* src/tgbaalgos/ltl2tgba.cc, src/tgbaalgos/ltl2tgba.hh: Rename as ...

* src/tgbaalgos/ltl2tgba_lacim.cc, src/tgbaalgos/ltl2tgba_lacim.hh:
... this, and rename ltl_to_tgba() as ltl_to_tgba_lacim as well.
* iface/gspn/ltlgspn.cc, src/tgbatest/explprod.cc,
src/tgbatest/ltl2tgba.cc, src/tgbatest/ltlmagic.cc,
src/tgbatest/ltlprod.cc, src/tgbatest/mixprod.cc,
src/tgbatest/tripprod.cc, wrap/python/spot.i,
wrap/python/cgi/ltl2tgba.in, wrap/python/tests/interdep.py,
wrap/python/tests/ltl2tgba.py: Adjust.
This commit is contained in:
Alexandre Duret-Lutz 2003-09-22 15:54:34 +00:00
parent 5439b2f4ee
commit 83565fb659
15 changed files with 34 additions and 24 deletions

View file

@ -0,0 +1,254 @@
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/destroy.hh"
#include "tgba/tgbabddconcretefactory.hh"
#include <cassert>
#include "ltl2tgba_lacim.hh"
namespace spot
{
using namespace ltl;
/// \brief Recursively translate a formula into a BDD.
///
/// The algorithm used here is adapted from Jean-Michel Couvreur's
/// Probataf tool.
class ltl_trad_visitor: public const_visitor
{
public:
ltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
: fact_(fact), root_(root)
{
}
virtual
~ltl_trad_visitor()
{
}
bdd
result()
{
return res_;
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
}
void
visit(const constant* node)
{
switch (node->val())
{
case constant::True:
res_ = bddtrue;
return;
case constant::False:
res_ = bddfalse;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* node)
{
switch (node->op())
{
case unop::F:
{
/*
Fx <=> x | XFx
In other words:
now <=> x | next
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
bdd x = recurse(node->child());
fact_.constrain_relation(bdd_apply(now, x | next, bddop_biimp));
/*
`x | next', doesn't actually encode the fact that x
should be fulfilled eventually. We ensure this by
creating a new generalized Büchi accepting set, Acc[x],
and leave out of this set any transition going off NOW
without checking X. Such accepting conditions are
checked for during the emptiness check.
*/
fact_.declare_accepting_condition(x | !now, node->child());
res_ = now;
return;
}
case unop::G:
{
bdd child = recurse(node->child());
// If G occurs at the top of the formula we don't
// need Now/Next variables. We just constrain
// the relation so that the child always happens.
// This saves 2 BDD variables.
if (root_)
{
fact_.constrain_relation(child);
res_ = child;
return;
}
// Gx <=> x && XGx
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, child & next,
bddop_biimp));
res_ = now;
return;
}
case unop::Not:
{
res_ = bdd_not(recurse(node->child()));
return;
}
case unop::X:
{
int v = fact_.create_state(node->child());
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, recurse(node->child()),
bddop_biimp));
res_ = next;
return;
}
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* node)
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
switch (node->op())
{
case binop::Xor:
res_ = bdd_apply(f1, f2, bddop_xor);
return;
case binop::Implies:
res_ = bdd_apply(f1, f2, bddop_imp);
return;
case binop::Equiv:
res_ = bdd_apply(f1, f2, bddop_biimp);
return;
case binop::U:
{
/*
f1 U f2 <=> f2 | (f1 & X(f1 U f2))
In other words:
now <=> f2 | (f1 & next)
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, f2 | (f1 & next),
bddop_biimp));
/*
The rightmost conjunction, f1 & next, doesn't actually
encode the fact that f2 should be fulfilled eventually.
We declare an accepting condition for this purpose (see
the comment in the unop::F case).
*/
fact_.declare_accepting_condition(f2 | !now, node->second());
res_ = now;
return;
}
case binop::R:
{
/*
f1 R f2 <=> f2 & (f1 | X(f1 U f2))
In other words:
now <=> f2 & (f1 | next)
*/
int v = fact_.create_state(node);
bdd now = bdd_ithvar(v);
bdd next = bdd_ithvar(v + 1);
fact_.constrain_relation(bdd_apply(now, f2 & (f1 | next),
bddop_biimp));
res_ = now;
return;
}
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* node)
{
int op = -1;
bool root = false;
switch (node->op())
{
case multop::And:
op = bddop_and;
res_ = bddtrue;
// When the root formula is a conjunction it's ok to
// consider all children as root formulae. This allows the
// root-G trick to save many more variable. (See the
// translation of G.)
root = root_;
break;
case multop::Or:
op = bddop_or;
res_ = bddfalse;
break;
}
assert(op != -1);
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
{
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
}
}
bdd
recurse(const formula* f, bool root = false)
{
ltl_trad_visitor v(fact_, root);
f->accept(v);
return v.result();
}
private:
bdd res_;
tgba_bdd_concrete_factory& fact_;
bool root_;
};
tgba_bdd_concrete*
ltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict)
{
// Normalize the formula. We want all the negations on
// the atomic propositions. We also suppress logic
// abbreviations such as <=>, =>, or XOR, since they
// would involve negations at the BDD level.
const ltl::formula* f1 = ltl::unabbreviate_logic(f);
const ltl::formula* f2 = ltl::negative_normal_form(f1);
ltl::destroy(f1);
// Traverse the formula and draft the automaton in a factory.
tgba_bdd_concrete_factory fact(dict);
ltl_trad_visitor v(fact, true);
f2->accept(v);
ltl::destroy(f2);
fact.finish();
// Finally setup the resulting automaton.
return new tgba_bdd_concrete(fact, v.result());
}
}