product: add product_xor() and product_xnor()
* spot/twaalgos/product.cc, spot/twaalgos/product.hh: Add those functions. * tests/python/_product_weak.ipynb, tests/python/except.py: Test them. * NEWS: Mention them.
This commit is contained in:
parent
a78137f9d4
commit
822b749166
5 changed files with 8975 additions and 200 deletions
11
NEWS
11
NEWS
|
|
@ -1,6 +1,13 @@
|
|||
New in spot 2.9.0.dev (not yet released)
|
||||
|
||||
Nothing yet.
|
||||
Library:
|
||||
|
||||
- product_xor() and product_xnor() are two new versions of the
|
||||
synchronized product. They only work with operands that are
|
||||
deterministic automata, and build automata whose language are
|
||||
respectively the symmetric difference of the operands, and the
|
||||
complement of that.
|
||||
|
||||
|
||||
New in spot 2.9 (2020-04-30)
|
||||
|
||||
|
|
@ -19,7 +26,7 @@ New in spot 2.9 (2020-04-30)
|
|||
spot-rejected-word: "!a; !a; cycle{a}"
|
||||
|
||||
- autfilt learned the --partial-degeneralize option, to remove
|
||||
conjunctions of Inf, or disjunction of Fin that appears in
|
||||
conjunctions of Inf, or disjunctions of Fin that appears in
|
||||
arbitrary conditions.
|
||||
|
||||
- ltlfilt and autfilt learned a --nth=RANGE (a.k.a. -N) option to
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@
|
|||
#include <spot/twa/twagraph.hh>
|
||||
#include <spot/twaalgos/complete.hh>
|
||||
#include <spot/twaalgos/sccinfo.hh>
|
||||
#include <spot/twaalgos/isdet.hh>
|
||||
#include <deque>
|
||||
#include <unordered_map>
|
||||
#include <spot/misc/hash.hh>
|
||||
|
|
@ -41,7 +42,6 @@ namespace spot
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
static
|
||||
void product_main(const const_twa_graph_ptr& left,
|
||||
|
|
@ -100,12 +100,15 @@ namespace spot
|
|||
}
|
||||
}
|
||||
|
||||
enum acc_op { and_acc, or_acc, xor_acc, xnor_acc };
|
||||
|
||||
|
||||
static
|
||||
twa_graph_ptr product_aux(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right,
|
||||
unsigned left_state,
|
||||
unsigned right_state,
|
||||
bool and_acc,
|
||||
acc_op aop,
|
||||
const output_aborter* aborter)
|
||||
{
|
||||
if (SPOT_UNLIKELY(!(left->is_existential() && right->is_existential())))
|
||||
|
|
@ -122,164 +125,271 @@ namespace spot
|
|||
bool leftweak = left->prop_weak().is_true();
|
||||
bool rightweak = right->prop_weak().is_true();
|
||||
// We have optimization to the standard product in case one
|
||||
// of the arguments is weak. However these optimizations
|
||||
// are pointless if the said arguments are "t" or "f".
|
||||
if ((leftweak || rightweak)
|
||||
&& (left->num_sets() > 0) && (right->num_sets() > 0))
|
||||
// of the arguments is weak.
|
||||
if (leftweak || rightweak)
|
||||
{
|
||||
// If both automata are weak, we can restrict the result to
|
||||
// Büchi or co-Büchi. We will favor Büchi unless the two
|
||||
// operands are co-Büchi.
|
||||
// t, f, Büchi or co-Büchi. We use co-Büchi only when
|
||||
// t and f cannot be used, and both acceptance conditions
|
||||
// are in {t,f,co-Büchi}.
