* iface/gspn/gspn.cc, src/ltlvisit/basicreduce.cc,

src/ltlvisit/destroy.cc, src/ltlvisit/dotty.cc,
src/ltlvisit/dump.cc, src/ltlvisit/length.cc,
src/ltlvisit/nenoform.cc, src/ltlvisit/reduce.cc,
src/ltlvisit/syntimpl.cc, src/ltlvisit/tostring.cc,
src/tgba/formula2bdd.cc, src/tgba/tgbabddconcreteproduct.cc,
src/tgba/tgbatba.cc, src/tgbaalgos/dotty.cc,
src/tgbaalgos/dupexp.cc, src/tgbaalgos/lbtt.cc,
src/tgbaalgos/ltl2tgba_lacim.cc, src/tgbaalgos/neverclaim.cc,
src/tgbaalgos/save.cc, src/tgbaalgos/stats.cc,
src/tgbaalgos/gtec/nsheap.cc, src/tgbaalgos/gtec/nsheap.hh:
Declare private classes and helper function in anonymous namespaces.
* HACKING, src/sanity/style.test: Document and check this.
Also check for trailing { after namespace or class.
* src/ltlast/predecl.hh, src/ltlast/visitor.hh,
src/tgba/tgbareduc.hh: Fix trailing {.
This commit is contained in:
Alexandre Duret-Lutz 2004-10-18 13:56:31 +00:00
parent 5176caf4d2
commit 7d27fd3796
28 changed files with 3128 additions and 3025 deletions

View file

@ -28,51 +28,53 @@
namespace spot
{
class dotty_bfs : public tgba_reachable_iterator_breadth_first
namespace
{
public:
dotty_bfs(const tgba* a, std::ostream& os)
: tgba_reachable_iterator_breadth_first(a), os_(os)
class dotty_bfs : public tgba_reachable_iterator_breadth_first
{
}
public:
dotty_bfs(const tgba* a, std::ostream& os)
: tgba_reachable_iterator_breadth_first(a), os_(os)
{
}
void
start()
{
os_ << "digraph G {" << std::endl;
os_ << " 0 [label=\"\", style=invis, height=0]" << std::endl;
os_ << " 0 -> 1" << std::endl;
}
void
start()
{
os_ << "digraph G {" << std::endl;
os_ << " 0 [label=\"\", style=invis, height=0]" << std::endl;
os_ << " 0 -> 1" << std::endl;
}
void
end()
{
os_ << "}" << std::endl;
}
void
end()
{
os_ << "}" << std::endl;
}
void
process_state(const state* s, int n, tgba_succ_iterator*)
{
os_ << " " << n << " [label=\"";
escape_str(os_, automata_->format_state(s)) << "\"]" << std::endl;
}
void
process_state(const state* s, int n, tgba_succ_iterator*)
{
os_ << " " << n << " [label=\"";
escape_str(os_, automata_->format_state(s)) << "\"]" << std::endl;
}
void
process_link(int in, int out, const tgba_succ_iterator* si)
{
os_ << " " << in << " -> " << out << " [label=\"";
escape_str(os_, bdd_format_formula(automata_->get_dict(),
si->current_condition())) << "\\n";
escape_str(os_,
bdd_format_accset(automata_->get_dict(),
si->current_acceptance_conditions()))
<< "\"]" << std::endl;
}
void
process_link(int in, int out, const tgba_succ_iterator* si)
{
os_ << " " << in << " -> " << out << " [label=\"";
escape_str(os_, bdd_format_formula(automata_->get_dict(),
si->current_condition())) << "\\n";
escape_str(os_,
bdd_format_accset(automata_->get_dict(),
si->current_acceptance_conditions()))
<< "\"]" << std::endl;
}
private:
std::ostream& os_;
};
private:
std::ostream& os_;
};
}
std::ostream&
dotty_reachable(std::ostream& os, const tgba* g)

View file

@ -25,73 +25,77 @@
#include <map>
#include "reachiter.hh"
namespace spot {
template <class T>
class dupexp_iter: public T
namespace spot
{
namespace
{
public:
dupexp_iter(const tgba* a)
: T(a), out_(new tgba_explicit(a->get_dict()))
template <class T>
class dupexp_iter: public T
{
}
public:
dupexp_iter(const tgba* a)
: T(a), out_(new tgba_explicit(a->get_dict()))
{
}
tgba_explicit*
result()
{
return out_;
}
tgba_explicit*
result()
{
return out_;
}
void
process_state(const state* s, int n, tgba_succ_iterator*)
{
std::ostringstream os;
os << "(#" << n << ") " << this->automata_->format_state(s);
name_[n] = os.str();
}
void
process_state(const state* s, int n, tgba_succ_iterator*)
{
std::ostringstream os;
os << "(#" << n << ") " << this->automata_->format_state(s);
name_[n] = os.str();
}
std::string
declare_state(const state* s, int n)
{
std::string str;
name_map_::const_iterator i = name_.find(n);
if (i == name_.end())
{
std::ostringstream os;
os << "(#" << n << ") " << this->automata_->format_state(s);
name_[n] = str = os.str();
}
else
{
str = i->second;
}
delete s;
return str;
}
std::string
declare_state(const state* s, int n)
{
std::string str;
name_map_::const_iterator i = name_.find(n);
if (i == name_.end())
{
std::ostringstream os;
os << "(#" << n << ") " << this->automata_->format_state(s);
name_[n] = str = os.str();
}
else
{
str = i->second;
}
delete s;
return str;
}
void
process_link(int in, int out, const tgba_succ_iterator* si)
{
// We might need to format out before process_state is called.
name_map_::const_iterator i = name_.find(out);
if (i == name_.end())
{
const state* s = si->current_state();
process_state(s, out, 0);
delete s;
}
void
process_link(int in, int out, const tgba_succ_iterator* si)
{
// We might need to format out before process_state is called.
name_map_::const_iterator i = name_.find(out);
if (i == name_.end())
{
const state* s = si->current_state();
process_state(s, out, 0);
delete s;
}
tgba_explicit::transition* t =
out_->create_transition(name_[in], name_[out]);
out_->add_conditions(t, si->current_condition());
out_->add_acceptance_conditions(t, si->current_acceptance_conditions());
}
tgba_explicit::transition* t =
out_->create_transition(name_[in], name_[out]);
out_->add_conditions(t, si->current_condition());
out_->add_acceptance_conditions(t, si->current_acceptance_conditions());
}
private:
tgba_explicit* out_;
typedef std::map<int, std::string> name_map_;
std::map<int, std::string> name_;
};
private:
tgba_explicit* out_;
typedef std::map<int, std::string> name_map_;
std::map<int, std::string> name_;
};
} // anonymous
tgba_explicit*
tgba_dupexp_bfs(const tgba* aut)

View file

@ -23,54 +23,57 @@
namespace spot
{
class numbered_state_heap_hash_map_const_iterator :
public numbered_state_heap_const_iterator
namespace
{
public:
numbered_state_heap_hash_map_const_iterator
(const numbered_state_heap_hash_map::hash_type& h)
: numbered_state_heap_const_iterator(), h(h)
class numbered_state_heap_hash_map_const_iterator:
public numbered_state_heap_const_iterator
{
}
public:
numbered_state_heap_hash_map_const_iterator
(const numbered_state_heap_hash_map::hash_type& h)
: numbered_state_heap_const_iterator(), h(h)
{
}
~numbered_state_heap_hash_map_const_iterator()
{
}
~numbered_state_heap_hash_map_const_iterator()
{
}
virtual void
first()
{
i = h.begin();
}
virtual void
first()
{
i = h.begin();
}
virtual void
next()
{
++i;
}
virtual void
next()
{
++i;
}
virtual bool
done() const
{
return i == h.end();
}
virtual bool
done() const
{
return i == h.end();
}
virtual const state*
get_state() const
{
return i->first;
}
virtual const state*
get_state() const
{
return i->first;
}
virtual int
get_index() const
{
return i->second;
}
virtual int
get_index() const
{
return i->second;
}
private:
numbered_state_heap_hash_map::hash_type::const_iterator i;
const numbered_state_heap_hash_map::hash_type& h;
};
private:
numbered_state_heap_hash_map::hash_type::const_iterator i;
const numbered_state_heap_hash_map::hash_type& h;
};
} // anonymous
numbered_state_heap_hash_map::~numbered_state_heap_hash_map()
{

View file

@ -119,12 +119,11 @@ namespace spot
virtual int size() const;
virtual numbered_state_heap_const_iterator* iterator() const;
protected:
typedef Sgi::hash_map<const state*, int,
state_ptr_hash, state_ptr_equal> hash_type;
protected:
hash_type h; ///< Map of visited states.
friend class numbered_state_heap_hash_map_const_iterator;
};
/// \brief Factory for numbered_state_heap_hash_map.

View file

@ -30,129 +30,132 @@
namespace spot
{
// At some point we'll need to print an acceptance set into LBTT's
// format. LBTT expects numbered acceptance sets, so first we'll
// number each acceptance condition, and latter when we have to print
// them we'll just have to look up each of them.
class acceptance_cond_splitter
namespace
{
public:
acceptance_cond_splitter(bdd all_acc)
// At some point we'll need to print an acceptance set into LBTT's
// format. LBTT expects numbered acceptance sets, so first we'll
// number each acceptance condition, and latter when we have to print
// them we'll just have to look up each of them.
class acceptance_cond_splitter
{
unsigned count = 0;
while (all_acc != bddfalse)
{
bdd acc = bdd_satone(all_acc);
all_acc -= acc;
sm[acc] = count++;
}
}
std::ostream&
split(std::ostream& os, bdd b)
{
while (b != bddfalse)
{
bdd acc = bdd_satone(b);
b -= acc;
os << sm[acc] << " ";
}
return os;
}
unsigned
count() const
{
return sm.size();
}
private:
typedef std::map<bdd, unsigned, bdd_less_than> split_map;
split_map sm;
};
// Convert a BDD formula to the syntax used by LBTT's transition guards.
// Conjunctions are printed by bdd_format_sat, so we just have
// to handle the other cases.
static std::string
bdd_to_lbtt(bdd b, const bdd_dict* d)
{
if (b == bddfalse)
return "f";
else if (b == bddtrue)
return "t";
else
public:
acceptance_cond_splitter(bdd all_acc)
{
bdd cube = bdd_satone(b);
b -= cube;
if (b != bddfalse)
unsigned count = 0;
while (all_acc != bddfalse)
{
return "| " + bdd_to_lbtt(b, d) + " " + bdd_to_lbtt(cube, d);
}
else
{
std::string res = "";
for (int count = bdd_nodecount(cube); count > 1; --count)
res += "& ";
return res + bdd_format_sat(d, cube);
bdd acc = bdd_satone(all_acc);
all_acc -= acc;
sm[acc] = count++;
}
}
}
std::ostream&
split(std::ostream& os, bdd b)
{
while (b != bddfalse)
{
bdd acc = bdd_satone(b);
b -= acc;
os << sm[acc] << " ";
}
return os;
}
class lbtt_bfs : public tgba_reachable_iterator_breadth_first
{
public:
lbtt_bfs(const tgba* a, std::ostream& os)
: tgba_reachable_iterator_breadth_first(a),
os_(os),
acc_count_(0),
acs_(a->all_acceptance_conditions())
unsigned
count() const
{
return sm.size();
}
private:
typedef std::map<bdd, unsigned, bdd_less_than> split_map;
split_map sm;
};
// Convert a BDD formula to the syntax used by LBTT's transition guards.
// Conjunctions are printed by bdd_format_sat, so we just have
// to handle the other cases.
static std::string
bdd_to_lbtt(bdd b, const bdd_dict* d)
{
// Count the number of acceptance_conditions.
bdd all = a->all_acceptance_conditions();
while (all != bddfalse)
{
bdd one = bdd_satone(all);
all -= one;
++acc_count_;
}
}
void
process_state(const state*, int n, tgba_succ_iterator*)
{
--n;
if (n == 0)
body_ << "0 1" << std::endl;
if (b == bddfalse)
return "f";
else if (b == bddtrue)
return "t";
else
body_ << "-1" << std::endl << n << " 0" << std::endl;
{
bdd cube = bdd_satone(b);
b -= cube;
if (b != bddfalse)
{
return "| " + bdd_to_lbtt(b, d) + " " + bdd_to_lbtt(cube, d);
}
else
{
std::string res = "";
for (int count = bdd_nodecount(cube); count > 1; --count)
res += "& ";
return res + bdd_format_sat(d, cube);
}
}
}
void
process_link(int, int out, const tgba_succ_iterator* si)
class lbtt_bfs : public tgba_reachable_iterator_breadth_first
{
body_ << out - 1 << " ";
acs_.split(body_, si->current_acceptance_conditions());
body_ << "-1 " << bdd_to_lbtt(si->current_condition(),
automata_->get_dict()) << std::endl;
}
public:
lbtt_bfs(const tgba* a, std::ostream& os)
: tgba_reachable_iterator_breadth_first(a),
os_(os),
acc_count_(0),
acs_(a->all_acceptance_conditions())
void
end()
{
os_ << seen.size() << " " << acc_count_ << "t" << std::endl
<< body_.str() << "-1" << std::endl;
}
{
// Count the number of acceptance_conditions.
bdd all = a->all_acceptance_conditions();
while (all != bddfalse)
{
bdd one = bdd_satone(all);
all -= one;
++acc_count_;
}
}
private:
std::ostream& os_;
std::ostringstream body_;
unsigned acc_count_;
acceptance_cond_splitter acs_;
};
void
process_state(const state*, int n, tgba_succ_iterator*)
{
--n;
if (n == 0)
body_ << "0 1" << std::endl;
else
body_ << "-1" << std::endl << n << " 0" << std::endl;
}
void
process_link(int, int out, const tgba_succ_iterator* si)
{
body_ << out - 1 << " ";
acs_.split(body_, si->current_acceptance_conditions());
body_ << "-1 " << bdd_to_lbtt(si->current_condition(),
automata_->get_dict()) << std::endl;
}
void
end()
{
os_ << seen.size() << " " << acc_count_ << "t" << std::endl
<< body_.str() << "-1" << std::endl;
}
private:
std::ostream& os_;
std::ostringstream body_;
unsigned acc_count_;
acceptance_cond_splitter acs_;
};
} // anonymous
std::ostream&
lbtt_reachable(std::ostream& os, const tgba* g)
@ -161,6 +164,4 @@ namespace spot
b.run();
return os;
}
}

