Simplify {b && r[*]} as {b && r}; likewise for [->] and [=].

* src/ltlvisit/simplify.cc (simplify_visitor): Do it.
* src/ltltest/reduccmp.test: Add more tests.
* doc/tl/tl.tex: Document it.
This commit is contained in:
Alexandre Duret-Lutz 2011-12-01 16:39:15 +01:00
parent e61c01b826
commit 77084747b9
3 changed files with 317 additions and 216 deletions

View file

@ -1192,6 +1192,7 @@ The goals in most of these simplification are to:
These simplifications are enabled with These simplifications are enabled with
\verb|ltl_simplifier_options::reduce_basics|'. \verb|ltl_simplifier_options::reduce_basics|'.
\subsubsection{Basic Simplifications for Temporal Operators}
The following are simplification rules for unary operators (applied The following are simplification rules for unary operators (applied
from left to right, as usual): from left to right, as usual):
@ -1264,6 +1265,31 @@ in the OR arguments:
&\equiv \F(f_1\OR \ldots \OR f_n \OR \G\F(g_1\OR \ldots \OR g_m)) \\ &\equiv \F(f_1\OR \ldots \OR f_n \OR \G\F(g_1\OR \ldots \OR g_m)) \\
\end{align*} \end{align*}
\subsubsection{Basic Simplifications for SERE Operators}
% Cite Symbolic computation of PSL.
The following simplification rules are used for the $n$-ary operators
$\ANDALT$, $\AND$, and $\OR$, and are of course commutative.
\begin{align*}
b \ANDALT r\STAR{\mvar{i}..\mvar{j}} &\equiv
\begin{cases}
b \ANDALT r &\text{if~} i\le 1\le j\\
\0 &\text{else}\\
\end{cases}\\
b \ANDALT r\EQUAL{\mvar{i}..\mvar{j}} &\equiv
\begin{cases}
b \ANDALT r &\text{if~} i\le 1\le j\\
\0 &\text{else}\\
\end{cases}\\
b \ANDALT r\GOTO{\mvar{i}..\mvar{j}} &\equiv
\begin{cases}
b \ANDALT r &\text{if~} i\le 1\le j\\
\0 &\text{else}\\
\end{cases}\\
\end{align*}
\subsection{Simplifications for Eventual and Universal Formul\ae} \subsection{Simplifications for Eventual and Universal Formul\ae}
\label{sec:eventunivrew} \label{sec:eventunivrew}

View file

@ -202,6 +202,14 @@ for x in ../reduccmp ../reductaustr; do
# without pruning the rational automaton. # without pruning the rational automaton.
run 0 $x '{(c&!c)[=2]}' '0' run 0 $x '{(c&!c)[=2]}' '0'
run 0 $x '{a && b && c*} <>-> d' 'a&b&c&d'
run 0 $x '{a && b && c[*1..3]} <>-> d' 'a&b&c&d'
run 0 $x '{a && b && c[->0..2]} <>-> d' 'a&b&c&d'
run 0 $x '{a && b && c[+]} <>-> d' 'a&b&c&d'
run 0 $x '{a && b && c[=1]} <>-> d' 'a&b&c&d'
run 0 $x '{a && b && d[=2]} <>-> d' '0'
run 0 $x '{a && b && d[->2..4]} <>-> d' '0'
run 0 $x '{a && b && d[*2..]} <>-> d' '0'
;; ;;
esac esac

View file

@ -1628,8 +1628,7 @@ namespace spot
while (f1 != res->end()) while (f1 != res->end())
{ {
multop::vec::iterator f2 = f1; multop::vec::iterator f2 = f1;
++f2 ++f2;
;
while (f2 != res->end()) while (f2 != res->end())
{ {
assert(f1 != f2); assert(f1 != f2);
@ -1687,229 +1686,297 @@ namespace spot
assert(!res->empty()); assert(!res->empty());
if (opt_.reduce_basics) // basics reduction do not concern Boolean formulas,
// so don't waste time trying to apply them.