|
||||
if (leftweak && rightweak)
|
||||
{
|
||||
weak_weak:
|
||||
res->prop_weak(true);
|
||||
acc_cond::mark_t accmark = {0};
|
||||
acc_cond::mark_t rejmark = {};
|
||||
if (left->acc().is_co_buchi() && right->acc().is_co_buchi())
|
||||
auto& lacc = left->acc();
|
||||
auto& racc = right->acc();
|
||||
if ((lacc.is_co_buchi() && (racc.is_co_buchi()
|
||||
|| racc.num_sets() == 0))
|
||||
|| (lacc.num_sets() == 0 && racc.is_co_buchi()))
|
||||
{
|
||||
res->set_co_buchi();
|
||||
std::swap(accmark, rejmark);
|
||||
}
|
||||
else if ((aop == and_acc && lacc.is_t() && racc.is_t())
|
||||
|| (aop == or_acc && (lacc.is_t() || racc.is_t()))
|
||||
|| (aop == xnor_acc && ((lacc.is_t() && racc.is_t()) ||
|
||||
(lacc.is_f() && racc.is_f())))
|
||||
|| (aop == xor_acc && ((lacc.is_t() && racc.is_f()) ||
|
||||
(lacc.is_f() && racc.is_t()))))
|
||||
{
|
||||
res->set_acceptance(0, acc_cond::acc_code::t());
|
||||
accmark = {};
|
||||
}
|
||||
else if ((aop == and_acc && (lacc.is_f() || racc.is_f()))
|
||||
|| (aop == or_acc && lacc.is_f() && racc.is_f())
|
||||
|| (aop == xor_acc && ((lacc.is_t() && racc.is_t()) ||
|
||||
(lacc.is_f() && racc.is_f())))
|
||||
|| (aop == xnor_acc && ((lacc.is_t() && racc.is_f()) ||
|
||||
(lacc.is_f() && racc.is_t()))))
|
||||
{
|
||||
res->set_acceptance(0, acc_cond::acc_code::f());
|
||||
accmark = {};
|
||||
}
|
||||
else
|
||||
{
|
||||
res->set_buchi();
|
||||
}
|
||||
res->prop_weak(true);
|
||||
auto& lacc = left->acc();
|
||||
auto& racc = right->acc();
|
||||
if (and_acc)
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) && racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
else
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) || racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
switch (aop)
|
||||
{
|
||||
case and_acc:
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) && racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
break;
|
||||
case or_acc:
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) || racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
break;
|
||||
case xor_acc:
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) ^ racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
break;
|
||||
case xnor_acc:
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml) == racc.accepting(mr))
|
||||
return accmark;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (!rightweak)
|
||||
{
|
||||
if (and_acc)
|
||||
switch (aop)
|
||||
{
|
||||
auto rightunsatmark = right->acc().unsat_mark();
|
||||
if (!rightunsatmark.first)
|
||||
{
|
||||
// Left is weak. Right was not weak, but it is
|
||||
// always accepting. We can therefore pretend
|
||||
// that right is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(right);
|
||||
acc_cond::mark_t rejmark = rightunsatmark.second;
|
||||
auto& lacc = left->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml))
|
||||
return mr;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
}
|
||||
else
|
||||
{
|
||||
auto rightsatmark = right->acc().sat_mark();
|
||||
if (!rightsatmark.first)
|
||||
{
|
||||
// Left is weak. Right was not weak, but it is
|
||||
// always rejecting. We can therefore pretend
|
||||
// that right is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(right);
|
||||
acc_cond::mark_t accmark = rightsatmark.second;
|
||||
auto& lacc = left->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (!lacc.accepting(ml))
|
||||
return mr;
|
||||
else
|
||||
return accmark;
|
||||
}, aborter);
|
||||
|
||||
case and_acc:
|
||||
{
|
||||
auto rightunsatmark = right->acc().unsat_mark();
|
||||
if (!rightunsatmark.first)
|
||||
{
|
||||
// Left is weak. Right was not weak, but it is
|
||||
// always accepting. We can therefore pretend
|
||||
// that right is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(right);
|
||||
acc_cond::mark_t rejmark = rightunsatmark.second;
|
||||
