* iface/gspn/gspn.cc, src/ltlvisit/basicreduce.cc,

src/ltlvisit/destroy.cc, src/ltlvisit/dotty.cc,
src/ltlvisit/dump.cc, src/ltlvisit/length.cc,
src/ltlvisit/nenoform.cc, src/ltlvisit/reduce.cc,
src/ltlvisit/syntimpl.cc, src/ltlvisit/tostring.cc,
src/tgba/formula2bdd.cc, src/tgba/tgbabddconcreteproduct.cc,
src/tgba/tgbatba.cc, src/tgbaalgos/dotty.cc,
src/tgbaalgos/dupexp.cc, src/tgbaalgos/lbtt.cc,
src/tgbaalgos/ltl2tgba_lacim.cc, src/tgbaalgos/neverclaim.cc,
src/tgbaalgos/save.cc, src/tgbaalgos/stats.cc,
src/tgbaalgos/gtec/nsheap.cc, src/tgbaalgos/gtec/nsheap.hh:
Declare private classes and helper function in anonymous namespaces.
* HACKING, src/sanity/style.test: Document and check this.
Also check for trailing { after namespace or class.
* src/ltlast/predecl.hh, src/ltlast/visitor.hh,
src/tgba/tgbareduc.hh: Fix trailing {.
This commit is contained in:
Alexandre Duret-Lutz 2004-10-18 13:56:31 +00:00
parent 5176caf4d2
commit 7d27fd3796
28 changed files with 3128 additions and 3025 deletions

View file

@ -34,258 +34,261 @@ namespace spot
{
namespace ltl
{
class reduce_visitor : public visitor
namespace
{
public:
reduce_visitor(int opt)
: opt_(opt)
class reduce_visitor: public visitor
{
}
public:
virtual ~reduce_visitor()
{
}
reduce_visitor(int opt)
: opt_(opt)
{
}
formula*
result() const
{
return result_;
}
virtual ~reduce_visitor()
{
}
void
visit(atomic_prop* ap)
{
formula* f = ap->ref();
result_ = f;
}
formula*
result() const
{
return result_;
}
void
visit(constant* c)
{
result_ = c;
}
void
visit(atomic_prop* ap)
{
formula* f = ap->ref();
result_ = f;
}
void
visit(unop* uo)
{
result_ = recurse(uo->child());
void
visit(constant* c)
{
result_ = c;
}
switch (uo->op())
{
case unop::Not:
result_ = unop::instance(unop::Not, result_);
return;
void
visit(unop* uo)
{
result_ = recurse(uo->child());
case unop::X:
result_ = unop::instance(unop::X, result_);
return;
switch (uo->op())
{
case unop::Not:
result_ = unop::instance(unop::Not, result_);
return;
case unop::F:
/* If f is a pure eventuality formula then F(f)=f. */
if (!(opt_ & Reduce_Eventuality_And_Universality)
|| !is_eventual(result_))
result_ = unop::instance(unop::F, result_);
return;
case unop::X:
result_ = unop::instance(unop::X, result_);
return;
case unop::G:
/* If f is a pure universality formula then G(f)=f. */
if (!(opt_ & Reduce_Eventuality_And_Universality)
|| !is_universal(result_))
result_ = unop::instance(unop::G, result_);
return;
}
/* Unreachable code. */
assert(0);
}
case unop::F:
/* If f is a pure eventuality formula then F(f)=f. */
if (!(opt_ & Reduce_Eventuality_And_Universality)
|| !is_eventual(result_))
result_ = unop::instance(unop::F, result_);
return;
void
visit(binop* bo)
{
formula* f2 = recurse(bo->second());
case unop::G:
/* If f is a pure universality formula then G(f)=f. */
if (!(opt_ & Reduce_Eventuality_And_Universality)
|| !is_universal(result_))
result_ = unop::instance(unop::G, result_);
return;
}
/* Unreachable code. */
assert(0);
}
/* If b is a pure eventuality formula then a U b = b.