if (opt_.reduce_basics && !mo->is_boolean())
{ {
switch (op) switch (op)
{ {
case multop::And: case multop::And:
{ if (!mo->is_sere_formula())
// Gather all operands by type. {
mospliter s(mospliter::Strip_X | // Gather all operands by type.
mospliter::Strip_FG | mospliter s(mospliter::Strip_X |
mospliter::Strip_G | mospliter::Strip_FG |
mospliter::Split_F | mospliter::Strip_G |
mospliter::Split_U_or_W | mospliter::Split_F |
mospliter::Split_R_or_M | mospliter::Split_U_or_W |
mospliter::Split_EventUniv, mospliter::Split_R_or_M |
res, c_); mospliter::Split_EventUniv,
// FG(a) & FG(b) = FG(a & b) res, c_);
formula* allFG = unop_unop_multop(unop::F, unop::G, // FG(a) & FG(b) = FG(a & b)
multop::And, s.res_FG); formula* allFG = unop_unop_multop(unop::F, unop::G,
// Xa & Xb = X(a & b) multop::And, s.res_FG);
// Xa & Xb & FG(c) = X(a & b & FG(c)) // Xa & Xb = X(a & b)
// For Universal&Eventual formulae f1...fn we also have: // Xa & Xb & FG(c) = X(a & b & FG(c))
// Xa & Xb & f1...fn = X(a & b & f1...fn) // For Universal&Eventual formulae f1...fn we also have:
if (!s.res_X->empty()) // Xa & Xb & f1...fn = X(a & b & f1...fn)
{ if (!s.res_X->empty())
s.res_X->push_back(allFG); {
allFG = 0; s.res_X->push_back(allFG);
s.res_X->insert(s.res_X->begin(), allFG = 0;
s.res_EventUniv->begin(), s.res_X->insert(s.res_X->begin(),
s.res_EventUniv->end()); s.res_EventUniv->begin(),
} s.res_EventUniv->end());
else }
// We don't rewrite Ga & f1...fn = G(a & f1..fn) else
// similarly to what we do in the unop::Or case // We don't rewrite Ga & f1...fn = G(a & f1..fn)
// as it is not clear what we'd gain by doing so. // similarly to what we do in the unop::Or case
{ // as it is not clear what we'd gain by doing so.
s.res_other->insert(s.res_other->begin(), {
s.res_EventUniv->begin(), s.res_other->insert(s.res_other->begin(),
s.res_EventUniv->end()); s.res_EventUniv->begin(),
} s.res_EventUniv->end());
delete s.res_EventUniv; }
delete s.res_EventUniv;
// Xa & Xb & f1...fn = X(a & b & f1...fn) // Xa & Xb & f1...fn = X(a & b & f1...fn)
// is built at the end of this multop::And case. // is built at the end of this multop::And case.
// G(a) & G(b) = G(a & b) // G(a) & G(b) = G(a & b)
// is built at the end of this multop::And case. // is built at the end of this multop::And case.
