formula: new trivial simplifications
Add the following rules: - f|[+] = [+] if f rejects [*0] - f|[*] = [*] if f accepts [*0] - f&&[+] = f if f rejects [*0] - b:b[*i..j] = b[*max(i,1)..j] - b[*i..j]:b[*k..l] = b[*max(i,1)+max(k,1)-1,1), j+l-1] * spot/tl/formula.cc: Implement the new rules. * doc/tl/tl.tex: Document them. * tests/core/equals.test: Test them. * NEWS: Add them
This commit is contained in:
parent
8ed9e3381f
commit
720c380412
4 changed files with 147 additions and 14 deletions
|
|
@ -853,10 +853,18 @@ The following rules are all valid with the two arguments swapped.
|
|||
\1\OR b &\equiv \1 &
|
||||
\1 \FUSION f & \equiv f\mathrlap{\text{~if~}\varepsilon\nVDash f}\\
|
||||
&&
|
||||
\STAR{} \AND f &\equiv f &
|
||||
\STAR{} \OR f &\equiv \1\mathrlap{\STAR{}} &
|
||||
\STAR{} \ANDALT f &\equiv f &
|
||||
\STAR{} \OR f &\equiv \mathrlap{\STAR{}} &
|
||||
&&
|
||||
\STAR{} \CONCAT f &\equiv \STAR{}\mathrlap{\text{~if~}\varepsilon\VDash f}& \\
|
||||
\STAR{} \CONCAT f &\equiv \STAR{}\text{~if~}\varepsilon\VDash f& \\
|
||||
&&
|
||||
\PLUS{} \ANDALT f &\equiv f \text{~if~}\varepsilon\nVDash f&
|
||||
\PLUS{} \OR f &\equiv \begin{cases}
|
||||
\mathrlap{\STAR{}\text{~if~} \varepsilon\VDash f} \\
|
||||
\mathrlap{\PLUS{}\text{~if~} \varepsilon\nVDash f} \\
|
||||
\end{cases} &
|
||||
&&
|
||||
&& \\
|
||||
\eword\AND f &\equiv f &
|
||||
\eword\ANDALT f &\equiv
|
||||
\begin{cases}
|
||||
|
|
@ -880,7 +888,9 @@ The following rules are all valid with the two arguments swapped.
|
|||
f\STAR{\mvar{i}..\mvar{j}}\CONCAT f&\equiv f\STAR{\mvar{i+1}..\mvar{j+1}} &
|
||||
f\STAR{\mvar{i}..\mvar{j}}\CONCAT f\STAR{\mvar{k}..\mvar{l}}&\equiv f\STAR{\mvar{i+k}..\mvar{j+l}}\\
|
||||
f\FSTAR{\mvar{i}..\mvar{j}}\FUSION f&\equiv f\FSTAR{\mvar{i+1}..\mvar{j+1}} &
|
||||
f\FSTAR{\mvar{i}..\mvar{j}}\FUSION f\FSTAR{\mvar{k}..\mvar{l}}&\equiv f\FSTAR{\mvar{i+k}..\mvar{j+l}}
|
||||
f\FSTAR{\mvar{i}..\mvar{j}}\FUSION f\FSTAR{\mvar{k}..\mvar{l}}&\equiv f\FSTAR{\mvar{i+k}..\mvar{j+l}}\\
|
||||
b\STAR{\mvar{i}..\mvar{j}}\FUSION b &\equiv b\STAR{\mvar{\max(i,1)}..\mvar{j}} &
|
||||
b\STAR{\mvar{i}..\mvar{j}}\FUSION b\STAR{\mvar{k}..\mvar{l}} &\equiv b\mathrlap{\STAR{\mvar{\max(i,1)+\max(k,1)-1}..\mvar{j+l-1}}}
|
||||
\end{align*}
|
||||
\section{SERE-LTL Binding Operators}
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue