GTA (Generalized Testing Automata) implementation

* src/ta/ta.cc, src/ta/ta.hh, src/ta/taexplicit.cc,
src/ta/taexplicit.hh, src/ta/taproduct.cc, src/ta/taproduct.hh,
src/taalgos/Makefile.am, src/taalgos/dotty.cc,
src/taalgos/emptinessta.cc, src/taalgos/minimize.cc,
src/taalgos/minimize.hh, src/taalgos/tgba2ta.cc, src/taalgos/tgba2ta.hh,
src/tgbatest/ltl2tgba.cc: changes introduced to add a new form of TA
called GTA (Generalized Testing Automata). GTA is a TA with acceptance-
conditions added on transitions.
This commit is contained in:
Ala-Eddine Ben-Salem 2011-07-05 21:26:22 +02:00 committed by Alexandre Duret-Lutz
parent c7f4b8e262
commit 83e7f0fa18
14 changed files with 726 additions and 34 deletions

View file

@ -34,6 +34,7 @@ namespace spot
{ {
index = i; index = i;
is_accepting = false; is_accepting = false;
condition = bddfalse;
} }
scc_stack_ta::connected_component& scc_stack_ta::connected_component&

View file

@ -70,7 +70,6 @@ namespace spot
virtual bool virtual bool
is_livelock_accepting_state(const spot::state* s) const = 0; is_livelock_accepting_state(const spot::state* s) const = 0;
virtual bool virtual bool
is_initial_state(const spot::state* s) const = 0; is_initial_state(const spot::state* s) const = 0;
@ -80,6 +79,16 @@ namespace spot
virtual void virtual void
free_state(const spot::state* s) const = 0; free_state(const spot::state* s) const = 0;
/// \brief Return the set of all acceptance conditions used
/// by this automaton.
///
/// The goal of the emptiness check is to ensure that
/// a strongly connected component walks through each
/// of these acceptiong conditions. I.e., the union
/// of the acceptiong conditions of all transition in
/// the SCC should be equal to the result of this function.
virtual bdd all_acceptance_conditions() const = 0;
}; };
/// Successor iterators used by spot::ta. /// Successor iterators used by spot::ta.
@ -107,11 +116,8 @@ namespace spot
is_stuttering_transition() const = 0; is_stuttering_transition() const = 0;
bdd bdd
current_acceptance_conditions() const current_acceptance_conditions() const = 0;
{
assert(!done());
return bddfalse;
}
}; };
// A stack of Strongly-Connected Components // A stack of Strongly-Connected Components
@ -128,6 +134,10 @@ namespace spot
bool is_accepting; bool is_accepting;
/// The bdd condition is the union of all acceptance conditions of
/// transitions which connect the states of the connected component.
bdd condition;
std::list<state*> rem; std::list<state*> rem;
}; };

View file

@ -83,6 +83,13 @@ namespace spot
return (*i_)->condition; return (*i_)->condition;
} }
bdd
ta_explicit_succ_iterator::current_acceptance_conditions() const
{
assert(!done());
return (*i_)->acceptance_conditions;
}
bool bool
ta_explicit_succ_iterator::is_stuttering_transition() const ta_explicit_succ_iterator::is_stuttering_transition() const
{ {
@ -138,6 +145,10 @@ namespace spot
!= transitions_condition->end() && !transition_found); it_trans++) != transitions_condition->end() && !transition_found); it_trans++)
{ {
transition_found = ((*it_trans)->dest == t->dest); transition_found = ((*it_trans)->dest == t->dest);
if (transition_found)
{
(*it_trans)->acceptance_conditions |= t->acceptance_conditions;
}
} }
if (!transition_found) if (!transition_found)
@ -313,9 +324,10 @@ namespace spot
// ta_explicit // ta_explicit
ta_explicit::ta_explicit(const tgba* tgba_, ta_explicit::ta_explicit(const tgba* tgba, bdd all_acceptance_conditions,
state_ta_explicit* artificial_initial_state) : state_ta_explicit* artificial_initial_state) :
tgba_(tgba_), artificial_initial_state_(artificial_initial_state) tgba_(tgba), all_acceptance_conditions_(all_acceptance_conditions),
artificial_initial_state_(artificial_initial_state)
{ {
get_dict()->register_all_variables_of(&tgba_, this); get_dict()->register_all_variables_of(&tgba_, this);
if (artificial_initial_state != 0) if (artificial_initial_state != 0)
@ -341,6 +353,7 @@ namespace spot
delete tgba_; delete tgba_;
} }
state_ta_explicit* state_ta_explicit*
ta_explicit::add_state(state_ta_explicit* s) ta_explicit::add_state(state_ta_explicit* s)
{ {
@ -386,6 +399,19 @@ namespace spot
state_ta_explicit::transition* t = new state_ta_explicit::transition; state_ta_explicit::transition* t = new state_ta_explicit::transition;
t->dest = dest; t->dest = dest;
t->condition = condition; t->condition = condition;
t->acceptance_conditions = bddfalse;
source->add_transition(t);
}
void
ta_explicit::create_transition(state_ta_explicit* source, bdd condition,
bdd acceptance_conditions, state_ta_explicit* dest)
{
state_ta_explicit::transition* t = new state_ta_explicit::transition;
t->dest = dest;
t->condition = condition;
t->acceptance_conditions = acceptance_conditions;
source->add_transition(t); source->add_transition(t);
} }

View file

@ -41,8 +41,8 @@ namespace spot
class ta_explicit : public ta class ta_explicit : public ta
{ {
public: public:
ta_explicit(const tgba* tgba_, state_ta_explicit* artificial_initial_state = ta_explicit(const tgba* tgba, bdd all_acceptance_conditions,
0); state_ta_explicit* artificial_initial_state = 0);
const tgba* const tgba*
get_tgba() const; get_tgba() const;
@ -57,6 +57,10 @@ namespace spot
create_transition(state_ta_explicit* source, bdd condition, create_transition(state_ta_explicit* source, bdd condition,
state_ta_explicit* dest); state_ta_explicit* dest);
void
create_transition(state_ta_explicit* source, bdd condition,
bdd acceptance_conditions, state_ta_explicit* dest);
void void
delete_stuttering_transitions(); delete_stuttering_transitions();
// ta interface // ta interface
@ -114,16 +118,32 @@ namespace spot
return states_set_; return states_set_;
} }
/// \brief Return the set of all acceptance conditions used
/// by this automaton.
///
/// The goal of the emptiness check is to ensure that
/// a strongly connected component walks through each
/// of these acceptiong conditions. I.e., the union
/// of the acceptiong conditions of all transition in
/// the SCC should be equal to the result of this function.
bdd
all_acceptance_conditions() const
{
return all_acceptance_conditions_;;
}
private: private:
// Disallow copy. // Disallow copy.
ta_explicit(const ta_explicit& other); ta_explicit(const ta_explicit& other);
ta_explicit& ta_explicit&
operator=(const ta_explicit& other); operator=(const ta_explicit& other);
const tgba* tgba_;
bdd all_acceptance_conditions_;
state_ta_explicit* artificial_initial_state_;
ta::states_set_t states_set_; ta::states_set_t states_set_;
ta::states_set_t initial_states_set_; ta::states_set_t initial_states_set_;
const tgba* tgba_;
state_ta_explicit* artificial_initial_state_;
}; };
@ -136,6 +156,7 @@ namespace spot
struct transition struct transition
{ {
bdd condition; bdd condition;
bdd acceptance_conditions;
state_ta_explicit* dest; state_ta_explicit* dest;
}; };
@ -201,6 +222,8 @@ namespace spot
void void
free_transitions(); free_transitions();
private: private:
const state* tgba_state_; const state* tgba_state_;
const bdd tgba_condition_; const bdd tgba_condition_;
@ -232,6 +255,9 @@ namespace spot
virtual bdd virtual bdd
current_condition() const; current_condition() const;
virtual bdd
current_acceptance_conditions() const;
virtual bool virtual bool
is_stuttering_transition() const; is_stuttering_transition() const;

View file

@ -190,6 +190,7 @@ namespace spot
//if stuttering transition, the TA automata stays in the same state //if stuttering transition, the TA automata stays in the same state
current_state_ = new state_ta_product(source_->get_ta_state(), current_state_ = new state_ta_product(source_->get_ta_state(),
kripke_current_dest_state->clone()); kripke_current_dest_state->clone());
current_acceptance_conditions_ = bddfalse;
return; return;
} }
@ -197,6 +198,8 @@ namespace spot
{ {
current_state_ = new state_ta_product(ta_succ_it_->current_state(), current_state_ = new state_ta_product(ta_succ_it_->current_state(),
kripke_current_dest_state->clone()); kripke_current_dest_state->clone());
current_acceptance_conditions_
= ta_succ_it_->current_acceptance_conditions();
return; return;
} }
@ -249,6 +252,19 @@ namespace spot
return current_condition_; return current_condition_;
} }
bdd
ta_succ_iterator_product::current_acceptance_conditions() const
{
// assert(!done());
// bdd kripke_source_condition = kripke_->state_condition(source_->get_kripke_state());
// state * kripke_succ_it_current_state = kripke_succ_it_->current_state();
// bdd kripke_current_dest_condition = kripke_->state_condition(kripke_succ_it_current_state);
// delete kripke_succ_it_current_state;
// return bdd_setxor(kripke_source_condition, kripke_current_dest_condition);
return current_acceptance_conditions_;
}
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// ta_product // ta_product
@ -392,6 +408,12 @@ namespace spot
return is_hole_state; return is_hole_state;
} }
bdd
ta_product::all_acceptance_conditions() const
{
return get_ta()->all_acceptance_conditions();
}
bdd bdd
ta_product::get_state_condition(const spot::state* s) const ta_product::get_state_condition(const spot::state* s) const
{ {

View file

@ -97,6 +97,9 @@ namespace spot
bdd bdd
current_condition() const; current_condition() const;
bdd
current_acceptance_conditions() const;
bool bool
is_stuttering_transition() const; is_stuttering_transition() const;
@ -121,6 +124,7 @@ namespace spot
tgba_succ_iterator* kripke_succ_it_; tgba_succ_iterator* kripke_succ_it_;
state_ta_product* current_state_; state_ta_product* current_state_;
bdd current_condition_; bdd current_condition_;
bdd current_acceptance_conditions_;
bool is_stuttering_transition_; bool is_stuttering_transition_;
bdd kripke_source_condition; bdd kripke_source_condition;
state * kripke_current_dest_state; state * kripke_current_dest_state;
@ -173,10 +177,12 @@ namespace spot
virtual bool virtual bool
is_hole_state_in_ta_component(const spot::state* s) const; is_hole_state_in_ta_component(const spot::state* s) const;
virtual bdd virtual bdd
get_state_condition(const spot::state* s) const; get_state_condition(const spot::state* s) const;
virtual bdd
all_acceptance_conditions() const;
virtual void virtual void
free_state(const spot::state* s) const; free_state(const spot::state* s) const;

View file

@ -25,7 +25,7 @@ AM_CXXFLAGS = $(WARNING_CXXFLAGS)
taalgosdir = $(pkgincludedir)/taalgos taalgosdir = $(pkgincludedir)/taalgos
taalgos_HEADERS = \ taalgos_HEADERS = \
sba2ta.hh \ tgba2ta.hh \
dotty.hh \ dotty.hh \
reachiter.hh \ reachiter.hh \
stats.hh \ stats.hh \
@ -33,10 +33,9 @@ taalgos_HEADERS = \
minimize.hh \ minimize.hh \
emptinessta.hh emptinessta.hh
noinst_LTLIBRARIES = libtaalgos.la noinst_LTLIBRARIES = libtaalgos.la
libtaalgos_la_SOURCES = \ libtaalgos_la_SOURCES = \
sba2ta.cc \ tgba2ta.cc \
dotty.cc \ dotty.cc \
reachiter.cc \ reachiter.cc \
stats.cc \ stats.cc \

View file

@ -119,7 +119,8 @@ namespace spot
os_ << " " << in << " -> " << out << " [label=\""; os_ << " " << in << " -> " << out << " [label=\"";
escape_str(os_, bdd_format_accset(t_automata_->get_dict(), escape_str(os_, bdd_format_accset(t_automata_->get_dict(),
si->current_condition())) si->current_condition()) + "\n" + bdd_format_accset(
t_automata_->get_dict(), si->current_acceptance_conditions()))
<< "\"]" << std::endl; << "\"]" << std::endl;

View file

@ -30,6 +30,7 @@
#include "emptinessta.hh" #include "emptinessta.hh"
#include "misc/memusage.hh" #include "misc/memusage.hh"
#include <math.h> #include <math.h>
#include "tgba/bddprint.hh"
namespace spot namespace spot
{ {
@ -51,6 +52,12 @@ namespace spot
// We use five main data in this algorithm: // We use five main data in this algorithm:
// * scc: a stack of strongly connected components (SCC)
scc;
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<bdd> arc;
// * h: a hash of all visited nodes, with their order, // * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper) // (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h = numbered_state_heap* h =
@ -108,6 +115,7 @@ namespace spot
h->insert(init, ++num); h->insert(init, ++num);
scc.push(num); scc.push(num);
arc.push(bddfalse);
ta_succ_iterator* iter = a_->succ_iter(init); ta_succ_iterator* iter = a_->succ_iter(init);
iter->first(); iter->first();
@ -187,6 +195,9 @@ namespace spot
} }
dec_depth(scc.rem().size()); dec_depth(scc.rem().size());
scc.pop(); scc.pop();
assert(!arc.empty());
arc.pop();
} }
delete succ; delete succ;
@ -201,6 +212,8 @@ namespace spot
// Fetch the values destination state we are interested in... // Fetch the values destination state we are interested in...
state* dest = succ->current_state(); state* dest = succ->current_state();
bdd acc_cond = succ->current_acceptance_conditions();
bool curr_is_livelock_hole_state_in_ta_component = bool curr_is_livelock_hole_state_in_ta_component =
(a_->is_hole_state_in_ta_component(curr)) (a_->is_hole_state_in_ta_component(curr))
&& a_->is_livelock_accepting_state(curr); && a_->is_livelock_accepting_state(curr);
@ -228,6 +241,7 @@ namespace spot
// for later processing. // for later processing.
h->insert(dest, ++num); h->insert(dest, ++num);
scc.push(num); scc.push(num);
arc.push(acc_cond);
ta_succ_iterator* iter = a_->succ_iter(dest); ta_succ_iterator* iter = a_->succ_iter(dest);
iter->first(); iter->first();
@ -265,13 +279,18 @@ namespace spot
while (threshold < scc.top().index) while (threshold < scc.top().index)
{ {
assert(!scc.empty()); assert(!scc.empty());
assert(!arc.empty());
acc |= scc.top().is_accepting; acc |= scc.top().is_accepting;
acc_cond |= scc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), scc.rem()); rem.splice(rem.end(), scc.rem());
scc.pop(); scc.pop();
arc.pop();
} }
// Note that we do not always have // Note that we do not always have
// threshold == scc.top().index // threshold == scc.top().index
// after this loop, the SSCC whose index is threshold might have // after this loop, the SSCC whose index is threshold might have
@ -279,13 +298,23 @@ namespace spot
// Accumulate all acceptance conditions into the merged SSCC. // Accumulate all acceptance conditions into the merged SSCC.
scc.top().is_accepting |= acc; scc.top().is_accepting |= acc;
scc.top().condition |= acc_cond;
scc.rem().splice(scc.rem().end(), rem); scc.rem().splice(scc.rem().end(), rem);
if (scc.top().is_accepting) bool is_accepting_sscc = (scc.top().is_accepting)
|| (scc.top().condition == a_->all_acceptance_conditions());
if (is_accepting_sscc)
{ {
clear(h, todo, init_set); clear(h, todo, init_set);
trace trace
<< "PASS 1: SUCCESS" << std::endl; << "PASS 1: SUCCESS" << std::endl;
trace
<< "PASS 1: scc.top().condition : " << bdd_format_accset(a_->get_dict(),
scc.top().condition) << std::endl;
trace
<< "PASS 1: a_->all_acceptance_conditions() : " << bdd_format_accset(a_->get_dict(),
a_->all_acceptance_conditions()) << std::endl;
return true; return true;
} }