View file

@ -31,225 +31,228 @@
namespace spot
{
using namespace ltl;
/// \brief Recursively translate a formula into a BDD.
///
/// The algorithm used here is adapted from Jean-Michel Couvreur's
/// Probataf tool.
class ltl_trad_visitor: public const_visitor
namespace
{
public:
ltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
: fact_(fact), root_(root)
{
}
using namespace ltl;
virtual
~ltl_trad_visitor()
/// \brief Recursively translate a formula into a BDD.
///
/// The algorithm used here is adapted from Jean-Michel Couvreur's
/// Probataf tool.
class ltl_trad_visitor: public const_visitor
{
}
public:
ltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
: fact_(fact), root_(root)
{
}
bdd
result()
{
return res_;
}
virtual
~ltl_trad_visitor()
{
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
}
bdd
result()
{
return res_;
}
void
visit(const constant* node)
{
switch (node->val())
{
case constant::True:
res_ = bddtrue;
return;
case constant::False:
res_ = bddfalse;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
}
void
visit(const unop* node)
{
switch (node->op())
{
case unop::F:
void
visit(const constant* node)
{
switch (node->val())
{
/*
Fx <=> x | XFx
In other words:
now <=> x | next
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
bdd x = recurse(node->child());
fact_.constrain_relation(bdd_apply(now, x | next, bddop_biimp));
/*
`x | next', doesn't actually encode the fact that x
should be fulfilled eventually. We ensure this by
creating a new generalized Büchi acceptance set, Acc[x],
and leave out of this set any transition going off NOW
without checking X. Such acceptance conditions are
checked for during the emptiness check.
*/
fact_.declare_acceptance_condition(x | !now, node->child());
res_ = now;
case constant::True:
res_ = bddtrue;
return;
case constant::False:
res_ = bddfalse;
return;
}
case unop::G:
{
bdd child = recurse(node->child());
// If G occurs at the top of the formula we don't
// need Now/Next variables. We just constrain
// the relation so that the child always happens.
// This saves 2 BDD variables.
if (root_)
{
fact_.constrain_relation(child);
res_ = child;
return;
}
// Gx <=> x && XGx
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, child & next,
bddop_biimp));
res_ = now;
return;
}
case unop::Not:
{
res_ = bdd_not(recurse(node->child()));
return;
}
case unop::X:
{
int v = fact_.create_state(node->child());
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, recurse(node->child()),
bddop_biimp));
res_ = next;
return;
}
}
/* Unreachable code. */
assert(0);
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* node)
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
switch (node->op())
{
case binop::Xor:
res_ = bdd_apply(f1, f2, bddop_xor);
return;
case binop::Implies:
res_ = bdd_apply(f1, f2, bddop_imp);
return;
case binop::Equiv:
res_ = bdd_apply(f1, f2, bddop_biimp);
return;
case binop::U:
void
visit(const unop* node)
{
switch (node->op())
{
/*
f1 U f2 <=> f2 | (f1 & X(f1 U f2))
In other words:
now <=> f2 | (f1 & next)
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, f2 | (f1 & next),
bddop_biimp));
/*
The rightmost conjunction, f1 & next, doesn't actually
encode the fact that f2 should be fulfilled eventually.
We declare an acceptance condition for this purpose (see
the comment in the unop::F case).
*/
fact_.declare_acceptance_condition(f2 | !now, node->second());
res_ = now;
return;
case unop::F:
{
/*
Fx <=> x | XFx
In other words:
now <=> x | next
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
bdd x = recurse(node->child());
fact_.constrain_relation(bdd_apply(now, x | next, bddop_biimp));
/*
`x | next', doesn't actually encode the fact that x
should be fulfilled eventually. We ensure this by
creating a new generalized Büchi acceptance set, Acc[x],
and leave out of this set any transition going off NOW
without checking X. Such acceptance conditions are
checked for during the emptiness check.
*/
fact_.declare_acceptance_condition(x | !now, node->child());
res_ = now;
return;
}
case unop::G:
{
bdd child = recurse(node->child());
// If G occurs at the top of the formula we don't
// need Now/Next variables. We just constrain
// the relation so that the child always happens.
// This saves 2 BDD variables.
if (root_)
{
fact_.constrain_relation(child);
res_ = child;
return;
}
// Gx <=> x && XGx
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, child & next,
bddop_biimp));
res_ = now;
return;
}
case unop::Not:
{
res_ = bdd_not(recurse(node->child()));
return;
}
case unop::X:
{
int v = fact_.create_state(node->child());
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, recurse(node->child()),
bddop_biimp));
res_ = next;
return;
}
}
case binop::R:
/* Unreachable code. */
assert(0);
}
void
visit(const binop* node)
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
switch (node->op())
{
/*
f1 R f2 <=> f2 & (f1 | X(f1 R f2))
In other words:
now <=> f2 & (f1 | next)
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, f2 & (f1 | next),
bddop_biimp));
res_ = now;
case binop::Xor:
res_ = bdd_apply(f1, f2, bddop_xor);
return;
case binop::Implies:
res_ = bdd_apply(f1, f2, bddop_imp);
return;
case binop::Equiv:
res_ = bdd_apply(f1, f2, bddop_biimp);
return;
case binop::U:
{
/*
f1 U f2 <=> f2 | (f1 & X(f1 U f2))
In other words:
now <=> f2 | (f1 & next)
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, f2 | (f1 & next),
bddop_biimp));
/*
The rightmost conjunction, f1 & next, doesn't actually
encode the fact that f2 should be fulfilled eventually.
We declare an acceptance condition for this purpose (see
the comment in the unop::F case).
*/
fact_.declare_acceptance_condition(f2 | !now, node->second());
res_ = now;
return;
}
case binop::R:
{
/*
f1 R f2 <=> f2 & (f1 | X(f1 R f2))
In other words:
now <=> f2 & (f1 | next)
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, f2 & (f1 | next),
bddop_biimp));
res_ = now;
return;
}
}
}
/* Unreachable code. */
assert(0);
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* node)
{
int op = -1;
bool root = false;
switch (node->op())
{
case multop::And:
op = bddop_and;
res_ = bddtrue;
// When the root formula is a conjunction it's ok to
// consider all children as root formulae. This allows the
// root-G trick to save many more variable. (See the
// translation of G.)
root = root_;
break;
case multop::Or:
op = bddop_or;
res_ = bddfalse;
break;
}
assert(op != -1);
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
{
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
}
}
void
visit(const multop* node)
{
int op = -1;
bool root = false;
switch (node->op())
{
case multop::And:
op = bddop_and;
res_ = bddtrue;
// When the root formula is a conjunction it's ok to
// consider all children as root formulae. This allows the
// root-G trick to save many more variable. (See the
// translation of G.)
root = root_;
break;
case multop::Or:
op = bddop_or;
res_ = bddfalse;
break;
}
assert(op != -1);
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
{
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
}
}
bdd
recurse(const formula* f, bool root = false)
{
ltl_trad_visitor v(fact_, root);
f->accept(v);
return v.result();
}
bdd
recurse(const formula* f, bool root = false)
{
ltl_trad_visitor v(fact_, root);
f->accept(v);
return v.result();
}
private:
bdd res_;
tgba_bdd_concrete_factory& fact_;
bool root_;
};
private:
bdd res_;
tgba_bdd_concrete_factory& fact_;
bool root_;
};
} // anonymous
tgba_bdd_concrete*
ltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict)

View file

@ -32,153 +32,155 @@
namespace spot
{
class never_claim_bfs : public tgba_reachable_iterator_breadth_first
namespace
{
public:
never_claim_bfs(const tgba_tba_proxy* a, std::ostream& os,
const ltl::formula* f)
: tgba_reachable_iterator_breadth_first(a),
os_(os), f_(f), accept_all_(-1), fi_needed_(false)
class never_claim_bfs : public tgba_reachable_iterator_breadth_first
{
}
public:
never_claim_bfs(const tgba_tba_proxy* a, std::ostream& os,
const ltl::formula* f)
: tgba_reachable_iterator_breadth_first(a),
os_(os), f_(f), accept_all_(-1), fi_needed_(false)
{
}
void
start()
{
os_ << "never {";
if (f_)
{
os_ << " /* ";
to_string(f_, os_);
os_ << " */";
}
os_ << std::endl;
init_ = automata_->get_init_state();
}
void
start()
{
os_ << "never {";
if (f_)
{
os_ << " /* ";
to_string(f_, os_);
os_ << " */";
}
os_ << std::endl;
init_ = automata_->get_init_state();
}
void
end()
{
if (fi_needed_)
os_ << " fi;" << std::endl;
if (accept_all_ != -1)
{
os_ << "accept_all:" << std::endl;
os_ << " skip" << std::endl;
}
os_ << "}" << std::endl;
delete init_;
}
void
end()
{
if (fi_needed_)
os_ << " fi;" << std::endl;
if (accept_all_ != -1)
{
os_ << "accept_all:" << std::endl;
os_ << " skip" << std::endl;
}
os_ << "}" << std::endl;
delete init_;
}
bool
state_is_accepting(const state *s)
{
return
dynamic_cast<const tgba_tba_proxy*>(automata_)->state_is_accepting(s);
}
bool
state_is_accepting(const state *s)
{
return
dynamic_cast<const tgba_tba_proxy*>(automata_)->state_is_accepting(s);
}
std::string
get_state_label(const state* s, int n)
{
std::string label;
if (s->compare(init_) == 0)
if (state_is_accepting(s))
label = "accept_init";
else
label = "T0_init";
else
{
std::ostringstream ost;
ost << n;
std::string ns(ost.str());
std::string
get_state_label(const state* s, int n)
{
std::string label;
if (s->compare(init_) == 0)
if (state_is_accepting(s))
label = "accept_init";
else
label = "T0_init";
else
{
std::ostringstream ost;
ost << n;
std::string ns(ost.str());
if (state_is_accepting(s))
{
tgba_succ_iterator* it = automata_->succ_iter(s);
it->first();
if (it->done())
label = "accept_S" + ns;
else
{
state* current = it->current_state();
if (it->current_condition() != bddtrue
|| s->compare(current) != 0)
label = "accept_S" + ns;
else
label = "accept_all";
delete current;
}
delete it;
}
else
label = "T0_S" + ns;
}
return label;
}
if (state_is_accepting(s))
{
tgba_succ_iterator* it = automata_->succ_iter(s);
it->first();
if (it->done())
label = "accept_S" + ns;
else
{
state* current = it->current_state();
if (it->current_condition() != bddtrue
|| s->compare(current) != 0)
label = "accept_S" + ns;
else
label = "accept_all";
delete current;
}
delete it;
}
else
label = "T0_S" + ns;
}
return label;
}
void
process_state(const state* s, int n, tgba_succ_iterator*)
{
tgba_succ_iterator* it = automata_->succ_iter(s);
it->first();
if (it->done())
{
if (fi_needed_ != 0)
os_ << " fi;" << std::endl;
os_ << get_state_label(s, n) << ": ";
os_ << "/* " << automata_->format_state(s) << " */";
os_ << std::endl;
os_ << " if" << std::endl;
os_ << " :: (0) -> goto " << get_state_label(s, n) << std::endl;
fi_needed_ = true;
}
else
{
state* current =it->current_state();
if (state_is_accepting(s)
&& it->current_condition() == bddtrue
&& s->compare(init_) != 0
&& s->compare(current) == 0)
accept_all_ = n;
else
{
if (fi_needed_)
os_ << " fi;" << std::endl;
os_ << get_state_label(s, n) << ": ";
os_ << "/* " << automata_->format_state(s) << " */";
os_ << std::endl;
os_ << " if" << std::endl;
fi_needed_ = true;
}
delete current;
}
delete it;
}
void
process_state(const state* s, int n, tgba_succ_iterator*)
{
tgba_succ_iterator* it = automata_->succ_iter(s);
it->first();
if (it->done())
{
if (fi_needed_ != 0)
os_ << " fi;" << std::endl;
os_ << get_state_label(s, n) << ": ";
os_ << "/* " << automata_->format_state(s) << " */";
os_ << std::endl;
os_ << " if" << std::endl;
os_ << " :: (0) -> goto " << get_state_label(s, n) << std::endl;
fi_needed_ = true;
}
else
{
state* current =it->current_state();
if (state_is_accepting(s)
&& it->current_condition() == bddtrue
&& s->compare(init_) != 0
&& s->compare(current) == 0)
accept_all_ = n;
else
{
if (fi_needed_)
os_ << " fi;" << std::endl;
os_ << get_state_label(s, n) << ": ";
os_ << "/* " << automata_->format_state(s) << " */";
os_ << std::endl;
os_ << " if" << std::endl;
fi_needed_ = true;
}
delete current;
}
delete it;
}
void
process_link(int in, int out, const tgba_succ_iterator* si)
{
if (in != accept_all_)
{
os_ << " :: (";
const ltl::formula* f = bdd_to_formula(si->current_condition(),
automata_->get_dict());
to_spin_string(f, os_);
destroy(f);
state* current = si->current_state();
os_ << ") -> goto " << get_state_label(current, out) << std::endl;
delete current;
}
}
void
process_link(int in, int out, const tgba_succ_iterator* si)
{
if (in != accept_all_)
{
os_ << " :: (";
const ltl::formula* f = bdd_to_formula(si->current_condition(),
automata_->get_dict());
to_spin_string(f, os_);
destroy(f);
state* current = si->current_state();
os_ << ") -> goto " << get_state_label(current, out) << std::endl;
delete current;
}
}
private:
std::ostream& os_;
const ltl::formula* f_;
int accept_all_;
bool fi_needed_;
state* init_;
};
private:
std::ostream& os_;
const ltl::formula* f_;
int accept_all_;
bool fi_needed_;
state* init_;
};
} // anonymous
std::ostream&
never_claim_reachable(std::ostream& os, const tgba_tba_proxy* g,

View file

@ -28,72 +28,73 @@
namespace spot
{
class save_bfs : public tgba_reachable_iterator_breadth_first
namespace
{
public:
save_bfs(const tgba* a, std::ostream& os)
: tgba_reachable_iterator_breadth_first(a), os_(os)
class save_bfs: public tgba_reachable_iterator_breadth_first
{
}
public:
save_bfs(const tgba* a, std::ostream& os)
: tgba_reachable_iterator_breadth_first(a), os_(os)
{
}
void
start()
{
os_ << "acc =";
print_acc(automata_->all_acceptance_conditions()) << ";" << std::endl;
}
void
start()
{
os_ << "acc =";
print_acc(automata_->all_acceptance_conditions()) << ";" << std::endl;
}
void
process_state(const state* s, int, tgba_succ_iterator* si)
{
const bdd_dict* d = automata_->get_dict();
std::string cur = automata_->format_state(s);
for (si->first(); !si->done(); si->next())
{
state* dest = si->current_state();
os_ << "\"" << cur << "\", \""
<< automata_->format_state(dest) << "\", \"";
escape_str(os_, bdd_format_formula(d, si->current_condition()));
os_ << "\",";
print_acc(si->current_acceptance_conditions()) << ";" << std::endl;
delete dest;
}
}
void
process_state(const state* s, int, tgba_succ_iterator* si)
{
const bdd_dict* d = automata_->get_dict();
std::string cur = automata_->format_state(s);
for (si->first(); !si->done(); si->next())
{
state* dest = si->current_state();
os_ << "\"" << cur << "\", \""
<< automata_->format_state(dest) << "\", \"";
escape_str(os_, bdd_format_formula(d, si->current_condition()));
os_ << "\",";
print_acc(si->current_acceptance_conditions()) << ";" << std::endl;
delete dest;
}
}
private:
std::ostream& os_;
std::ostream&
print_acc(bdd acc)
{
const bdd_dict* d = automata_->get_dict();
while (acc != bddfalse)
{
bdd cube = bdd_satone(acc);
acc -= cube;
while (cube != bddtrue)
{
assert(cube != bddfalse);
// Display the first variable that is positive.
// There should be only one per satisfaction.
if (bdd_high(cube) != bddfalse)
{
int v = bdd_var(cube);
bdd_dict::vf_map::const_iterator vi =
d->acc_formula_map.find(v);
assert(vi != d->acc_formula_map.end());
os_ << " \"";
escape_str(os_, ltl::to_string(vi->second)) << "\"";
break;
}
cube = bdd_low(cube);
}
}
return os_;
}
};
private:
std::ostream& os_;
std::ostream&
print_acc(bdd acc)
{
const bdd_dict* d = automata_->get_dict();
while (acc != bddfalse)
{
bdd cube = bdd_satone(acc);
acc -= cube;
while (cube != bddtrue)
{
assert(cube != bddfalse);
// Display the first variable that is positive.
// There should be only one per satisfaction.
if (bdd_high(cube) != bddfalse)
{
int v = bdd_var(cube);
bdd_dict::vf_map::const_iterator vi =
d->acc_formula_map.find(v);
assert(vi != d->acc_formula_map.end());
os_ << " \"";
escape_str(os_, ltl::to_string(vi->second)) << "\"";
break;
}
cube = bdd_low(cube);
}
}
return os_;
}
};
}
std::ostream&
tgba_save_reachable(std::ostream& os, const tgba* g)

View file

@ -25,30 +25,32 @@
namespace spot
{
class stats_bfs : public tgba_reachable_iterator_breadth_first
namespace
{
public:
stats_bfs(const tgba* a, tgba_statistics& s)
: tgba_reachable_iterator_breadth_first(a), s_(s)
class stats_bfs: public tgba_reachable_iterator_breadth_first
{
}
public:
stats_bfs(const tgba* a, tgba_statistics& s)
: tgba_reachable_iterator_breadth_first(a), s_(s)
{
}
void
process_state(const state*, int, tgba_succ_iterator*)
{
++s_.states;
}
void
process_state(const state*, int, tgba_succ_iterator*)
{
++s_.states;
}
void
process_link(int, int, const tgba_succ_iterator*)
{
++s_.transitions;
}
void
process_link(int, int, const tgba_succ_iterator*)
{
++s_.transitions;
}
private:
tgba_statistics& s_;
};
private:
tgba_statistics& s_;
};
} // anonymous
tgba_statistics
stats_reachable(const tgba* g)