auto& lacc = left->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (lacc.accepting(ml))
|
||||
return mr;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
break;
|
||||
}
|
||||
case or_acc:
|
||||
{
|
||||
auto rightsatmark = right->acc().sat_mark();
|
||||
if (!rightsatmark.first)
|
||||
{
|
||||
// Left is weak. Right was not weak, but it is
|
||||
// always rejecting. We can therefore pretend
|
||||
// that right is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(right);
|
||||
acc_cond::mark_t accmark = rightsatmark.second;
|
||||
auto& lacc = left->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (!lacc.accepting(ml))
|
||||
return mr;
|
||||
else
|
||||
return accmark;
|
||||
}, aborter);
|
||||
break;
|
||||
}
|
||||
case xor_acc:
|
||||
case xnor_acc:
|
||||
{
|
||||
auto rightsatmark = right->acc().sat_mark();
|
||||
auto rightunsatmark = right->acc().unsat_mark();
|
||||
if (!rightunsatmark.first || !rightsatmark.first)
|
||||
{
|
||||
// Left is weak. Right was not weak, but it
|
||||
// is either always rejecting or always
|
||||
// accepting. We can therefore pretend that
|
||||
// right is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
goto generalcase;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
else // right weak
|
||||
{
|
||||
assert(!leftweak);
|
||||
if (and_acc)
|
||||
switch (aop)
|
||||
{
|
||||
auto leftunsatmark = left->acc().unsat_mark();
|
||||
if (!leftunsatmark.first)
|
||||
{
|
||||
// Right is weak. Left was not weak, but it is
|
||||
// always accepting. We can therefore pretend
|
||||
// that left is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(left);
|
||||
acc_cond::mark_t rejmark = leftunsatmark.second;
|
||||
auto& racc = right->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (racc.accepting(mr))
|
||||
return ml;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
}
|
||||
else
|
||||
{
|
||||
auto leftsatmark = left->acc().sat_mark();
|
||||
if (!leftsatmark.first)
|
||||
{
|
||||
// Right is weak. Left was not weak, but it is
|
||||
// always rejecting. We can therefore pretend
|
||||
// that left is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(left);
|
||||
acc_cond::mark_t accmark = leftsatmark.second;
|
||||
auto& racc = right->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (!racc.accepting(mr))
|
||||
return ml;
|
||||
else
|
||||
return accmark;
|
||||
}, aborter);
|
||||
case and_acc:
|
||||
{
|
||||
auto leftunsatmark = left->acc().unsat_mark();
|
||||
if (!leftunsatmark.first)
|
||||
{
|
||||
// Right is weak. Left was not weak, but it is
|
||||
// always accepting. We can therefore pretend
|
||||
// that left is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(left);
|
||||
acc_cond::mark_t rejmark = leftunsatmark.second;
|
||||
auto& racc = right->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (racc.accepting(mr))
|
||||
return ml;
|
||||
else
|
||||
return rejmark;
|
||||
}, aborter);
|
||||
break;
|
||||
}
|
||||
case or_acc:
|
||||
{
|
||||
auto leftsatmark = left->acc().sat_mark();
|
||||
if (!leftsatmark.first)
|
||||
{
|
||||
// Right is weak. Left was not weak, but it is
|
||||
// always rejecting. We can therefore pretend
|
||||
// that left is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
res->copy_acceptance_of(left);
|
||||
acc_cond::mark_t accmark = leftsatmark.second;
|
||||
auto& racc = right->acc();
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
if (!racc.accepting(mr))
|
||||
return ml;
|
||||
else
|
||||
return accmark;
|
||||
}, aborter);
|
||||
|
||||
break;
|
||||
}
|
||||
case xor_acc:
|
||||
case xnor_acc:
|
||||
{
|
||||
auto leftsatmark = left->acc().sat_mark();
|
||||
auto leftunsatmark = left->acc().unsat_mark();
|
||||
if (!leftunsatmark.first || !leftsatmark.first)
|
||||
{
|
||||
// Right is weak. Left was not weak, but it
|
||||
// is either always rejecting or always
|
||||
// accepting. We can therefore pretend that
|
||||
// left is weak.
|
||||
goto weak_weak;
|
||||
}
|
||||
goto generalcase;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else // general case
|
||||
{
|
||||
generalcase:
|
||||
auto left_num = left->num_sets();
|
||||
auto& left_acc = left->get_acceptance();
|
||||
auto right_acc = right->get_acceptance() << left_num;
|
||||
if (and_acc)
|
||||
right_acc &= left->get_acceptance();
|
||||
else
|
||||
right_acc |= left->get_acceptance();
|
||||
switch (aop)
|
||||
{
|
||||
case and_acc:
|
||||
right_acc &= left_acc;
|
||||
break;
|
||||
case or_acc:
|
||||
right_acc |= left_acc;
|
||||
break;
|
||||
case xor_acc:
|
||||
{
|
||||
auto tmp = right_acc.complement() & left_acc;
|
||||
right_acc &= left_acc.complement();
|
||||
right_acc |= tmp;
|
||||
break;
|
||||
}
|
||||
case xnor_acc:
|
||||
{
|
||||
auto tmp = right_acc.complement() & left_acc.complement();
|
||||
right_acc &= left_acc;
|
||||
tmp |= right_acc;
|
||||
std::swap(tmp, right_acc);
|
||||
break;
|
||||
}
|
||||
}
|
||||
res->set_acceptance(left_num + right->num_sets(), right_acc);
|
||||
|
||||
product_main(left, right, left_state, right_state, res,
|
||||
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
||||
{
|
||||
return ml | (mr << left_num);
|
||||
}, aborter);
|
||||
|
||||
}
|
||||
|
||||
if (!res) // aborted
|
||||
|
|
@ -323,7 +433,7 @@ namespace spot
|
|||
unsigned right_state,
|
||||
const output_aborter* aborter)
|
||||
{
|
||||
return product_aux(left, right, left_state, right_state, true, aborter);
|
||||
return product_aux(left, right, left_state, right_state, and_acc, aborter);
|
||||
}
|
||||
|
||||
twa_graph_ptr product(const const_twa_graph_ptr& left,
|
||||
|
|
@ -341,7 +451,7 @@ namespace spot
|
|||
unsigned right_state)
|
||||
{
|
||||
return product_aux(complete(left), complete(right),
|
||||
left_state, right_state, false, nullptr);
|
||||
left_state, right_state, or_acc, nullptr);
|
||||
}
|
||||
|
||||
twa_graph_ptr product_or(const const_twa_graph_ptr& left,
|
||||
|
|
@ -352,6 +462,32 @@ namespace spot
|
|||
right->get_init_state_number());
|
||||
}
|
||||
|
||||
twa_graph_ptr product_xor(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right)
|
||||
{
|
||||
if (SPOT_UNLIKELY(!is_deterministic(left) || !is_deterministic(right)))
|
||||
throw std::runtime_error
|
||||
("product_xor() only works with deterministic automata");
|
||||
|
||||
return product_aux(complete(left), complete(right),
|
||||
left->get_init_state_number(),
|
||||
right->get_init_state_number(),
|
||||
xor_acc, nullptr);
|
||||
}
|
||||
|
||||
twa_graph_ptr product_xnor(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right)
|
||||
{
|
||||
if (SPOT_UNLIKELY(!is_deterministic(left) || !is_deterministic(right)))
|
||||
throw std::runtime_error
|
||||
("product_xnor() only works with deterministic automata");
|
||||
|
||||
return product_aux(complete(left), complete(right),
|
||||
left->get_init_state_number(),
|
||||
right->get_init_state_number(),
|
||||
xnor_acc, nullptr);
|
||||
}
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
// -*- coding: utf-8 -*-
|
||||
// Copyright (C) 2014, 2015, 2018, 2019 Laboratoire de Recherche et
|
||||
// Copyright (C) 2014-2015, 2018-2020 Laboratoire de Recherche et
|
||||
// Développement de l'Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
|
|
@ -127,6 +127,45 @@ namespace spot
|
|||
unsigned left_state,
|
||||
unsigned right_state);
|
||||
|
||||
/// \ingroup twa_algorithms
|
||||
/// \brief XOR two deterministic automata using a synchronous product
|
||||
///
|
||||
/// The two operands must be deterministic.
