::false_instance();
return;
case constant::False:
result_ = new constant(constant::True);
result_ = constant::true_instance();
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* uo)
void
visit(unop* uo)
{
const formula* f = uo->child();
formula* f = uo->child();
switch (uo->op())
{
case unop::Not:
@ -67,63 +67,67 @@ namespace spot
return;
case unop::X:
/* !Xa == X!a */
result_ = new unop(unop::X, recurse(f));
result_ = unop::instance(unop::X, recurse(f));
return;
case unop::F:
/* !Fa == G!a */
result_ = new unop(negated_ ? unop::G : unop::F, recurse(f));
result_ = unop::instance(negated_ ? unop::G : unop::F, recurse(f));
return;
case unop::G:
/* !Ga == F!a */
result_ = new unop(negated_ ? unop::F : unop::G, recurse(f));
result_ = unop::instance(negated_ ? unop::F : unop::G, recurse(f));
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* bo)
void
visit(binop* bo)
{
const formula* f1 = bo->first();
const formula* f2 = bo->second();
formula* f1 = bo->first();
formula* f2 = bo->second();
switch (bo->op())
{
case binop::Xor:
/* !(a ^ b) == a <=> b */
result_ = new binop(negated_ ? binop::Equiv : binop::Xor,
recurse_(f1, false), recurse_(f2, false));
result_ = binop::instance(negated_ ? binop::Equiv : binop::Xor,
recurse_(f1, false),
recurse_(f2, false));
return;
case binop::Equiv:
/* !(a <=> b) == a ^ b */
result_ = new binop(negated_ ? binop::Xor : binop::Equiv,
recurse_(f1, false), recurse_(f2, false));
result_ = binop::instance(negated_ ? binop::Xor : binop::Equiv,
recurse_(f1, false),
recurse_(f2, false));
return;
case binop::Implies:
if (negated_)
/* !(a => b) == a & !b */
result_ = new multop(multop::And,
recurse_(f1, false), recurse_(f2, true));
result_ = multop::instance(multop::And,
recurse_(f1, false),
recurse_(f2, true));
else
result_ = new binop(binop::Implies, recurse(f1), recurse(f2));
result_ = binop::instance(binop::Implies,
recurse(f1), recurse(f2));
return;
case binop::U:
/* !(a U b) == !a R !b */
result_ = new binop(negated_ ? binop::R : binop::U,
recurse(f1), recurse(f2));
result_ = binop::instance(negated_ ? binop::R : binop::U,
recurse(f1), recurse(f2));
return;
case binop::R:
/* !(a R b) == !a U !b */
result_ = new binop(negated_ ? binop::U : binop::R,
recurse(f1), recurse(f2));
result_ = binop::instance(negated_ ? binop::U : binop::R,
recurse(f1), recurse(f2));
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* mo)
void
visit(multop* mo)
{
/* !(a & b & c) == !a | !b | !c */
/* !(a | b | c) == !a & !b & !c */
@ -138,32 +142,32 @@ namespace spot
op = multop::And;
break;
}
multop* res = new multop(op);
multop* res = multop::instance(op);
unsigned mos = mo->size();
for (unsigned i = 0; i < mos; ++i)
res->add(recurse(mo->nth(i)));
multop::add(&res, recurse(mo->nth(i)));
result_ = res;
}
formula*
recurse_(const formula* f, bool negated)
formula*
recurse_(formula* f, bool negated)
{
return negative_normal_form(f, negated);
}
formula*
recurse(const formula* f)
formula*
recurse(formula* f)
{
return recurse_(f, negated_);
}
protected:
formula* result_;
bool negated_;
};
formula*
negative_normal_form(const formula* f, bool negated)
formula*
negative_normal_form(formula* f, bool negated)
{
negative_normal_form_visitor v(negated);
f->accept(v);

View file

@ -4,13 +4,13 @@
#include "ltlast/formula.hh"
#include "ltlast/visitor.hh"
namespace spot
namespace spot
{
namespace ltl
{
/// \brief Build the negative normal form of \a f.
///
/// All negations of the formula are pushed in front of the
///
/// All negations of the formula are pushed in front of the
/// atomic propositions.
///
/// \param f The formula to normalize.
@ -22,7 +22,7 @@ namespace spot
/// or spot::ltl::unabbreviate_ltl first. (Calling these functions
/// after spot::ltl::negative_normal_form would likely produce a
/// formula which is not in negative normal form.)
formula* negative_normal_form(const formula* f, bool negated = false);
formula* negative_normal_form(formula* f, bool negated = false);
}
}

View file

@ -1,7 +1,7 @@
#include "ltlast/allnodes.hh"
#include "tunabbrev.hh"
namespace spot
namespace spot
{
namespace ltl
{
@ -13,8 +13,8 @@ namespace spot
{
}
void
unabbreviate_ltl_visitor::visit(const unop* uo)
void
unabbreviate_ltl_visitor::visit(unop* uo)
{
switch (uo->op())
{
@ -23,26 +23,26 @@ namespace spot
this->super::visit(uo);
return;
case unop::F:
result_ = new binop(binop::U,
new constant(constant::True),
recurse(uo->child()));
result_ = binop::instance(binop::U,
constant::true_instance(),
recurse(uo->child()));
return;
case unop::G:
result_ = new binop(binop::R,
new constant(constant::False),
recurse(uo->child()));
result_ = binop::instance(binop::R,
constant::false_instance(),
recurse(uo->child()));
return;
}
}
formula*
unabbreviate_ltl_visitor::recurse(const formula* f)
formula*
unabbreviate_ltl_visitor::recurse(formula* f)
{
return unabbreviate_ltl(f);
}
formula*
unabbreviate_ltl(const formula* f)
formula*
unabbreviate_ltl(formula* f)
{
unabbreviate_ltl_visitor v;
f->accept(v);

View file

@ -4,11 +4,11 @@
#include "ltlast/formula.hh"
#include "ltlvisit/lunabbrev.hh"
namespace spot
namespace spot
{
namespace ltl
{
/// \brief Clone and rewrite a formula to remove most of the
/// \brief Clone and rewrite a formula to remove most of the
/// abbreviated LTL and logical operators.
///
/// The rewriting performed on logical operator is
@ -28,12 +28,12 @@ namespace spot
unabbreviate_ltl_visitor();
virtual ~unabbreviate_ltl_visitor();
void visit(const unop* uo);
void visit(unop* uo);
formula* recurse(const formula* f);
formula* recurse(formula* f);
};
/// \brief Clone and rewrite a formula to remove most of the
/// \brief Clone and rewrite a formula to remove most of the
/// abbreviated LTL and logical operators.
///
/// The rewriting performed on logical operator is
@ -41,7 +41,7 @@ namespace spot
///
/// This will also rewrite unary operators such as unop::F,
/// and unop::G, using only binop::U, and binop::R.
formula* unabbreviate_ltl(const formula* f);
formula* unabbreviate_ltl(formula* f);
}
}