View file

@ -37,6 +37,7 @@
#include "ta/taproduct.hh" #include "ta/taproduct.hh"
#include "taalgos/statessetbuilder.hh" #include "taalgos/statessetbuilder.hh"
#include "tgba/tgbaexplicit.hh" #include "tgba/tgbaexplicit.hh"
#include "tgba/bddprint.hh"
namespace spot namespace spot
{ {
@ -75,7 +76,7 @@ namespace spot
build_result(const ta* a, std::list<hash_set*>& sets) build_result(const ta* a, std::list<hash_set*>& sets)
{ {
tgba_explicit_number* tgba = new tgba_explicit_number(a->get_dict()); tgba_explicit_number* tgba = new tgba_explicit_number(a->get_dict());
ta_explicit* ta = new ta_explicit(tgba); ta_explicit* ta = new ta_explicit(tgba, a->all_acceptance_conditions());
// For each set, create a state in the tgbaulting automaton. // For each set, create a state in the tgbaulting automaton.
// For a state s, state_num[s] is the number of the state in the minimal // For a state s, state_num[s] is the number of the state in the minimal
@ -111,7 +112,7 @@ namespace spot
bool is_accepting_state = a->is_accepting_state(src); bool is_accepting_state = a->is_accepting_state(src);
bool is_livelock_accepting_state = a->is_livelock_accepting_state(src); bool is_livelock_accepting_state = a->is_livelock_accepting_state(src);
state_ta_explicit* new_src = new state_ta_explicit(tgba_state, state_ta_explicit* new_src = new state_ta_explicit(tgba_state->clone(),
tgba_condition, is_initial_state, is_accepting_state, tgba_condition, is_initial_state, is_accepting_state,
is_livelock_accepting_state); is_livelock_accepting_state);
@ -150,7 +151,7 @@ namespace spot
bool is_livelock_accepting_state = a->is_livelock_accepting_state( bool is_livelock_accepting_state = a->is_livelock_accepting_state(
dst); dst);
state_ta_explicit* new_dst = new state_ta_explicit(tgba_state, state_ta_explicit* new_dst = new state_ta_explicit(tgba_state->clone(),
tgba_condition, is_initial_state, is_accepting_state, tgba_condition, is_initial_state, is_accepting_state,
is_livelock_accepting_state); is_livelock_accepting_state);
@ -169,7 +170,7 @@ namespace spot
else if (is_initial_state) else if (is_initial_state)
ta->add_to_initial_states_set(new_dst); ta->add_to_initial_states_set(new_dst);
ta->create_transition(ta_src, succit->current_condition(), ta_dst); ta->create_transition(ta_src, succit->current_condition(), succit->current_acceptance_conditions(), ta_dst);
} }
delete succit; delete succit;
@ -245,7 +246,7 @@ namespace spot
hash_map state_set_map; hash_map state_set_map;
// Size of ta_ // Size of ta_
unsigned size = states_set.size(); unsigned size = states_set.size() + 6;
// Use bdd variables to number sets. set_num is the first variable // Use bdd variables to number sets. set_num is the first variable
// available. // available.
unsigned set_num = ta_->get_dict()->register_anonymous_variables(size, ta_); unsigned set_num = ta_->get_dict()->register_anonymous_variables(size, ta_);
@ -347,6 +348,11 @@ namespace spot
typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map; typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;
bool did_split = true; bool did_split = true;
unsigned num = set_num;
set_num++;
used_var[num] = 1;
free_var.erase(num);
bdd bdd_false_acceptance_condition = bdd_ithvar(num);
while (did_split) while (did_split)
{ {
@ -373,7 +379,14 @@ namespace spot
hash_map::const_iterator i = state_set_map.find(dst); hash_map::const_iterator i = state_set_map.find(dst);
assert(i != state_set_map.end()); assert(i != state_set_map.end());
f |= (bdd_ithvar(i->second) & si->current_condition()); bdd current_acceptance_conditions =
si->current_acceptance_conditions();
if (current_acceptance_conditions == bddfalse)
current_acceptance_conditions
= bdd_false_acceptance_condition;
f |= (bdd_ithvar(i->second) & si->current_condition()
& current_acceptance_conditions);
trace << "--------------f: " << bdd_format_accset(ta_->get_dict(),f) << std::endl;;
} }
delete si; delete si;
@ -470,7 +483,7 @@ namespace spot
std::list<hash_set*>::iterator itdone; std::list<hash_set*>::iterator itdone;
for (itdone = done.begin(); itdone != done.end(); ++itdone) for (itdone = done.begin(); itdone != done.end(); ++itdone)
delete *itdone; delete *itdone;
delete ta_; //delete ta_;
return res; return res;
} }

View file

@ -30,6 +30,7 @@ namespace spot
ta* ta*
minimize_ta(const ta* ta_); minimize_ta(const ta* ta_);
/// @} /// @}
} }

501
src/taalgos/tgba2ta.cc Normal file
View file

@ -0,0 +1,501 @@
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "ltlast/atomic_prop.hh"
#include "ltlast/constant.hh"
#include "tgba/formula2bdd.hh"
#include "misc/bddop.hh"
#include <cassert>
#include "ltlvisit/tostring.hh"
#include <iostream>
#include "tgba/bddprint.hh"
#include "tgbaalgos/gtec/nsheap.hh"
#include <stack>
#include "tgba2ta.hh"
#include "taalgos/statessetbuilder.hh"
using namespace std;
namespace spot
{
ta*
tgba_to_ta(const tgba* tgba_, bdd atomic_propositions_set_,
bool artificial_initial_state_mode,
bool artificial_livelock_accepting_state_mode, bool degeneralized)
{
ta_explicit* ta;
std::stack<state_ta_explicit*> todo;
// build Initial states set:
state* tgba_init_state = tgba_->get_init_state();
if (artificial_initial_state_mode)
{
state_ta_explicit* ta_init_state = new state_ta_explicit(
tgba_init_state->clone(), bddtrue, true);
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions(),ta_init_state);
}
else
{
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions());
}
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state;
if (degeneralized)
{
init_state = new state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true,
((tgba_sba_proxy*) tgba_)->state_is_accepting(tgba_init_state));
}
else
{
init_state = new state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true, false);
}
state_ta_explicit* s = ta->add_state(init_state);
assert(s == init_state);
ta->add_to_initial_states_set(s);
todo.push(init_state);
}
tgba_init_state->destroy();
while (!todo.empty())
{
state_ta_explicit* source = todo.top();
todo.pop();
tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter(
source->get_tgba_state());
for (tgba_succ_it->first(); !tgba_succ_it->done(); tgba_succ_it->next())
{
const state* tgba_state = tgba_succ_it->current_state();
bdd tgba_condition = tgba_succ_it->current_condition();
bdd tgba_acceptance_conditions =
tgba_succ_it->current_acceptance_conditions();
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
bdd all_props = bddtrue;
bdd dest_condition;
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition = bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest;
if (degeneralized)
{
new_dest = new state_ta_explicit(tgba_state->clone(),
dest_condition, false,
((tgba_sba_proxy*) tgba_)->state_is_accepting(
tgba_state));
}
else
{
new_dest = new state_ta_explicit(tgba_state->clone(),
dest_condition, false, false);
}
state_ta_explicit* dest = ta->add_state(new_dest);
if (dest != new_dest)
{
// the state dest already exists in the testing automata
new_dest->get_tgba_state()->destroy();
delete new_dest;
}
else
{
todo.push(dest);
}
ta->create_transition(source, bdd_setxor(
source->get_tgba_condition(),
dest->get_tgba_condition()),
tgba_acceptance_conditions, dest);
}
}
tgba_state->destroy();
}
delete tgba_succ_it;
}
compute_livelock_acceptance_states(ta);
if (artificial_livelock_accepting_state_mode)
{
state_ta_explicit* artificial_livelock_accepting_state =
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddfalse,
false, false, true, 0, true);
add_artificial_livelock_accepting_state(ta,
artificial_livelock_accepting_state);
}
return ta;
}
void
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state)
{
state_ta_explicit* artificial_livelock_accepting_state_added =
testing_automata->add_state(artificial_livelock_accepting_state);
// unique artificial_livelock_accepting_state
assert(artificial_livelock_accepting_state_added
== artificial_livelock_accepting_state);
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
std::set<bdd, bdd_less_than>* conditions_to_livelock_accepting_states =
new std::set<bdd, bdd_less_than>;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* source = static_cast<state_ta_explicit*> (*it);
conditions_to_livelock_accepting_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
state_ta_explicit* dest = (*it_trans)->dest;
if (dest->is_livelock_accepting_state()
&& !dest->is_accepting_state())
{
conditions_to_livelock_accepting_states->insert(
(*it_trans)->condition);
}
//remove hole successors states
state_ta_explicit::transitions* dest_trans =
(dest)->get_transitions();
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
if (dest_trans_empty)
{
source->get_transitions((*it_trans)->condition)->remove(
*it_trans);
delete (*it_trans);
it_trans = trans->erase(it_trans);
}
else
{
it_trans++;
}
}
if (conditions_to_livelock_accepting_states != 0)
{
std::set<bdd, bdd_less_than>::iterator it_conditions;
for (it_conditions
= conditions_to_livelock_accepting_states->begin(); it_conditions
!= conditions_to_livelock_accepting_states->end(); it_conditions++)
{
testing_automata->create_transition(source, (*it_conditions),
artificial_livelock_accepting_state);
}
}
}
delete conditions_to_livelock_accepting_states;
}
namespace
{
typedef std::pair<spot::state*, tgba_succ_iterator*> pair_state_iter;
}
void
compute_livelock_acceptance_states(ta_explicit* testing_automata)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<bdd> arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h =
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::stack<state*> init_set;
ta::states_set_t::const_iterator it;
ta::states_set_t init_states = testing_automata->get_initial_states_set();
for (it = init_states.begin(); it != init_states.end(); it++)
{
state* init_state = (*it);
init_set.push(init_state);
}
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
state_ta_explicit* init =
down_cast<state_ta_explicit*> (init_set.top());
init_set.pop();
state_ta_explicit* init_clone = init->clone();
numbered_state_heap::state_index_p h_init = h->find(init_clone);
if (h_init.first)
continue;
h->insert(init_clone, ++num);
sscc.push(num);
arc.push(bddfalse);
sscc.top().is_accepting
= testing_automata->is_accepting_state(init);
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
}
while (!todo.empty())
{
state* curr = todo.top().first;
numbered_state_heap::state_index_p spi = h->find(curr->clone());
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
numbered_state_heap::state_index_p spi =
h->index(curr->clone());
assert(spi.first);
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == *spi.second)
{
// removing states
std::list<state*>::iterator i;
bool is_livelock_accepting_sscc = (sscc.top().is_accepting
&& (sscc.rem().size() > 1)) || (sscc.top().condition
== testing_automata->all_acceptance_conditions());
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = h->index(
(*i)->clone());
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1);
*spi.second = -1;
if (is_livelock_accepting_sscc)
{//if it is an accepting sscc
//add the state to G (=the livelock-accepting states set)
state_ta_explicit * livelock_accepting_state =
down_cast<state_ta_explicit*> (*i);
livelock_accepting_state->set_livelock_accepting_state(
true);
}
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
// automata reduction
testing_automata->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
bdd acc_cond = succ->current_acceptance_conditions();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_automata->get_state_condition(curr)
== testing_automata->get_state_condition(dest);
state* dest_clone = dest->clone();
spi = h->find(dest_clone);
// Is this a new state?
if (!spi.first)
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest_clone->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h->insert(dest_clone, ++num);
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting = testing_automata->is_accepting_state(
dest);
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
if (!curr->compare(dest))
{
state_ta_explicit * self_loop_state =
down_cast<state_ta_explicit*> (curr);
assert(self_loop_state);
if (testing_automata->is_accepting_state(self_loop_state))
self_loop_state->set_livelock_accepting_state(true);
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = *spi.second;
std::list<state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
sscc.rem().splice(sscc.rem().end(), rem);
}
}
delete h;
}
}

51
src/taalgos/tgba2ta.hh Normal file
View file

@ -0,0 +1,51 @@
// Copyright (C) 2010 Laboratoire de Recherche et Developpement
// de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#ifndef SPOT_TGBAALGOS_SBA2TA_HH
# define SPOT_TGBAALGOS_SBA2TA_HH
#include "misc/hash.hh"
#include <list>
#include <map>
#include <set>
#include "tgba/tgbatba.hh"
#include "ltlast/formula.hh"
#include <cassert>
#include "misc/bddlt.hh"
#include "ta/taexplicit.hh"
namespace spot
{
ta*
tgba_to_ta(const tgba* tgba_to_convert, bdd atomic_propositions_set,
bool artificial_initial_state_mode = true,
bool artificial_livelock_accepting_state_mode = false,
bool degeneralized = true);
void
compute_livelock_acceptance_states(ta_explicit* testing_automata);
void
add_artificial_livelock_accepting_state(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state);
}
#endif // SPOT_TGBAALGOS_SBA2TA_HH

View file

@ -66,7 +66,7 @@
#include "kripkeparse/public.hh" #include "kripkeparse/public.hh"
#include "tgbaalgos/simulation.hh" #include "tgbaalgos/simulation.hh"
#include "taalgos/sba2ta.hh" #include "taalgos/tgba2ta.hh"
#include "taalgos/dotty.hh" #include "taalgos/dotty.hh"
#include "taalgos/stats.hh" #include "taalgos/stats.hh"
@ -1091,11 +1091,11 @@ main(int argc, char** argv)
if (ta_opt) if (ta_opt)
{ {
const spot::tgba_sba_proxy* degeneralized_new = 0; // const spot::tgba_sba_proxy* degeneralized_new = 0;
const spot::tgba_sba_proxy* degeneralized = // const spot::tgba_sba_proxy* degeneralized =
dynamic_cast<const spot::tgba_sba_proxy*> (a); // dynamic_cast<const spot::tgba_sba_proxy*> (a);
if (degeneralized == 0) // if (degeneralized == 0)
degeneralized_new = degeneralized = new spot::tgba_sba_proxy(a); // degeneralized_new = degeneralized = new spot::tgba_sba_proxy(a);
spot::ltl::atomic_prop_set* aps = atomic_prop_collect(f, 0); spot::ltl::atomic_prop_set* aps = atomic_prop_collect(f, 0);
@ -1104,15 +1104,19 @@ main(int argc, char** argv)
!= aps->end(); ++i) != aps->end(); ++i)
{ {
bdd atomic_prop = bdd_ithvar( bdd atomic_prop = bdd_ithvar(
(degeneralized->get_dict())->var_map[*i]); (a->get_dict())->var_map[*i]);
atomic_props_set_bdd &= atomic_prop; atomic_props_set_bdd &= atomic_prop;
} }
delete aps; delete aps;
spot::ta* testing_automata = sba_to_ta(degeneralized, atomic_props_set_bdd, opt_with_artificial_initial_state, opt_with_artificial_livelock); spot::ta* testing_automata = tgba_to_ta(a, atomic_props_set_bdd, opt_with_artificial_initial_state, opt_with_artificial_livelock, degeneralize_opt == DegenSBA);
if (opt_minimize) testing_automata = minimize_ta(testing_automata); spot::ta* testing_automata_nm = 0;
if (opt_minimize) {
testing_automata_nm = testing_automata;
testing_automata = minimize_ta(testing_automata);
}
if (output != -1) if (output != -1)
{ {
@ -1130,6 +1134,8 @@ main(int argc, char** argv)
} }
tm.stop("producing output"); tm.stop("producing output");
} }
delete testing_automata_nm;
delete testing_automata; delete testing_automata;
output = -1; output = -1;