ltlsynt rewrite

Introducing the new game interface
to ltlsynt.
ltlsynt now also uses direct strategy deduction
and formula decomposition.

* bin/ltlsynt.cc: Here
* spot/twaalgos/aiger.cc
, spot/twaalgos/aiger.hh: Use strategy_like
* spot/twaalgos/game.hh: Minor adaption
* spot/twaalgos/mealy_machine.cc: Use new interface
* spot/twaalgos/synthesis.cc
, spot/twaalgos/synthesis.hh: Spezialised split
* tests/core/ltlsynt.test
, tests/python/games.ipynb: Adapting
This commit is contained in:
philipp 2021-09-03 00:40:42 +02:00 committed by Florian Renkin
parent a5185c2123
commit 7d908b9320
9 changed files with 2809 additions and 2004 deletions

View file

@ -19,12 +19,6 @@
#include <config.h>
#include <memory>
#include <string>
#include <sstream>
#include <unordered_map>
#include <vector>
#include "argmatch.h"
#include "common_aoutput.hh"
@ -38,16 +32,11 @@
#include <spot/tl/formula.hh>
#include <spot/twa/twagraph.hh>
#include <spot/twaalgos/aiger.hh>
#include <spot/twaalgos/degen.hh>
#include <spot/twaalgos/determinize.hh>
#include <spot/twaalgos/game.hh>
#include <spot/twaalgos/hoa.hh>
#include <spot/twaalgos/parity.hh>
#include <spot/twaalgos/sbacc.hh>
#include <spot/twaalgos/simulation.hh>
#include <spot/twaalgos/minimize.hh>
#include <spot/twaalgos/product.hh>
#include <spot/twaalgos/synthesis.hh>
#include <spot/twaalgos/toparity.hh>
#include <spot/twaalgos/totgba.hh>
#include <spot/twaalgos/translate.hh>
enum
@ -60,30 +49,31 @@ enum
OPT_PRINT_AIGER,
OPT_PRINT_HOA,
OPT_REAL,
OPT_VERBOSE
OPT_VERBOSE,
OPT_VERIFY
};
static const argp_option options[] =
{
/**************************************************/
{ nullptr, 0, nullptr, 0, "Input options:", 1 },
{ "ins", OPT_INPUT, "PROPS", 0,
"comma-separated list of uncontrollable (a.k.a. input) atomic"
" propositions", 0},
{ "outs", OPT_OUTPUT, "PROPS", 0,
"comma-separated list of controllable (a.k.a. output) atomic"
" propositions", 0},
{ "ins", OPT_INPUT, "PROPS", OPTION_ARG_OPTIONAL,
"comma-separated list of controllable (a.k.a. output) atomic"
" propositions. If unspecified its the complement of \"outs\".", 0},
/**************************************************/
{ nullptr, 0, nullptr, 0, "Fine tuning:", 10 },
{ "algo", OPT_ALGO, "sd|ds|ps|lar|lar.old", 0,
"choose the algorithm for synthesis:\n"
" - sd: translate to tgba, split, then determinize (default)\n"
" - ds: translate to tgba, determinize, then split\n"
" - ps: translate to dpa, then split\n"
" - lar: translate to a deterministic automaton with arbitrary"
"choose the algorithm for synthesis:"
" \"sd\": translate to tgba, split, then determinize (default);"
" \"ds\": translate to tgba, determinize, then split;"
" \"ps\": translate to dpa, then split;"
" \"lar\": translate to a deterministic automaton with arbitrary"
" acceptance condition, then use LAR to turn to parity,"
" then split\n"
" - lar.old: old version of LAR, for benchmarking.\n", 0 },
" then split;"
" \"lar.old\": old version of LAR, for benchmarking.\n", 0 },
/**************************************************/
{ nullptr, 0, nullptr, 0, "Output options:", 20 },
{ "print-pg", OPT_PRINT, nullptr, 0,
@ -95,12 +85,16 @@ static const argp_option options[] =
{ "aiger", OPT_PRINT_AIGER, "ite|isop|both[+ud][+dc]"
"[+sub0|sub1|sub2]", OPTION_ARG_OPTIONAL,
"prints a winning strategy as an AIGER circuit. The first, and only "
"mandatory options defines the method to be used. ite for If-then-else "
"normal form, isop for irreducible sum of producs. Both tries both"
"encodings and keeps the smaller one. The other options further "