If b is a pure universality formula a R b = b. */
if ((opt_ & Reduce_Eventuality_And_Universality)
&& ((is_eventual(f2) && ((bo->op()) == binop::U))
|| (is_universal(f2) && ((bo->op()) == binop::R))))
{
result_ = f2;
return;
}
/* case of implies */
formula* f1 = recurse(bo->first());
void
visit(binop* bo)
{
formula* f2 = recurse(bo->second());
if (opt_ & Reduce_Syntactic_Implications)
{
// FIXME: These should be done only when needed.
bool inf = syntactic_implication(f1, f2);
bool infinv = syntactic_implication(f2, f1);
bool infnegleft = syntactic_implication_neg(f2, f1, false);
bool infnegright = syntactic_implication_neg(f2, f1, true);
/* If b is a pure eventuality formula then a U b = b.
If b is a pure universality formula a R b = b. */
if ((opt_ & Reduce_Eventuality_And_Universality)
&& ((is_eventual(f2) && ((bo->op()) == binop::U))
|| (is_universal(f2) && ((bo->op()) == binop::R))))
{
result_ = f2;
return;
}
/* case of implies */
formula* f1 = recurse(bo->first());
switch (bo->op())
{
case binop::Xor:
case binop::Equiv:
case binop::Implies:
break;
if (opt_ & Reduce_Syntactic_Implications)
{
// FIXME: These should be done only when needed.
bool inf = syntactic_implication(f1, f2);
bool infinv = syntactic_implication(f2, f1);
bool infnegleft = syntactic_implication_neg(f2, f1, false);
bool infnegright = syntactic_implication_neg(f2, f1, true);
case binop::U:
/* a < b => a U b = b */
if (inf)
{
result_ = f2;
destroy(f1);
return;
}
/* !b < a => a U b = Fb */
if (infnegleft)
{
result_ = unop::instance(unop::F, f2);
destroy(f1);
return;
}
/* a < b => a U (b U c) = (b U c) */
switch (bo->op())
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && bo->op() == binop::U
&& syntactic_implication(f1, bo->first()))
case binop::Xor:
case binop::Equiv:
case binop::Implies:
break;
case binop::U:
/* a < b => a U b = b */
if (inf)
{
result_ = f2;
destroy(f1);
return;
}
}
break;
/* !b < a => a U b = Fb */
if (infnegleft)
{
result_ = unop::instance(unop::F, f2);
destroy(f1);
return;
}
/* a < b => a U (b U c) = (b U c) */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && bo->op() == binop::U
&& syntactic_implication(f1, bo->first()))
{
result_ = f2;
destroy(f1);
return;
}
}
break;
case binop::R:
/* b < a => a R b = b */
if (infinv)
{
result_ = f2;
destroy(f1);
return;
}
/* b < !a => a R b = Gb */
if (infnegright)
{
result_ = unop::instance(unop::G, f2);
destroy(f1);
return;
}
/* b < a => a R (b R c) = b R c */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && bo->op() == binop::R
&& syntactic_implication(bo->first(), f1))
case binop::R:
/* b < a => a R b = b */
if (infinv)
{
result_ = f2;
destroy(f1);
return;
}
/* b < !a => a R b = Gb */
if (infnegright)
{
result_ = unop::instance(unop::G, f2);
destroy(f1);
return;
}
/* b < a => a R (b R c) = b R c */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && bo->op() == binop::R
&& syntactic_implication(bo->first(), f1))
{
result_ = f2;
destroy(f1);
return;
}
}
break;
}
break;
}
}
result_ = binop::instance(bo->op(), f1, f2);
}
}
result_ = binop::instance(bo->op(), f1, f2);
}
void
visit(multop* mo)
{
unsigned mos = mo->size();
multop::vec* res = new multop::vec;
void
visit(multop* mo)
{
unsigned mos = mo->size();
multop::vec* res = new multop::vec;
for (unsigned i = 0; i < mos; ++i)
res->push_back(recurse(mo->nth(i)));
for (unsigned i = 0; i < mos; ++i)
res->push_back(recurse(mo->nth(i)));
if (opt_ & Reduce_Syntactic_Implications)
{
if (opt_ & Reduce_Syntactic_Implications)
{
bool removed = true;
multop::vec::iterator f1;
multop::vec::iterator f2;
bool removed = true;
multop::vec::iterator f1;
multop::vec::iterator f2;
while (removed)
{
removed = false;
f2 = f1 = res->begin();
++f1;
while (f1 != res->end())
{
assert(f1 != f2);
// a < b => a + b = b
// a < b => a & b = a
if ((syntactic_implication(*f1, *f2) && // f1 < f2
(mo->op() == multop::Or)) ||
((syntactic_implication(*f2, *f1)) && // f2 < f1
(mo->op() == multop::And)))
{
// We keep f2
destroy(*f1);
res->erase(f1);
removed = true;
break;
}
else if ((syntactic_implication(*f2, *f1) && // f2 < f1
(mo->op() == multop::Or)) ||
((syntactic_implication(*f1, *f2)) && // f1 < f2
(mo->op() == multop::And)))
{
// We keep f1
destroy(*f2);
res->erase(f2);
removed = true;
break;
}
else
++f1;
}
}
while (removed)
{
removed = false;
f2 = f1 = res->begin();
++f1;
while (f1 != res->end())
{
assert(f1 != f2);
// a < b => a + b = b
// a < b => a & b = a
if ((syntactic_implication(*f1, *f2) && // f1 < f2
(mo->op() == multop::Or)) ||
((syntactic_implication(*f2, *f1)) && // f2 < f1
(mo->op() == multop::And)))
{
// We keep f2
destroy(*f1);
res->erase(f1);
removed = true;
break;
}
else if ((syntactic_implication(*f2, *f1) && // f2 < f1
(mo->op() == multop::Or)) ||
((syntactic_implication(*f1, *f2)) && // f1 < f2
(mo->op() == multop::And)))
{
// We keep f1
destroy(*f2);
res->erase(f2);
removed = true;
break;
}
else
++f1;
}
}
// FIXME
/* f1 < !f2 => f1 & f2 = false
!f1 < f2 => f1 | f2 = true */
for (f1 = res->begin(); f1 != res->end(); f1++)
for (f2 = res->begin(); f2 != res->end(); f2++)
if (f1 != f2 &&
syntactic_implication_neg(*f1, *f2,
mo->op() != multop::Or))
{
for (multop::vec::iterator j = res->begin();
j != res->end(); j++)
destroy(*j);
res->clear();
delete res;
if (mo->op() == multop::Or)
result_ = constant::true_instance();
else
result_ = constant::false_instance();
return;
}
// FIXME
/* f1 < !f2 => f1 & f2 = false
!f1 < f2 => f1 | f2 = true */
for (f1 = res->begin(); f1 != res->end(); f1++)
for (f2 = res->begin(); f2 != res->end(); f2++)
if (f1 != f2 &&
syntactic_implication_neg(*f1, *f2,
mo->op() != multop::Or))
{
for (multop::vec::iterator j = res->begin();
j != res->end(); j++)
destroy(*j);
res->clear();
delete res;
if (mo->op() == multop::Or)
result_ = constant::true_instance();
else
result_ = constant::false_instance();
return;
}
}
}
if (!res->empty())
{
result_ = multop::instance(mo->op(), res);
return;
}
assert(0);
}
if (!res->empty())
{
result_ = multop::instance(mo->op(), res);
return;
}
assert(0);
}
formula*
recurse(formula* f)
{
return reduce(f, opt_);
}
formula*
recurse(formula* f)
{
return reduce(f, opt_);
}
protected:
formula* result_;
int opt_;
};
protected:
formula* result_;
int opt_;
};
} // anonymous
formula*
reduce(const formula* f, int opt)