Move the logic for detecting when the minimize() algorithm is
correct from ltl2tgba to the library. * src/tgbaalgos/minimize.hh, src/tgbaalgos/minimize.cc (minimize_obligation): New function. * src/tgbatests/ltl2tgba.cc (main): Fix constness of automata, and call minimize_obligation() for -R3b.
This commit is contained in:
parent
241ba112d6
commit
907d173d6a
4 changed files with 251 additions and 142 deletions
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (C) 2009, 2010 Laboratoire de Recherche et Développement
|
||||
// Copyright (C) 2009, 2010, 2011 Laboratoire de Recherche et Développement
|
||||
// de l'Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
|
|
@ -22,77 +22,129 @@
|
|||
# define SPOT_TGBAALGOS_MINIMIZE_HH
|
||||
|
||||
# include "tgba/tgbaexplicit.hh"
|
||||
# include "ltlast/formula.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
// \brief Use the powerset construction to minimize a TGBA.
|
||||
//
|
||||
// If \a monitor is set of \c false (the default), then the
|
||||
// minimized automaton is correct only for properties that belong to
|
||||
// the class of "obligation properties". This algorithm assumes
|
||||
// that the given automaton expresses an obligation properties and
|
||||
// will return an automaton that is bogus (i.e. not equivalent to
|
||||
// the original) if that is not the case.
|
||||
//
|
||||
// Please see the following paper for a discussion of this
|
||||
// technique.
|
||||
//
|
||||
// \verbatim
|
||||
// @InProceedings{ dax.07.atva,
|
||||
// author = {Christian Dax and Jochen Eisinger and Felix Klaedtke},
|
||||
// title = {Mechanizing the Powerset Construction for Restricted
|
||||
// Classes of {$\omega$}-Automata},
|
||||
// year = 2007,
|
||||
// series = {Lecture Notes in Computer Science},
|
||||
// publisher = {Springer-Verlag},
|
||||
// volume = 4762,
|
||||
// booktitle = {Proceedings of the 5th International Symposium on
|
||||
// Automated Technology for Verification and Analysis
|
||||
// (ATVA'07)},
|
||||
// editor = {Kedar S. Namjoshi and Tomohiro Yoneda and Teruo Higashino
|
||||
// and Yoshio Okamura},
|
||||
// month = oct
|
||||
// }
|
||||
// \endverbatim
|
||||
//
|
||||
// Dax et al. suggest one way to check whether a property
|
||||
// \f$\varphi\f$ expressed as an LTL formula is an obligation:
|
||||
// translate the formula and its negation as two automata \f$A_f\f$
|
||||
// and \f$A_{\lnot f}\f$, then minimize both automata and check that
|
||||
// the two products $\f \mathrm{minimize(A_{\lnot f})\otimes A_f\f$
|
||||
// and $\f \mathrm{minimize(A_f)\otimes A_{\lnot f}\f$ are empty.
|
||||
// If that is the case, then the minimization was correct.
|
||||
//
|
||||
// You may also want to check if \$A_f\$ is a safety automaton using
|
||||
// the is_safety_automaton() function. Since safety properties are
|
||||
// a subclass of obligation properties, you can apply the
|
||||
// minimization without further test. Note however that this is
|
||||
// only a sufficient condition.
|
||||
//
|
||||
// If \a monitor is set to \c true, the automaton will be converted
|
||||
// into minimal deterministic monitor. All useless SCCs should have
|
||||
// been previously removed (using scc_filter() for instance). Then
|
||||
// the automaton will be reduced as if all states where accepting
|
||||
// states.
|
||||
//
|
||||
// For more detail about monitors, see the following paper:
|
||||
// \verbatim
|
||||
// @InProceedings{ tabakov.10.rv,
|
||||
// author = {Deian Tabakov and Moshe Y. Vardi},
|
||||
// title = {Optimized Temporal Monitors for SystemC{$^*$}},
|
||||
// booktitle = {Proceedings of the 10th International Conferance on
|
||||
// Runtime Verification},
|
||||
// pages = {436--451},
|
||||
// year = 2010,
|
||||
// volume = {6418},
|
||||
// series = {Lecture Notes in Computer Science},
|
||||
// month = nov,
|
||||
// publisher = {Spring-Verlag}
|
||||
// }
|
||||
// \endverbatim
|
||||
// (Note: although the above paper uses Spot, this function did not
|
||||
// exist at that time.)
|
||||
/// \brief Use the powerset construction to minimize a TGBA.
|
||||
///
|
||||
/// If \a monitor is set to \c false (the default), then the
|
||||
/// minimized automaton is correct only for properties that belong
|
||||
/// to the class of "obligation properties". This algorithm assumes
|
||||
/// that the given automaton expresses an obligation properties and
|
||||
/// will return an automaton that is bogus (i.e. not equivalent to
|
||||
/// the original) if that is not the case.
|
||||
///
|
||||
/// Please see the following paper for a discussion of this
|
||||
/// technique.
|
||||
///
|
||||
/// \verbatim
|
||||
/// @InProceedings{ dax.07.atva,
|
||||
/// author = {Christian Dax and Jochen Eisinger and Felix Klaedtke},
|
||||
/// title = {Mechanizing the Powerset Construction for Restricted
|
||||
/// Classes of {$\omega$}-Automata},
|
||||
/// year = 2007,
|
||||
/// series = {Lecture Notes in Computer Science},
|
||||
/// publisher = {Springer-Verlag},
|
||||
/// volume = 4762,
|
||||
/// booktitle = {Proceedings of the 5th International Symposium on
|
||||
/// Automated Technology for Verification and Analysis
|
||||
/// (ATVA'07)},
|
||||
/// editor = {Kedar S. Namjoshi and Tomohiro Yoneda and Teruo Higashino
|
||||
/// and Yoshio Okamura},
|
||||
/// month = oct
|
||||
/// }
|
||||
/// \endverbatim
|
||||
///
|
||||
/// Dax et al. suggest one way to check whether a property
|
||||
/// \f$\varphi\f$ expressed as an LTL formula is an obligation:
|
||||
/// translate the formula and its negation as two automata \f$A_f\f$
|
||||
/// and \f$A_{\lnot f}\f$, then minimize both automata and check
|
||||
/// that the two products $\f \mathrm{minimize(A_{\lnot f})\otimes
|
||||
/// A_f\f$ and $\f \mathrm{minimize(A_f)\otimes A_{\lnot f}\f$ are
|
||||
/// empty. If that is the case, then the minimization was correct.
|
||||
///
|
||||
/// You may also want to check if \$A_f\$ is a safety automaton
|
||||
/// using the is_safety_automaton() function. Since safety
|
||||
/// properties are a subclass of obligation properties, you can
|
||||
/// apply the minimization without further test. Note however that
|
||||
/// this is only a sufficient condition.
|
||||
///
|
||||
/// If \a monitor is set to \c true, the automaton will be converted
|
||||
/// into minimal deterministic monitor. All useless SCCs should
|
||||
/// have been previously removed (using scc_filter() for instance).
|
||||
/// Then the automaton will be reduced as if all states where
|
||||
/// accepting states.
|
||||
///
|
||||
/// For more detail about monitors, see the following paper:
|
||||
/// \verbatim
|
||||
/// @InProceedings{ tabakov.10.rv,
|
||||
/// author = {Deian Tabakov and Moshe Y. Vardi},
|
||||
/// title = {Optimized Temporal Monitors for SystemC{$^*$}},
|
||||
/// booktitle = {Proceedings of the 10th International Conferance
|
||||
/// on Runtime Verification},
|
||||
/// pages = {436--451},
|
||||
/// year = 2010,
|
||||
/// volume = {6418},
|
||||
/// series = {Lecture Notes in Computer Science},
|
||||
/// month = nov,
|
||||
/// publisher = {Spring-Verlag}
|
||||
/// }
|
||||
/// \endverbatim
|
||||
/// (Note: although the above paper uses Spot, this function did not
|
||||
/// exist at that time.)
|
||||
tgba_explicit* minimize(const tgba* a, bool monitor = false);
|
||||
|
||||
|
||||
/// \brief Minimize an automaton if it represents an obligation property.
|
||||
///
|
||||
/// This function attempt to minimize the automaton \a aut_f using the
|
||||
/// algorithm implemented in the minimize() function, and presented
|
||||
/// by the following paper:
|
||||
///
|
||||
/// \verbatim
|
||||
/// @InProceedings{ dax.07.atva,
|
||||
/// author = {Christian Dax and Jochen Eisinger and Felix Klaedtke},
|
||||
/// title = {Mechanizing the Powerset Construction for Restricted
|
||||
/// Classes of {$\omega$}-Automata},
|
||||
/// year = 2007,
|
||||
/// series = {Lecture Notes in Computer Science},
|
||||
/// publisher = {Springer-Verlag},
|
||||
/// volume = 4762,
|
||||
/// booktitle = {Proceedings of the 5th International Symposium on
|
||||
/// Automated Technology for Verification and Analysis
|
||||
/// (ATVA'07)},
|
||||
/// editor = {Kedar S. Namjoshi and Tomohiro Yoneda and Teruo Higashino
|
||||
/// and Yoshio Okamura},
|
||||
/// month = oct
|
||||
/// }
|
||||
/// \endverbatim
|
||||
///
|
||||
/// Because it is hard to determine if an automaton correspond
|
||||
/// to an obligation property, you should supply either the formula
|
||||
/// \a f expressed by the automaton \a aut_f, or \a aut_neg_f the negation
|
||||
/// of the automaton \a aut_neg_f.
|
||||
///
|
||||
/// \param aut_f the automaton to minimize
|
||||
/// \param f the LTL formula represented by the automaton \a aut_f
|
||||
/// \param aut_neg_f an automaton representing the negation of \a aut_f
|
||||
/// \return a new tgba if the automaton could be minimized, aut_f if
|
||||
/// the automaton cannot be minimized, 0 if we do not if if the
|
||||
/// minimization is correct because neither \a f nor \a aut_neg_f
|
||||
/// were supplied.
|
||||
///
|
||||
/// The function proceeds as follows. If the formula \a f or the
|
||||
/// automaton \a aut can easily be proved to represent an obligation
|
||||
/// formula, then the result of \code minimize(aut) is returned.
|
||||
/// Otherwise, if \a aut_neg_f was not supplied but \a f was, \a
|
||||
/// aut_neg_f is built from the negation of \a f. Then we check
|
||||
/// that \code product(aut,minimize(aut_neg_f)) and \code
|
||||
/// product(aut_neg_f,minize(aut)) are both empty. If they are, the
|
||||
/// the minimization was sound. (See the paper for full details.)
|
||||
const tgba* minimize_obligation(const tgba* aut_f,
|
||||
const ltl::formula* f = 0,
|
||||
const tgba* aut_neg_f = 0);
|
||||
|
||||
}
|
||||
|
||||
#endif /* !SPOT_TGBAALGOS_MINIMIZE_HH */
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue