* src/tgba/ltl2tgba.hh, src/tgba/ltl2tgba.cc: Move ...
* src/tgbaalgos/ltl2tgba.hh, src/tgbaalgos/ltl2tgba.cc: ... here. * src/tgba/Makefile.am, src/tgbaalgos/Makefile.am: Adjust. * src/tgba/public.hh: Do not include ltl2tgba.hh. * src/tgbatests/explprod.cc, src/tgbatests/ltl2tgba.cc, src/tgbatests/ltlprod.cc, src/tgbatests/mixprod.cc, src/tgbatests/reach.cc, src/tgbatests/tripprod.cc: Adjust inclusions.
This commit is contained in:
parent
f4629246f7
commit
7fdd78614c
11 changed files with 18 additions and 10 deletions
|
|
@ -5,9 +5,12 @@ tgbaalgosdir = $(pkgincludedir)/tgbaalgos
|
|||
|
||||
tgbaalgos_HEADERS = \
|
||||
dotty.hh \
|
||||
ltl2tgba.hh \
|
||||
save.hh
|
||||
|
||||
noinst_LTLIBRARIES = libtgbaalgos.la
|
||||
libtgbaalgos_la_SOURCES = \
|
||||
dotty.cc \
|
||||
ltl2tgba.cc \
|
||||
save.cc
|
||||
|
||||
|
|
|
|||
236
src/tgbaalgos/ltl2tgba.cc
Normal file
236
src/tgbaalgos/ltl2tgba.cc
Normal file
|
|
@ -0,0 +1,236 @@
|
|||
#include "ltlast/visitor.hh"
|
||||
#include "ltlast/allnodes.hh"
|
||||
#include "ltlvisit/lunabbrev.hh"
|
||||
#include "ltlvisit/nenoform.hh"
|
||||
#include "ltlvisit/destroy.hh"
|
||||
#include "tgba/tgbabddconcretefactory.hh"
|
||||
#include <cassert>
|
||||
|
||||
#include "ltl2tgba.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
using namespace ltl;
|
||||
|
||||
/// \brief Recursively translate a formula into a BDD.
|
||||
///
|
||||
/// The algorithm used here is adapted from Jean-Michel Couvreur's
|
||||
/// Probataf tool.
|
||||
class ltl_trad_visitor: public const_visitor
|
||||
{
|
||||
public:
|
||||
ltl_trad_visitor(tgba_bdd_concrete_factory& fact)
|
||||
: fact_(fact)
|
||||
{
|
||||
}
|
||||
|
||||
virtual
|
||||
~ltl_trad_visitor()
|
||||
{
|
||||
}
|
||||
|
||||
bdd
|
||||
result()
|
||||
{
|
||||
return res_;
|
||||
}
|
||||
|
||||
void
|
||||
visit(const atomic_prop* node)
|
||||
{
|
||||
res_ = fact_.ithvar(fact_.create_atomic_prop(node));
|
||||
}
|
||||
|
||||
void
|
||||
visit(const constant* node)
|
||||
{
|
||||
switch (node->val())
|
||||
{
|
||||
case constant::True:
|
||||
res_ = bddtrue;
|
||||
return;
|
||||
case constant::False:
|
||||
res_ = bddfalse;
|
||||
return;
|
||||
}
|
||||
/* Unreachable code. */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(const unop* node)
|
||||
{
|
||||
switch (node->op())
|
||||
{
|
||||
case unop::F:
|
||||
{
|
||||
/*
|
||||
Fx <=> x | XFx
|
||||
In other words:
|
||||
now <=> x | next
|
||||
*/
|
||||
int v = fact_.create_state(node);
|
||||
bdd now = fact_.ithvar(v);
|
||||
bdd next = fact_.ithvar(v + 1);
|
||||
bdd x = recurse(node->child());
|
||||
fact_.add_relation(bdd_apply(now, x | next, bddop_biimp));
|
||||
/*
|
||||
`x | next', doesn't actually encode the fact that x
|
||||
should be fulfilled eventually. We ensure
|
||||
this by creating a new generalized Büchi accepting set,
|
||||
Acc[x], and leave any transition going to NEXT without
|
||||
checking X out of this set. Such accepting conditions
|
||||
are checked for during the emptiness check.
|
||||
*/
|
||||
fact_.declare_accepting_condition(x | !next, node->child());
|
||||
res_ = now;
|
||||
return;
|
||||
}
|
||||
case unop::G:
|
||||
{
|
||||
// Gx <=> x && XGx
|
||||
int v = fact_.create_state(node);
|
||||
bdd now = fact_.ithvar(v);
|
||||
bdd next = fact_.ithvar(v + 1);
|
||||
fact_.add_relation(bdd_apply(now, recurse(node->child()) & next,
|
||||
bddop_biimp));
|
||||
res_ = now;
|
||||
return;
|
||||
}
|
||||
case unop::Not:
|
||||
{
|
||||
res_ = bdd_not(recurse(node->child()));
|
||||
return;
|
||||
}
|
||||
case unop::X:
|
||||
{
|
||||
// FIXME: Can be smarter on X(a U b) and X(a R b).
|
||||
int v = fact_.create_state(node->child());
|
||||
bdd now = fact_.ithvar(v);
|
||||
bdd next = fact_.ithvar(v + 1);
|
||||
fact_.add_relation(bdd_apply(now, recurse(node->child()),
|
||||
bddop_biimp));
|
||||
res_ = next;
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Unreachable code. */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(const binop* node)
|
||||
{
|
||||
bdd f1 = recurse(node->first());
|
||||
bdd f2 = recurse(node->second());
|
||||
|
||||
switch (node->op())
|
||||
{
|
||||
case binop::Xor:
|
||||
res_ = bdd_apply(f1, f2, bddop_xor);
|
||||
return;
|
||||
case binop::Implies:
|
||||
res_ = bdd_apply(f1, f2, bddop_imp);
|
||||
return;
|
||||
case binop::Equiv:
|
||||
res_ = bdd_apply(f1, f2, bddop_biimp);
|
||||
return;
|
||||
case binop::U:
|
||||
{
|
||||
/*
|
||||
f1 U f2 <=> f2 | (f1 & X(f1 U f2))
|
||||
In other words:
|
||||
now <=> f2 | (f1 & next)
|
||||
*/
|
||||
int v = fact_.create_state(node);
|
||||
bdd now = fact_.ithvar(v);
|
||||
bdd next = fact_.ithvar(v + 1);
|
||||
fact_.add_relation(bdd_apply(now, f2 | (f1 & next), bddop_biimp));
|
||||
/*
|
||||
The rightmost conjunction, f1 & next, doesn't actually
|
||||
encode the fact that f2 should be fulfilled eventually.
|
||||
We declare an accepting condition for this purpose (see
|
||||
the comment in the unop::F case).
|
||||
*/
|
||||
fact_.declare_accepting_condition(f2 | !next, node->second());
|
||||
res_ = now;
|
||||
return;
|
||||
}
|
||||
case binop::R:
|
||||
{
|
||||
/*
|
||||
f1 R f2 <=> f2 & (f1 | X(f1 U f2))
|
||||
In other words:
|
||||
now <=> f2 & (f1 | next)
|
||||
*/
|
||||
int v = fact_.create_state(node);
|
||||
bdd now = fact_.ithvar(v);
|
||||
bdd next = fact_.ithvar(v + 1);
|
||||
fact_.add_relation(bdd_apply(now, f2 & (f1 | next), bddop_biimp));
|
||||
res_ = now;
|
||||
return;
|
||||
}
|
||||
}
|
||||
/* Unreachable code. */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(const multop* node)
|
||||
{
|
||||
int op = -1;
|
||||
switch (node->op())
|
||||
{
|
||||
case multop::And:
|
||||
op = bddop_and;
|
||||
res_ = bddtrue;
|
||||
break;
|
||||
case multop::Or:
|
||||
op = bddop_or;
|
||||
res_ = bddfalse;
|
||||
break;
|
||||
}
|
||||
assert(op != -1);
|
||||
unsigned s = node->size();
|
||||
for (unsigned n = 0; n < s; ++n)
|
||||
{
|
||||
res_ = bdd_apply(res_, recurse(node->nth(n)), op);
|
||||
}
|
||||
}
|
||||
|
||||
bdd
|
||||
recurse(const formula* f)
|
||||
{
|
||||
ltl_trad_visitor v(*this);
|
||||
f->accept(v);
|
||||
return v.result();
|
||||
}
|
||||
|
||||
private:
|
||||
bdd res_;
|
||||
tgba_bdd_concrete_factory& fact_;
|
||||
};
|
||||
|
||||
tgba_bdd_concrete
|
||||
ltl_to_tgba(const ltl::formula* f)
|
||||
{
|
||||
// Normalize the formula. We want all the negation on
|
||||
// the atomic proposition. We also suppress logic
|
||||
// abbreviation such as <=>, =>, or XOR, since they
|
||||
// would involve negations at the BDD level.
|
||||
const ltl::formula* f1 = ltl::unabbreviate_logic(f);
|
||||
const ltl::formula* f2 = ltl::negative_normal_form(f1);
|
||||
ltl::destroy(f1);
|
||||
|
||||
// Traverse the formula and draft the automaton in a factory.
|
||||
tgba_bdd_concrete_factory fact;
|
||||
ltl_trad_visitor v(fact);
|
||||
f2->accept(v);
|
||||
ltl::destroy(f2);
|
||||
fact.finish();
|
||||
|
||||
// Finally setup the resulting automaton.
|
||||
tgba_bdd_concrete g(fact, v.result());
|
||||
return g;
|
||||
}
|
||||
}
|
||||
13
src/tgbaalgos/ltl2tgba.hh
Normal file
13
src/tgbaalgos/ltl2tgba.hh
Normal file
|
|
@ -0,0 +1,13 @@
|
|||
#ifndef SPOT_TGBA_LTL2TGBA_HH
|
||||
# define SPOT_TGBA_LTL2TGBA_HH
|
||||
|
||||
#include "ltlast/formula.hh"
|
||||
#include "tgba/tgbabddconcrete.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
/// Build a spot::tgba_bdd_concrete from an LTL formula.
|
||||
tgba_bdd_concrete ltl_to_tgba(const ltl::formula* f);
|
||||
}
|
||||
|
||||
#endif // SPOT_TGBA_LTL2TGBA_HH
|
||||
Loading…
Add table
Add a link
Reference in a new issue