|
||||
///
|
||||
/// The resulting automaton will accept the symmetric difference of
|
||||
/// both languages and have an acceptance condition that is the xor
|
||||
/// of the acceptance conditions of the two input automata. In case
|
||||
/// both operands are weak, the acceptance condition of the result
|
||||
/// is made simpler.
|
||||
///
|
||||
/// The algorithm also defines a named property called
|
||||
/// "product-states" with type spot::product_states. This stores
|
||||
/// the pair of original state numbers associated to each state of
|
||||
/// the product.
|
||||
SPOT_API
|
||||
twa_graph_ptr product_xor(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right);
|
||||
|
||||
/// \ingroup twa_algorithms
|
||||
/// \brief XNOR two automata using a synchronous product
|
||||
///
|
||||
/// The two operands must be deterministic.
|
||||
///
|
||||
/// The resulting automaton will accept words that are either in
|
||||
/// both input languages, or not in both languages. (The XNOR gate
|
||||
/// it the logical complement of XOR. XNOR is also known as logical
|
||||
/// equivalence.) The output will have an acceptance condition that
|
||||
/// is the XNOR of the acceptance conditions of the two input
|
||||
/// automata. In case both the operands are weak, the acceptance
|
||||
/// condition of the result is made simpler.
|
||||
///
|
||||
/// The algorithm also defines a named property called
|
||||
/// "product-states" with type spot::product_states. This stores
|
||||
/// the pair of original state numbers associated to each state of
|
||||
/// the product.
|
||||
SPOT_API
|
||||
twa_graph_ptr product_xnor(const const_twa_graph_ptr& left,
|
||||
const const_twa_graph_ptr& right);
|
||||
|
||||
/// \ingroup twa_algorithms
|
||||
/// \brief Build the product of an automaton with a suspendable
|
||||
|
|
@ -136,7 +175,7 @@ namespace spot
|
|||
/// languages of both input automata.
|
||||
///
|
||||
/// This function *assumes* that \a right_susp is a suspendable
|
||||
/// automaton, i.e., it its language L satisfies L = Σ*.L.
|
||||
/// automaton, i.e., its language L satisfies L = Σ*.L.
|
||||
/// Therefore the product between the two automata need only be done
|
||||
/// with the accepting SCCs of left.
|
||||
///
|
||||
|
|
@ -155,7 +194,7 @@ namespace spot
|
|||
/// both input automata.
|
||||
///
|
||||
/// This function *assumes* that \a right_susp is a suspendable
|
||||
/// automaton, i.e., it its language L satisfies L = Σ*.L.
|
||||
/// automaton, i.e., its language L satisfies L = Σ*.L.
|
||||
/// Therefore, after left has been completed (this will be done by
|
||||
/// product_or_susp) the product between the two automata need only
|
||||
/// be done with the SCCs of left that contains some rejecting cycles.
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load diff
|
|
@ -188,3 +188,32 @@ except ValueError as e:
|
|||
assert 'any' in s
|
||||
else:
|
||||
report_missing_exception()
|
||||
|
||||
a1 = spot.translate('FGa')
|
||||
a2 = spot.translate('Gb')
|
||||
assert not spot.is_deterministic(a1)
|
||||
assert spot.is_deterministic(a2)
|
||||
try:
|
||||
spot.product_xor(a1, a2)
|
||||
except RuntimeError as e:
|
||||
assert "product_xor() only works with deterministic automata"
|
||||
else:
|
||||
report_missing_exception()
|
||||
try:
|
||||
spot.product_xor(a2, a1)
|
||||
except RuntimeError as e:
|
||||
assert "product_xor() only works with deterministic automata"
|
||||
else:
|
||||
report_missing_exception()
|
||||
try:
|
||||
spot.product_xnor(a1, a2)
|
||||
except RuntimeError as e:
|
||||
assert "product_xnor() only works with deterministic automata"
|
||||
else:
|
||||
report_missing_exception()
|
||||
try:
|
||||
spot.product_xnor(a2, a1)
|
||||
except RuntimeError as e:
|
||||
assert "product_xnor() only works with deterministic automata"
|
||||
else:
|
||||
report_missing_exception()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue