random: Get rid of uniform_distribution (non-portable).

* src/misc/random.cc, src/misc/random.hh,
src/tgbaalgos/randomgraph.cc, src/tgbatest/randaut.test,
src/tgbatest/randomize.test, src/tgbatest/readsave.test,
src/ltlvisit/simplify.cc, src/tgbaalgos/randomize.cc,
src/graph/graph.hh, src/tgbatest/randpsl.test: here.
This commit is contained in:
Etienne Renault 2015-02-11 11:19:25 +01:00
parent 5610d10ac3
commit 734bceff8e
10 changed files with 237 additions and 88 deletions

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2012, 2013, 2014 Laboratoire de Recherche et
// Copyright (C) 2011, 2012, 2013, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
@ -22,6 +22,7 @@
#include "config.h"
#include "random.hh"
#include <random>
namespace spot
{
@ -36,28 +37,96 @@ namespace spot
double
drand()
{
return
std::generate_canonical<double,
std::numeric_limits<double>::digits>(gen);
return gen() / (1.0 + gen.max());
}
int
mrand(int max)
{
std::uniform_int_distribution<> dis(0, max - 1);
return dis(gen);
return static_cast<int>(max * drand());
}
int
rrand(int min, int max)
{
std::uniform_int_distribution<> dis(min, max);
return dis(gen);
return min + static_cast<int>((max - min + 1) * drand());
}
double
nrand()
{
const double r = drand();
const double lim = 1.e-20;
if (r < lim)
return -1./lim;
if (r > 1.0 - lim)
return 1./lim;
double t;
if (r < 0.5)
t = sqrt(-2.0 * log(r));
else
t = sqrt(-2.0 * log(1.0 - r));
const double p0 = 0.322232431088;
const double p1 = 1.0;
const double p2 = 0.342242088547;
const double p3 = 0.204231210245e-1;
const double p4 = 0.453642210148e-4;
const double q0 = 0.099348462606;
const double q1 = 0.588581570495;
const double q2 = 0.531103462366;
const double q3 = 0.103537752850;
const double q4 = 0.385607006340e-2;
const double p = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4)));
const double q = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4)));
if (r < 0.5)
return (p / q) - t;
else
return t - (p / q);
}
double
bmrand()
{
static double next;
static bool has_next = false;
if (has_next)
{
has_next = false;
return next;
}
double x;
double y;
double r;
do
{
x = 2.0 * drand() - 1.0;
y = 2.0 * drand() - 1.0;
r = x * x + y * y;
}
while (r >= 1.0 || r == 0.0);
r = sqrt(-2 * log(r) / r);
next = y * r;
has_next = true;
return x * r;
}
int
barand::rand()
prand(double p)
{
return (*this)(gen);
double s = 0.0;
long x = 0;
while (s < p)
{
s -= log(1.0 - drand());
++x;
}
return x - 1;
}
}

View file

@ -1,5 +1,5 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2013 Laboratoire de Recherche et Développement
// Copyright (C) 2015 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
@ -24,7 +24,8 @@
# define SPOT_MISC_RANDOM_HH
# include "common.hh"
# include <random>
# include <cmath>
# include <vector>
namespace spot
{
@ -55,18 +56,86 @@ namespace spot
/// \see mrand, rrand, srand
SPOT_API double drand();
/// \brief Compute a pseudo-random double value
/// following a standard normal distribution. (Odeh & Evans)
///
/// This uses a polynomial approximation of the inverse cumulated
/// density function from Odeh & Evans, Journal of Applied
/// Statistics, 1974, vol 23, pp 96-97.
SPOT_API double nrand();
/// \brief Compute a pseudo-random double value
/// following a standard normal distribution. (Box-Muller)
///
/// This uses the polar form of the Box-Muller transform
/// to generate random values.
SPOT_API double bmrand();
/// \brief Compute pseudo-random integer value between 0
/// and \a n included, following a binomial distribution
/// for probability \a p.
class SPOT_API barand : protected std::binomial_distribution<>
///
/// \a gen must be a random function computing a pseudo-random
/// double value following a standard normal distribution.
/// Use nrand() or bmrand().
///
/// Usually approximating a binomial distribution using a normal
/// distribution and is accurate only if <code>n*p</code> and
/// <code>n*(1-p)</code> are greater than 5.
template<double (*gen)()>
class barand
{
public:
barand(int n, double p) : binomial_distribution(n, p)
barand(int n, double p)
: n_(n), m_(n * p), s_(sqrt(n * p * (1 - p)))
{
}
int rand();
int
rand() const
{
int res;
for (;;)
{
double x = gen() * s_ + m_;
if (x < 0.0)
continue;
res = static_cast<int> (x);
if (res <= n_)
break;
}
return res;
}
protected:
const int n_;
const double m_;
const double s_;
};
/// \brief Return a pseudo-random positive integer value
/// following a Poisson distribution with parameter \a p.
///
/// \pre <code>p > 0</code>
SPOT_API int prand(double p);
/// \brief Shuffle the container using mrand function above.
/// This allows to get rid off shuffle or random_shuffle that use
/// uniform_distribution and RandomIterator that are not portables.
template<class iterator_type>
SPOT_API void mrandom_shuffle(iterator_type&& first, iterator_type&& last)
{
auto d = std::distance(first, last);
if (d > 1)
{
for (--last; first < last; ++first, --d)
{
auto i = mrand(d);
std::swap(*first, *(first + i));
}
}
}
/// @}
}
#endif // SPOT_MISC_RANDOM_HH