// The following three loops perform these rewritings: // The following three loops perform these rewritings:
// (a U b) & (c U b) = (a & c) U b // (a U b) & (c U b) = (a & c) U b
// (a U b) & (c W b) = (a & c) U b // (a U b) & (c W b) = (a & c) U b
// (a W b) & (c W b) = (a & c) W b // (a W b) & (c W b) = (a & c) W b
// (a R b) & (a R c) = a R (b & c) // (a R b) & (a R c) = a R (b & c)
// (a R b) & (a M c) = a M (b & c) // (a R b) & (a M c) = a M (b & c)
// (a M b) & (a M c) = a M (b & c) // (a M b) & (a M c) = a M (b & c)
// F(a) & (a R b) = a M b // F(a) & (a R b) = a M b
// F(a) & (a M b) = a M b // F(a) & (a M b) = a M b
// F(b) & (a W b) = a U b // F(b) & (a W b) = a U b
// F(b) & (a U b) = a U b // F(b) & (a U b) = a U b
typedef Sgi::hash_map<formula*, multop::vec::iterator, typedef Sgi::hash_map<formula*, multop::vec::iterator,
ptr_hash<formula> > fmap_t; ptr_hash<formula> > fmap_t;
fmap_t uwmap; // associates "b" to "a U b" or "a W b" fmap_t uwmap; // associates "b" to "a U b" or "a W b"
fmap_t rmmap; // associates "a" to "a R b" or "a M b" fmap_t rmmap; // associates "a" to "a R b" or "a M b"
// (a U b) & (c U b) = (a & c) U b // (a U b) & (c U b) = (a & c) U b
// (a U b) & (c W b) = (a & c) U b // (a U b) & (c W b) = (a & c) U b
// (a W b) & (c W b) = (a & c) W b // (a W b) & (c W b) = (a & c) W b
for (multop::vec::iterator i = s.res_U_or_W->begin(); for (multop::vec::iterator i = s.res_U_or_W->begin();
i != s.res_U_or_W->end(); ++i) i != s.res_U_or_W->end(); ++i)
{ {
binop* bo = static_cast<binop*>(*i); binop* bo = static_cast<binop*>(*i);
formula* b = bo->second(); formula* b = bo->second();
fmap_t::iterator j = uwmap.find(b); fmap_t::iterator j = uwmap.find(b);
if (j == uwmap.end()) if (j == uwmap.end())
{
// First occurrence.
uwmap[b] = i;
continue;
}
// We already have one occurrence. Merge them.
binop* old = static_cast<binop*>(*j->second);
binop::type op = binop::W;
if (bo->op() == binop::U
|| old->op() == binop::U)
op = binop::U;
formula* fst_arg =
multop::instance(multop::And,
old->first()->clone(),
bo->first()->clone());
*j->second = binop::instance(op, fst_arg, b->clone());
assert((*j->second)->kind() == formula::BinOp);
*i = 0;
old->destroy();
bo->destroy();
}
// (a R b) & (a R c) = a R (b & c)
// (a R b) & (a M c) = a M (b & c)
// (a M b) & (a M c) = a M (b & c)
for (multop::vec::iterator i = s.res_R_or_M->begin();
i != s.res_R_or_M->end(); ++i)
{
binop* bo = static_cast<binop*>(*i);
formula* a = bo->first();
fmap_t::iterator j = rmmap.find(a);
if (j == rmmap.end())
{
// First occurrence.
rmmap[a] = i;
continue;
}
// We already have one occurrence. Merge them.
binop* old = static_cast<binop*>(*j->second);
binop::type op = binop::R;
if (bo->op() == binop::M
|| old->op() == binop::M)
op = binop::M;
formula* snd_arg =
multop::instance(multop::And,
old->second()->clone(),
bo->second()->clone());
*j->second = binop::instance(op, a->clone(), snd_arg);
assert((*j->second)->kind() == formula::BinOp);
*i = 0;
old->destroy();
bo->destroy();
}
// F(a) & (a R b) = a M b
// F(a) & (a M b) = a M b
// F(b) & (a W b) = a U b
// F(b) & (a U b) = a U b
for (multop::vec::iterator i = s.res_F->begin();
i != s.res_F->end(); ++i)
{
bool superfluous = false;
unop* uo = static_cast<unop*>(*i);
formula* c = uo->child();
fmap_t::iterator j = uwmap.find(c);
if (j != uwmap.end())
{
superfluous = true;
binop* bo = static_cast<binop*>(*j->second);
if (bo->op() == binop::W)
{
*j->second =
binop::instance(binop::U,
bo->first()->clone(),
bo->second()->clone());
assert((*j->second)->kind() == formula::BinOp);
bo->destroy();
}
}
j = rmmap.find(c);
if (j != rmmap.end())
{
superfluous = true;
binop* bo = static_cast<binop*>(*j->second);
if (bo->op() == binop::R)
{
*j->second =
binop::instance(binop::M,
bo->first()->clone(),
bo->second()->clone());
assert((*j->second)->kind() == formula::BinOp);
bo->destroy();
}
}
if (superfluous)
{
(*i)->destroy();
*i = 0;
}
}
s.res_other->reserve(s.res_other->size()
+ s.res_F->size()
+ s.res_U_or_W->size()
+ s.res_R_or_M->size()
+ 3);
s.res_other->insert(s.res_other->end(),
s.res_F->begin(),
s.res_F->end());
delete s.res_F;
s.res_other->insert(s.res_other->end(),
s.res_U_or_W->begin(),
s.res_U_or_W->end());
delete s.res_U_or_W;
s.res_other->insert(s.res_other->end(),
s.res_R_or_M->begin(),
s.res_R_or_M->end());
delete s.res_R_or_M;
// Those "G" formulae that are eventual can be
// postponed inside the X term if there is one.
//
// In effect we rewrite
// Xa&Xb&GFc&GFd&Ge as X(a&b&G(Fc&Fd))&Ge
if (!s.res_X->empty())
{
multop::vec* event = new multop::vec;
for (multop::vec::iterator i = s.res_G->begin();
i != s.res_G->end(); ++i)
if ((*i)->is_eventual())
{ {
event->push_back(*i); // First occurrence.
*i = 0; // Remove it from res_G. uwmap[b] = i;
continue;
} }
s.res_X->push_back(unop_multop(unop::G, // We already have one occurrence. Merge them.
multop::And, event)); binop* old = static_cast<binop*>(*j->second);
} binop::type op = binop::W;
if (bo->op() == binop::U
|| old->op() == binop::U)
op = binop::U;
formula* fst_arg =
multop::instance(multop::And,
old->first()->clone(),
bo->first()->clone());
*j->second = binop::instance(op, fst_arg, b->clone());
assert((*j->second)->kind() == formula::BinOp);
*i = 0;
old->destroy();
bo->destroy();
}
// (a R b) & (a R c) = a R (b & c)
// (a R b) & (a M c) = a M (b & c)
// (a M b) & (a M c) = a M (b & c)
for (multop::vec::iterator i = s.res_R_or_M->begin();
i != s.res_R_or_M->end(); ++i)
{
binop* bo = static_cast<binop*>(*i);
formula* a = bo->first();
fmap_t::iterator j = rmmap.find(a);
if (j == rmmap.end())
{
// First occurrence.
rmmap[a] = i;
continue;
}
// We already have one occurrence. Merge them.
binop* old = static_cast<binop*>(*j->second);
binop::type op = binop::R;
if (bo->op() == binop::M
|| old->op() == binop::M)
op = binop::M;
formula* snd_arg =
multop::instance(multop::And,
old->second()->clone(),
bo->second()->clone());
*j->second = binop::instance(op, a->clone(), snd_arg);
assert((*j->second)->kind() == formula::BinOp);
*i = 0;
old->destroy();
bo->destroy();
}
// F(a) & (a R b) = a M b
// F(a) & (a M b) = a M b
// F(b) & (a W b) = a U b
// F(b) & (a U b) = a U b
for (multop::vec::iterator i = s.res_F->begin();
i != s.res_F->end(); ++i)
{
bool superfluous = false;
unop* uo = static_cast<unop*>(*i);
formula* c = uo->child();
// G(a) & G(b) & ... = G(a & b & ...) fmap_t::iterator j = uwmap.find(c);
formula* allG = unop_multop(unop::G, multop::And, s.res_G); if (j != uwmap.end())
// Xa & Xb & ... = X(a & b & ...) {
formula* allX = unop_multop(unop::X, multop::And, s.res_X); superfluous = true;
binop* bo = static_cast<binop*>(*j->second);
if (bo->op() == binop::W)
{
*j->second =
binop::instance(binop::U,
bo->first()->clone(),
bo->second()->clone());
assert((*j->second)->kind()
== formula::BinOp);
bo->destroy();
}
}
j = rmmap.find(c);
if (j != rmmap.end())
{
superfluous = true;
binop* bo = static_cast<binop*>(*j->second);
if (bo->op() == binop::R)
{
*j->second =
binop::instance(binop::M,
bo->first()->clone(),
bo->second()->clone());
assert((*j->second)->kind()
== formula::BinOp);
bo->destroy();
}
}
if (superfluous)
{
(*i)->destroy();
*i = 0;
}
}
s.res_other->push_back(allX); s.res_other->reserve(s.res_other->size()
s.res_other->push_back(allG); + s.res_F->size()
s.res_other->push_back(allFG); + s.res_U_or_W->size()
result_ = multop::instance(multop::And, s.res_other); + s.res_R_or_M->size()
// If we altered the formula in some way, process + 3);
// it another time. s.res_other->insert(s.res_other->end(),
if (result_ != mo) s.res_F->begin(),
result_ = recurse_destroy(result_); s.res_F->end());
return; delete s.res_F;
} s.res_other->insert(s.res_other->end(),
s.res_U_or_W->begin(),
s.res_U_or_W->end());
delete s.res_U_or_W;
s.res_other->insert(s.res_other->end(),
s.res_R_or_M->begin(),
s.res_R_or_M->end());
delete s.res_R_or_M;
// Those "G" formulae that are eventual can be
// postponed inside the X term if there is one.
//
// In effect we rewrite
// Xa&Xb&GFc&GFd&Ge as X(a&b&G(Fc&Fd))&Ge
if (!s.res_X->empty())
{
multop::vec* event = new multop::vec;
for (multop::vec::iterator i = s.res_G->begin();
i != s.res_G->end(); ++i)
if ((*i)->is_eventual())
{
event->push_back(*i);
*i = 0; // Remove it from res_G.
}
s.res_X->push_back(unop_multop(unop::G,
multop::And, event));
}
// G(a) & G(b) & ... = G(a & b & ...)
formula* allG =
unop_multop(unop::G, multop::And, s.res_G);
// Xa & Xb & ... = X(a & b & ...)
formula* allX =
unop_multop(unop::X, multop::And, s.res_X);
s.res_other->push_back(allX);
s.res_other->push_back(allG);
s.res_other->push_back(allFG);
result_ = multop::instance(multop::And, s.res_other);
// If we altered the formula in some way, process
// it another time.
if (result_ != mo)
result_ = recurse_destroy(result_);
return;
}
else // SERE
{
mospliter s(mospliter::Split_Bool, res, c_);
if (!s.res_Bool->empty())
{
// b1 & b2 & b3 = b1 && b2 && b3
formula* b = multop::instance(multop::And,
s.res_Bool);
multop::vec* ares = new multop::vec;
for (multop::vec::iterator i = s.res_other->begin();
i != s.res_other->end(); ++i)
switch ((*i)->kind())
{
case formula::BUnOp:
{
bunop* r = down_cast<bunop*>(*i);
// b && r[*i..j] = b & r if i<=1<=j
// = 0 otherwise
// likewise for b && r[=i..j]
// and b && r[->i..j]
if (r->min() > 1 || r->max() < 1)
goto returnfalse;
ares->push_back(r->child()->clone());
r->destroy();
*i = 0;
break;
}
default:
ares->push_back(*i);
*i = 0;
break;
}
delete s.res_other;
ares->push_back(b);
result_ = multop::instance(multop::And, ares);
// If we altered the formula in some way, process
// it another time.
if (result_ != mo)
result_ = recurse_destroy(result_);
return;
returnfalse:
b->destroy();
for (multop::vec::iterator i = s.res_other->begin();
i != s.res_other->end(); ++i)
if (*i)
(*i)->destroy();
for (multop::vec::iterator i = res->begin();
i != res->end(); ++i)
if (*i)
(*i)->destroy();
result_ = constant::false_instance();
return;
}
else
{
delete s.res_Bool;
result_ = multop::instance(multop::And, s.res_other);
return;
}
}
case multop::Or: case multop::Or:
{ {
// Gather all operand by type. // Gather all operand by type.
@ -2160,8 +2227,8 @@ namespace spot
result_ = recurse_destroy(result_); result_ = recurse_destroy(result_);
return; return;
} }
case multop::Concat:
case multop::AndNLM: case multop::AndNLM:
case multop::Concat:
case multop::Fusion: case multop::Fusion:
break; break;
} }