"refine the encoding, see aiger:::encode_bdd.", 0},
"mandatory option defines the method to be used. \"ite\" for "
"If-then-else normal form; "
"\"isop\" for irreducible sum of producs; "
"\"both\" tries both encodings and keeps the smaller one. "
"The other options further "
"refine the encoding, see aiger:::encode_bdd.", 0},
{ "verbose", OPT_VERBOSE, nullptr, 0,
"verbose mode", -1 },
{ "verify", OPT_VERIFY, nullptr, 0,
"verifies the strategy or (if demanded) aiger against the spec.", -1 },
{ "csv", OPT_CSV, "[>>]FILENAME", OPTION_ARG_OPTIONAL,
"output statistics as CSV in FILENAME or on standard output "
"(if '>>' is used to request append mode, the header line is "
@ -128,33 +122,18 @@ Exit status:\n\
1 if the input problem is not realizable\n\
2 if any error has been reported";
static std::vector<std::string> input_aps;
static std::vector<std::string> output_aps;
static std::vector<std::string> all_output_aps;
static std::vector<std::string> all_input_aps;
static const char* opt_csv = nullptr;
static bool opt_print_pg = false;
static bool opt_print_hoa = false;
static const char* opt_print_hoa_args = nullptr;
static bool opt_real = false;
static bool opt_do_verify = false;
static const char* opt_print_aiger = nullptr;
static spot::option_map extra_options;
static double trans_time = 0.0;
static double split_time = 0.0;
static double paritize_time = 0.0;
static double solve_time = 0.0;
static double strat2aut_time = 0.0;
static unsigned nb_states_dpa = 0;
static unsigned nb_states_parity_game = 0;
enum solver
{
DET_SPLIT,
SPLIT_DET,
DPA_SPLIT,
LAR,
LAR_OLD,
};
static spot::game_info gi;
static char const *const solver_names[] =
{
@ -174,22 +153,18 @@ static char const *const solver_args[] =
"lar.old",
nullptr
};
static solver const solver_types[] =
static spot::game_info::solver const solver_types[] =
{
DET_SPLIT, DET_SPLIT,
SPLIT_DET, SPLIT_DET,
DPA_SPLIT, DPA_SPLIT,
LAR,
LAR_OLD,
spot::game_info::solver::DET_SPLIT, spot::game_info::solver::DET_SPLIT,
spot::game_info::solver::SPLIT_DET, spot::game_info::solver::SPLIT_DET,
spot::game_info::solver::DPA_SPLIT, spot::game_info::solver::DPA_SPLIT,
spot::game_info::solver::LAR,
spot::game_info::solver::LAR_OLD,
};
ARGMATCH_VERIFY(solver_args, solver_types);
static solver opt_solver = SPLIT_DET;
static bool verbose = false;
namespace
{
auto str_tolower = [] (std::string s)
{
std::transform(s.begin(), s.end(), s.begin(),
@ -197,35 +172,15 @@ namespace
return s;
};
static spot::twa_graph_ptr
to_dpa(const spot::twa_graph_ptr& split)
{
// if the input automaton is deterministic, degeneralize it to be sure to
// end up with a parity automaton
auto dpa = spot::tgba_determinize(spot::degeneralize_tba(split),
false, true, true, false);
dpa->merge_edges();
if (opt_print_pg)
dpa = spot::sbacc(dpa);
spot::reduce_parity_here(dpa, true);
spot::change_parity_here(dpa, spot::parity_kind_max,
spot::parity_style_odd);
assert((
[&dpa]() -> bool
{
bool max, odd;
dpa->acc().is_parity(max, odd);
return max && odd;
}()));
assert(spot::is_deterministic(dpa));
return dpa;
}
static void
print_csv(spot::formula f, bool realizable)
print_csv(const spot::formula& f)
{
if (verbose)
std::cerr << "writing CSV to " << opt_csv << '\n';
auto& vs = gi.verbose_stream;
auto& bv = gi.bv;
if (not bv)
throw std::runtime_error("No information available for csv!");
if (vs)
*vs << "writing CSV to " << opt_csv << '\n';
output_file outf(opt_csv);
std::ostream& out = outf.ostream();
@ -234,306 +189,350 @@ namespace
// (Even if that file was empty initially.)
if (!outf.append())
{
out << ("\"formula\",\"algo\",\"trans_time\","
out << ("\"formula\",\"algo\",\"tot_time\",\"trans_time\","
"\"split_time\",\"todpa_time\"");
if (!opt_print_pg && !opt_print_hoa)
{
out << ",\"solve_time\"";
if (!opt_real)
out << ",\"strat2aut_time\"";
out << ",\"realizable\"";
if (opt_print_aiger)
out << ",\"aig_time\"";
out << ",\"realizable\""; //-1: Unknown, 0: Unreal, 1: Real
}
out << ",\"dpa_num_states\",\"parity_game_num_states\""
<< '\n';
out << ",\"dpa_num_states\",\"dpa_num_states_env\""
<< ",\"strat_num_states\",\"strat_num_edges\"";
if (opt_print_aiger)
out << ",\"nb latches\",\"nb gates\"";
out << '\n';
}
std::ostringstream os;
os << f;
spot::escape_rfc4180(out << '"', os.str());
out << "\",\"" << solver_names[opt_solver]
<< "\"," << trans_time
<< ',' << split_time
<< ',' << paritize_time;
out << "\",\"" << solver_names[(int) gi.s]
<< "\"," << bv->total_time
<< ',' << bv->trans_time
<< ',' << bv->split_time
<< ',' << bv->paritize_time;
if (!opt_print_pg && !opt_print_hoa)
{
out << ',' << solve_time;
out << ',' << bv->solve_time;
if (!opt_real)
out << ',' << strat2aut_time;
out << ',' << realizable;
out << ',' << bv->strat2aut_time;
if (opt_print_aiger)
out << ',' << bv->aig_time;
out << ',' << bv->realizable;
}
out << ',' << nb_states_dpa
<< ',' << nb_states_parity_game
<< '\n';
out << ',' << bv->nb_states_arena
<< ',' << bv->nb_states_arena_env
<< ',' << bv->nb_strat_states
<< ',' << bv->nb_strat_edges;
if (opt_print_aiger)
{
out << ',' << bv->nb_latches
<< ',' << bv->nb_gates;
}
out << '\n';
outf.close(opt_csv);
}
int
solve_formula(const spot::formula& f,
const std::vector<std::string>& input_aps,
const std::vector<std::string>& output_aps)
{
spot::stopwatch sw;
if (gi.bv)
sw.start();
auto safe_tot_time = [&]()
{
if (gi.bv)
gi.bv->total_time = sw.stop();
};
bool opt_decompose_ltl =
gi.opt.get("specification-decomposition", 0);
std::vector<spot::formula> sub_form;
std::vector<std::set<spot::formula>> sub_outs;
if (opt_decompose_ltl)
{
auto subs = split_independant_formulas(f, output_aps);
if (subs.first.size() > 1)
{
sub_form = subs.first;
sub_outs = subs.second;
}
}
// When trying to split the formula, we can apply transformations that
// increase its size. This is why we will use the original formula if it
// has not been cut.
if (!opt_decompose_ltl || sub_form.empty())
{
sub_form = { f };
sub_outs.resize(1);
std::transform(output_aps.begin(), output_aps.end(),
std::inserter(sub_outs[0], sub_outs[0].begin()),
[](const std::string& name) {
return spot::formula::ap(name);
});
}
std::vector<std::vector<std::string>> sub_outs_str;
std::transform(sub_outs.begin(), sub_outs.end(),
std::back_inserter(sub_outs_str),
[](const auto& forms)
{
std::vector<std::string> r;
r.reserve(forms.size());
for (auto f : forms)
r.push_back(f.ap_name());
return r;
});
assert((sub_form.size() == sub_outs.size())
&& (sub_form.size() == sub_outs_str.size()));
const bool want_game = opt_print_pg || opt_print_hoa;
std::vector<spot::twa_graph_ptr> arenas;
auto sub_f = sub_form.begin();
auto sub_o = sub_outs_str.begin();
std::vector<spot::strategy_like_t> strategies;
auto print_game = want_game ?
[](const spot::twa_graph_ptr& game)->void
{
if (opt_print_pg)
pg_print(std::cout, game);
else
spot::print_hoa(std::cout, game, opt_print_hoa_args) << '\n';
}
:
[](const spot::twa_graph_ptr&)->void{};
for (; sub_f != sub_form.end(); ++sub_f, ++sub_o)
{
// If we want to print a game,
// we never use the direct approach
spot::strategy_like_t strat{0, nullptr, bddfalse};
if (!want_game)
strat =
spot::try_create_direct_strategy(*sub_f, *sub_o, gi);
switch (strat.success)
{
case -1:
{
std::cout << "UNREALIZABLE" << std::endl;
safe_tot_time();
return 1;
}
case 0:
{
auto arena = spot::create_game(*sub_f, *sub_o, gi);
if (gi.bv)
{
gi.bv->nb_states_arena += arena->num_states();
auto spptr =
arena->get_named_prop<std::vector<bool>>("state-player");
assert(spptr);
gi.bv->nb_states_arena_env +=
std::count(spptr->cbegin(), spptr->cend(), false);
assert((spptr->at(arena->get_init_state_number()) == false)
&& "Env needs first turn");
}
print_game(arena);
if (!spot::solve_game(arena, gi))
{
std::cout << "UNREALIZABLE" << std::endl;
safe_tot_time();
return 1;
}
// Create the (partial) strategy
// only if we need it
if (!opt_real)
{
spot::strategy_like_t sl;
sl.success = 1;
sl.strat_like = spot::create_strategy(arena, gi);
sl.glob_cond = bddfalse;
strategies.push_back(sl);
}
break;
}
case 1:
{
// the direct approach yielded a strategy
// which can now be minimized
// We minimize only if we need it
assert(strat.strat_like && "Expected success but found no strat!");
if (!opt_real)
{
spot::stopwatch sw_min;
sw_min.start();
bool do_split = 3 <= gi.opt.get("minimization-level", 1);
if (do_split)
split_2step_fast_here(strat.strat_like,
spot::get_synthesis_outputs(strat.strat_like));
minimize_strategy_here(strat.strat_like, gi.minimize_lvl);
if (do_split)
strat.strat_like = spot::unsplit_2step(strat.strat_like);
auto delta = sw_min.stop();
if (gi.bv)
gi.bv->strat2aut_time += delta;
if (gi.verbose_stream)
*gi.verbose_stream << "final strategy has "
<< strat.strat_like->num_states()
<< " states and "
<< strat.strat_like->num_edges()
<< " edges\n"
<< "minimization took " << delta
<< " seconds\n";
}
SPOT_FALLTHROUGH;
}
case 2:
if (!opt_real)
strategies.push_back(strat);
break;
default:
throw std::runtime_error("ltlsynt: Recieved unexpected success "
"code during strategy generation!");
}
}
// If we only wanted to print the game we are done
if (want_game)
{
safe_tot_time();
return 0;
}
std::cout << "REALIZABLE" << std::endl;
if (opt_real)
{
safe_tot_time();
return 0;
}
// If we reach this line
// a strategy was found for each subformula
assert(strategies.size() == sub_form.size()
&& "Strategies are missing");
spot::aig_ptr saig = nullptr;
spot::twa_graph_ptr tot_strat = nullptr;
automaton_printer printer;
spot::process_timer timer_printer_dummy;
if (opt_print_aiger)
{
spot::stopwatch sw2;
if (gi.bv)
sw2.start();
saig = spot::strategies_to_aig(strategies, opt_print_aiger,
input_aps,
sub_outs_str);
if (gi.bv)
{
gi.bv->aig_time = sw2.stop();
gi.bv->nb_latches = saig->num_latches();
gi.bv->nb_gates = saig->num_gates();
}
if (gi.verbose_stream)
{
*gi.verbose_stream << "AIG circuit was created in "
<< gi.bv->aig_time
<< " and has " << saig->num_latches()
<< " latches and "
<< saig->num_gates() << " gates\n";
}
spot::print_aiger(std::cout, saig) << '\n';
}
else
{
assert(std::all_of(strategies.begin(), strategies.end(),
[](const auto& sl){return sl.success == 1; })
&& "ltlsynt: Can not handle GTBA as strategy.");
tot_strat = strategies.front().strat_like;
for (size_t i = 1; i < strategies.size(); ++i)
tot_strat = spot::product(tot_strat, strategies[i].strat_like);
printer.print(tot_strat, timer_printer_dummy);
}
// Final step: Do verification if demanded
if (!opt_do_verify)
{
safe_tot_time();
return 0;
}
// TODO: different options to speed up verification?!
spot::translator trans(gi.dict, &gi.opt);
auto neg_spec = trans.run(spot::formula::Not(f));
if (saig)
{
// Test the aiger
auto saigaut = saig->as_automaton(false);
if (neg_spec->intersects(saigaut))
throw std::runtime_error("Aiger and negated specification "
"do intersect -> strategy not OK.");
std::cout << "c\nCircuit was verified\n";
}
else if (tot_strat)
{
// Test the strat
if (neg_spec->intersects(tot_strat))
throw std::runtime_error("Strategy and negated specification "
"do intersect -> strategy not OK.");
std::cout << "/*Strategy was verified*/\n";
}
// Done
safe_tot_time();
return 0;
}
class ltl_processor final : public job_processor
{
private:
spot::translator& trans_;
std::vector<std::string> input_aps_;
std::vector<std::string> output_aps_;
public:
ltl_processor(spot::translator& trans,
std::vector<std::string> input_aps_,
ltl_processor(std::vector<std::string> input_aps_,
std::vector<std::string> output_aps_)
: trans_(trans), input_aps_(input_aps_), output_aps_(output_aps_)
: input_aps_(std::move(input_aps_)),
output_aps_(std::move(output_aps_))
{
}
int solve_formula(spot::formula f)
{
spot::process_timer timer;
timer.start();
spot::stopwatch sw;
bool want_time = verbose || opt_csv;
switch (opt_solver)
{
case LAR:
case LAR_OLD:
trans_.set_type(spot::postprocessor::Generic);
trans_.set_pref(spot::postprocessor::Deterministic);
break;
case DPA_SPLIT:
trans_.set_type(spot::postprocessor::ParityMaxOdd);
trans_.set_pref(spot::postprocessor::Deterministic
| spot::postprocessor::Colored);
break;
case DET_SPLIT:
case SPLIT_DET:
break;
}
if (want_time)
sw.start();
auto aut = trans_.run(&f);
bdd all_inputs = bddtrue;
bdd all_outputs = bddtrue;
for (const auto& ap_i : input_aps_)
{
unsigned v = aut->register_ap(spot::formula::ap(ap_i));
all_inputs &= bdd_ithvar(v);
}
for (const auto& ap_i : output_aps_)
{
unsigned v = aut->register_ap(spot::formula::ap(ap_i));
all_outputs &= bdd_ithvar(v);
}
if (want_time)
trans_time = sw.stop();
if (verbose)
{
std::cerr << "translating formula done in "
<< trans_time << " seconds\n";
std::cerr << "automaton has " << aut->num_states()
<< " states and " << aut->num_sets() << " colors\n";
}
spot::twa_graph_ptr dpa = nullptr;
switch (opt_solver)
{
case DET_SPLIT:
{
if (want_time)
sw.start();
auto tmp = to_dpa(aut);
if (verbose)
std::cerr << "determinization done\nDPA has "
<< tmp->num_states() << " states, "
<< tmp->num_sets() << " colors\n";
tmp->merge_states();
if (want_time)
paritize_time = sw.stop();
if (verbose)
std::cerr << "simplification done\nDPA has "
<< tmp->num_states() << " states\n"
<< "determinization and simplification took "
<< paritize_time << " seconds\n";
if (want_time)
sw.start();
dpa = split_2step(tmp, all_outputs, true, false);
spot::colorize_parity_here(dpa, true);
if (want_time)
split_time = sw.stop();
if (verbose)
std::cerr << "split inputs and outputs done in " << split_time
<< " seconds\nautomaton has "
<< tmp->num_states() << " states\n";
break;
}
case DPA_SPLIT:
{
if (want_time)
sw.start();
aut->merge_states();
if (want_time)
paritize_time = sw.stop();
if (verbose)
std::cerr << "simplification done in " << paritize_time
<< " seconds\nDPA has " << aut->num_states()
<< " states\n";
if (want_time)
sw.start();
dpa = split_2step(aut, all_outputs, true, false);
spot::colorize_parity_here(dpa, true);
if (want_time)
split_time = sw.stop();
if (verbose)
std::cerr << "split inputs and outputs done in " << split_time
<< " seconds\nautomaton has "
<< dpa->num_states() << " states\n";
break;
}
case SPLIT_DET:
{
if (want_time)
sw.start();
auto split = split_2step(aut, all_outputs,
true, false);
if (want_time)
split_time = sw.stop();
if (verbose)
std::cerr << "split inputs and outputs done in " << split_time
<< " seconds\nautomaton has "
<< split->num_states() << " states\n";
if (want_time)
sw.start();
dpa = to_dpa(split);
if (verbose)
std::cerr << "determinization done\nDPA has "
<< dpa->num_states() << " states, "
<< dpa->num_sets() << " colors\n";
dpa->merge_states();
if (verbose)
std::cerr << "simplification done\nDPA has "
<< dpa->num_states() << " states\n"
<< "determinization and simplification took "
<< paritize_time << " seconds\n";
if (want_time)
paritize_time = sw.stop();
// The named property "state-player" is set in split_2step
// but not propagated by to_dpa
alternate_players(dpa);
break;
}
case LAR:
case LAR_OLD:
{
if (want_time)
sw.start();
if (opt_solver == LAR)
{
dpa = spot::to_parity(aut);
// reduce_parity is called by to_parity(),
// but with colorization turned off.
spot::colorize_parity_here(dpa, true);
}
else
{
dpa = spot::to_parity_old(aut);
dpa = reduce_parity_here(dpa, true);
}
spot::change_parity_here(dpa, spot::parity_kind_max,
spot::parity_style_odd);
if (want_time)
paritize_time = sw.stop();
if (verbose)
std::cerr << "LAR construction done in " << paritize_time
<< " seconds\nDPA has "
<< dpa->num_states() << " states, "
<< dpa->num_sets() << " colors\n";
if (want_time)
sw.start();
dpa = split_2step(dpa, all_outputs, true, false);
spot::colorize_parity_here(dpa, true);
if (want_time)
split_time = sw.stop();
if (verbose)
std::cerr << "split inputs and outputs done in " << split_time
<< " seconds\nautomaton has "
<< dpa->num_states() << " states\n";
break;
}
}
nb_states_dpa = dpa->num_states();
if (opt_print_pg)
{
timer.stop();
pg_print(std::cout, dpa);
return 0;
}
if (opt_print_hoa)
{
timer.stop();
spot::print_hoa(std::cout, dpa, opt_print_hoa_args) << '\n';
return 0;
}
set_synthesis_outputs(dpa, all_outputs);
if (want_time)
sw.start();
bool player1winning = solve_parity_game(dpa);
if (want_time)
solve_time = sw.stop();
if (verbose)
std::cerr << "parity game solved in " << solve_time << " seconds\n";
nb_states_parity_game = dpa->num_states();
timer.stop();
if (player1winning)
{
std::cout << "REALIZABLE\n";
if (!opt_real)
{
if (want_time)
sw.start();
auto strat_aut = apply_strategy(dpa, true, false);
if (want_time)
strat2aut_time = sw.stop();
// output the winning strategy
if (opt_print_aiger)
spot::print_aiger(std::cout, strat_aut, opt_print_aiger);
else
{
automaton_printer printer;
printer.print(strat_aut, timer);
}
}
return 0;
}
else
{
std::cout << "UNREALIZABLE\n";
return 1;
}
}
int process_formula(spot::formula f, const char*, int) override
{
unsigned res = solve_formula(f);
int res = solve_formula(f, input_aps_, output_aps_);
if (opt_csv)
print_csv(f, res == 0);
print_csv(f);
return res;
}
};
}
static int
parse_opt(int key, char* arg, struct argp_state*)
static int
parse_opt(int key, char *arg, struct argp_state *)
{
// Called from C code, so should not raise any exception.
BEGIN_EXCEPTION_PROTECT;
switch (key)
{
case OPT_ALGO:
opt_solver = XARGMATCH("--algo", arg, solver_args, solver_types);
gi.s = XARGMATCH("--algo", arg, solver_args, solver_types);
break;
case OPT_CSV:
opt_csv = arg ? arg : "-";
if (not gi.bv)
gi.bv = spot::game_info::bench_var();
break;
case OPT_INPUT:
{
@ -542,7 +541,7 @@ parse_opt(int key, char* arg, struct argp_state*)
while (std::getline(aps, ap, ','))
{
ap.erase(remove_if(ap.begin(), ap.end(), isspace), ap.end());
input_aps.push_back(str_tolower(ap));
all_input_aps.push_back(str_tolower(ap));
}
break;
}
@ -553,31 +552,39 @@ parse_opt(int key, char* arg, struct argp_state*)
while (std::getline(aps, ap, ','))
{
ap.erase(remove_if(ap.begin(), ap.end(), isspace), ap.end());
output_aps.push_back(str_tolower(ap));
all_output_aps.push_back(str_tolower(ap));
}
break;
}
case OPT_PRINT:
opt_print_pg = true;
gi.force_sbacc = true;
break;
case OPT_PRINT_HOA:
opt_print_hoa = true;
opt_print_hoa_args = arg;
break;
case OPT_PRINT_AIGER:
opt_print_aiger = arg ? arg : "isop";
opt_print_aiger = arg ? arg : "INF";
break;
case OPT_REAL:
opt_real = true;
break;
case OPT_VERBOSE:
verbose = true;
gi.verbose_stream = &std::cerr;
if (not gi.bv)
gi.bv = spot::game_info::bench_var();
break;
case OPT_VERIFY:
opt_do_verify = true;
break;
case 'x':
{
const char* opt = extra_options.parse_options(arg);
const char* opt = gi.opt.parse_options(arg);
if (opt)
error(2, 0, "failed to parse --options near '%s'", opt);
// Dispatch the options to the gi structure
gi.minimize_lvl = gi.opt.get("minimization-level", 1);
}
break;
}
@ -589,24 +596,31 @@ int
main(int argc, char **argv)
{
return protected_main(argv, [&] {
extra_options.set("simul", 0); // no simulation, except...
extra_options.set("dpa-simul", 1); // ... after determinization
extra_options.set("tls-impl", 1); // no automata-based implication check
extra_options.set("wdba-minimize", 2); // minimize only syntactic oblig
//gi.opt.set("simul", 0); // no simulation, except...
//gi.opt.set("dpa-simul", 1); // ... after determinization
gi.opt.set("tls-impl", 1); // no automata-based implication check
gi.opt.set("wdba-minimize", 2); // minimize only syntactic oblig
const argp ap = { options, parse_opt, nullptr,
argp_program_doc, children, nullptr, nullptr };
if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
exit(err);
check_no_formula();
// Setup the dictionary now, so that BuDDy's initialization is
// not measured in our timings.
spot::bdd_dict_ptr dict = spot::make_bdd_dict();
spot::translator trans(dict, &extra_options);
ltl_processor processor(trans, input_aps, output_aps);
// Check if inputs and outputs are distinct
// Inputs can be empty, outputs not
if (not all_input_aps.empty())
{
for (const auto& ai : all_input_aps)
if (std::count(all_output_aps.begin(), all_output_aps.end(), ai))
throw std::runtime_error("ltlsynt(): " + ai +
" appears in the input AND output APs.");
}
ltl_processor processor(all_input_aps, all_output_aps);
auto res = processor.run();
// Diagnose unused -x options
extra_options.report_unused_options();
return processor.run();
gi.opt.report_unused_options();
return res;
});
}