Better documentation for the cycle enumeration algorithms.
* src/tgbaalgos/cycles.cc, src/tgbaalgos/cycles.hh, src/tgbaalgos/isweakscc.hh: Improve .doc * src/tgbaalgos/isweakscc.cc (weak_checker::cycle_found): Scan the DFS backward so we only look at the cycle part.
This commit is contained in:
parent
420fcd62e4
commit
92e37998b2
4 changed files with 112 additions and 67 deletions
|
|
@ -53,8 +53,8 @@ namespace spot
|
|||
for (set_type::iterator i = y->second.b.begin();
|
||||
i != y->second.b.end(); ++i)
|
||||
{
|
||||
tagged_state x = tags.find(*i);
|
||||
assert(x != tags.end());
|
||||
tagged_state x = tags_.find(*i);
|
||||
assert(x != tags_.end());
|
||||
// insert y in A(x)
|
||||
x->second.del.erase(y->first);
|
||||
|
||||
|
|
@ -71,7 +71,7 @@ namespace spot
|
|||
enumerate_cycles::tag_state(const state* s)
|
||||
{
|
||||
std::pair<tagged_state, bool> p =
|
||||
tags.insert(std::make_pair(s, state_info()));
|
||||
tags_.insert(std::make_pair(s, state_info()));
|
||||
if (p.second)
|
||||
s->destroy();
|
||||
return p.first;
|
||||
|
|
@ -86,7 +86,7 @@ namespace spot
|
|||
e.ts = ts;
|
||||
e.succ = 0;
|
||||
e.f = false;
|
||||
dfs.push_back(e);
|
||||
dfs_.push_back(e);
|
||||
}
|
||||
|
||||
void
|
||||
|
|
@ -96,9 +96,9 @@ namespace spot
|
|||
|
||||
push_state(tag_state(sm_.one_state_of(scc)->clone()));
|
||||
|
||||
while (keep_going && !dfs.empty())
|
||||
while (keep_going && !dfs_.empty())
|
||||
{
|
||||
dfs_entry& cur = dfs.back();
|
||||
dfs_entry& cur = dfs_.back();
|
||||
if (cur.succ == 0)
|
||||
{
|
||||
cur.succ = aut_->succ_iter(cur.ts->first);
|
||||
|
|
@ -142,46 +142,45 @@ namespace spot
|
|||
tagged_state v = cur.ts;
|
||||
delete cur.succ;
|
||||
|
||||
dfs.pop_back();
|
||||
dfs_.pop_back();
|
||||
if (f)
|
||||
unmark(v);
|
||||
v->second.reach = true;
|
||||
|
||||
// Update the predecessor in the stack if there is one.
|
||||
if (!dfs.empty())
|
||||
if (!dfs_.empty())
|
||||
{
|
||||
if (f)
|
||||
dfs.back().f = true;
|
||||
dfs_.back().f = true;
|
||||
else
|
||||
nocycle(dfs.back().ts, v);
|
||||
nocycle(dfs_.back().ts, v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Purge the dfs stack, in case we aborted because cycle_found()
|
||||
// said so.
|
||||
while (!dfs.empty())
|
||||
// Purge the dfs_ stack, in case we aborted because cycle_found()
|
||||
// returned false.
|
||||
while (!dfs_.empty())
|
||||
{
|
||||
delete dfs.back().succ;
|
||||
dfs.pop_back();
|
||||
delete dfs_.back().succ;
|
||||
dfs_.pop_back();
|
||||
}
|
||||
|
||||
|
||||
hash_type::iterator i = tags.begin();
|
||||
while (i != tags.end())
|
||||
hash_type::iterator i = tags_.begin();
|
||||
while (i != tags_.end())
|
||||
{
|
||||
hash_type::iterator old = i;
|
||||
++i;
|
||||
old->first->destroy();
|
||||
}
|
||||
tags.clear();
|
||||
dfs.clear();
|
||||
tags_.clear();
|
||||
dfs_.clear();
|
||||
}
|
||||
|
||||
bool
|
||||
enumerate_cycles::cycle_found(const state* start)
|
||||
{
|
||||
dfs_stack::const_iterator i = dfs.begin();
|
||||
dfs_stack::const_iterator i = dfs_.begin();
|
||||
while (i->ts->first != start)
|
||||
++i;
|
||||
do
|
||||
|
|
@ -189,7 +188,7 @@ namespace spot
|
|||
std::cout << aut_->format_state(i->ts->first) << " ";
|
||||
++i;
|
||||
}
|
||||
while (i != dfs.end());
|
||||
while (i != dfs_.end());
|
||||
std::cout << "\n";
|
||||
return true;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,15 +24,13 @@
|
|||
#include "scc.hh"
|
||||
#include "misc/hash.hh"
|
||||
#include <deque>
|
||||
#include <utility>
|
||||
|
||||
namespace spot
|
||||
{
|
||||
|
||||
/// \brief Enumerate cycles from a SCC.
|
||||
///
|
||||
/// This implements the algorithm on page 170 of:
|
||||
/// \brief Enumerate elementary cycles in a SCC.
|
||||
///
|
||||
/// This class implements a non-recursive version of the algorithm
|
||||
/// on page 170 of:
|
||||
/// \verbatim
|
||||
/// @Article{loizou.82.is,
|
||||
/// author = {George Loizou and Peter Thanisch},
|
||||
|
|
@ -46,25 +44,45 @@ namespace spot
|
|||
/// month = aug
|
||||
/// }
|
||||
/// \endverbatim
|
||||
/// (the additional preprocessings described later in that paper are
|
||||
/// not implemented).
|
||||
///
|
||||
/// (the additional preprocessing described in that paper is not
|
||||
/// implemented).
|
||||
/// It should be noted that although the above paper does not
|
||||
/// consider multiple arcs and self-loops in its definitions, the
|
||||
/// algorithm they present works as expected in these cases.
|
||||
///
|
||||
/// The class constructor takes an automaton, and an scc_map that
|
||||
/// should already have been built for for automaton. Calling
|
||||
/// For our purpose an elementary cycle is a sequence of transitions
|
||||
/// that form a cycle and that visit a state at most once. We may
|
||||
/// have two cycles that visit the same states in the same order if
|
||||
/// some pair of states are connected by several transitions. Also
|
||||
/// A cycle may visit only one state if it is a self-loop.
|
||||
///
|
||||
/// We represent a cycle by a sequence of succ_iterator objects
|
||||
/// positioned on the transition contributing to the cycle. These
|
||||
/// succ_itertor are stored, along with their source state, in the
|
||||
/// dfs_ stack. Only the last portion of this stack may form a
|
||||
/// cycle.
|
||||
///
|
||||
/// The class constructor takes an automaton and an scc_map that
|
||||
/// should already have been built for that automaton. Calling
|
||||
/// run(n) will enumerate all elementary cycles in SCC #n. Each
|
||||
/// time an SCC is found, the method cycle_found() is called with
|
||||
/// the initial state of the cycle (the cycle is constituted from
|
||||
/// all the states that are on the dfs stack after this starting
|
||||
/// state). When if cycle_found() returns false, the run() method
|
||||
/// will terminate. If it returns true, the run() method will
|
||||
/// search the next elementary cycle.
|
||||
/// time an SCC is found, the method cycle_found(s) is called with
|
||||
/// the initial state s of the cycle: the cycle is constituted from
|
||||
/// all the states that are on the dfs_ stack after s (including s).
|
||||
///
|
||||
/// You should inherit from this class and redefine the
|
||||
/// cycle_found() method to perform any work you would like to do on
|
||||
/// the enumerated cycles. If cycle_found() returns false, the
|
||||
/// run() method will terminate. If it returns true, the run()
|
||||
/// method will search for the next elementary cycle and call
|
||||
/// cycle_found() again if it finds another cycle.
|
||||
class enumerate_cycles
|
||||
{
|
||||
protected:
|
||||
typedef Sgi::hash_set<const state*,
|
||||
state_ptr_hash, state_ptr_equal> set_type;
|
||||
|
||||
// Extra information required for the algorithm for each state.
|
||||
struct state_info
|
||||
{
|
||||
// Whether the state has already left the stack at least once.
|
||||
|
|
@ -77,38 +95,31 @@ namespace spot
|
|||
bool mark;
|
||||
// Deleted successors (in the paper, states deleted from A(x))
|
||||
set_type del;
|
||||
|
||||
// Predecessors of the current states, that could not yet
|
||||
// contribute to a cycle.
|
||||
set_type b;
|
||||
};
|
||||
|
||||
// Store the state_info for all visited states.
|
||||
typedef Sgi::hash_map<const state*, state_info,
|
||||
state_ptr_hash, state_ptr_equal> hash_type;
|
||||
hash_type tags_;
|
||||
|
||||
// A tagged_state s is a state* (s->first) associated to its
|
||||
// state_info (s->second). We usually handled tagged_state in the
|
||||
// algorithm to avoid repeated lookup of the state_info data.
|
||||
typedef hash_type::iterator tagged_state;
|
||||
|
||||
public:
|
||||
enumerate_cycles(const tgba* aut, const scc_map& map);
|
||||
|
||||
// Run in SCC scc, and call cycle_found() for any new elementary
|
||||
// cycle found.
|
||||
void run(unsigned scc);
|
||||
|
||||
void nocycle(tagged_state x, tagged_state y);
|
||||
void unmark(tagged_state y);
|
||||
|
||||
// Called whenever a cycle was found. The cycles uses all the
|
||||
// states from the dfs stack, starting from \a start.
|
||||
virtual bool cycle_found(const state* start);
|
||||
|
||||
tagged_state tag_state(const state* s);
|
||||
void push_state(tagged_state ts);
|
||||
|
||||
protected:
|
||||
// The automaton we are working on.
|
||||
const tgba* aut_;
|
||||
// The SCC map built for aut_.
|
||||
const scc_map& sm_;
|
||||
|
||||
// The DFS stack. Each entry contains a tagged state, an iterator
|
||||
// on the transitions leaving that state, and a Boolean f
|
||||
// indicating whether this state as already contributed to a cycle
|
||||
// (f is updated when backtracking, so it should not be used by
|
||||
// cycle_found()).
|
||||
struct dfs_entry
|
||||
{
|
||||
tagged_state ts;
|
||||
|
|
@ -116,9 +127,43 @@ namespace spot
|
|||
bool f;
|
||||
};
|
||||
typedef std::deque<dfs_entry> dfs_stack;
|
||||
dfs_stack dfs;
|
||||
dfs_stack dfs_;
|
||||
|
||||
hash_type tags;
|
||||
public:
|
||||
enumerate_cycles(const tgba* aut, const scc_map& map);
|
||||
|
||||
/// \brief Run in SCC scc, and call \a cycle_found() for any new
|
||||
/// elementary cycle found.
|
||||
///
|
||||
/// It is safe to call this method multiple times, for instance to
|
||||
/// enumerate the cycle of each SCC.
|
||||
void run(unsigned scc);
|
||||
|
||||
|
||||
/// \brief Called whenever a cycle was found.
|
||||
///
|
||||
/// The cycle uses all the states from the dfs stack, starting
|
||||
/// from the one labeled \a start. The iterators in the DFS stack
|
||||
/// are all pointing to the transition considered for the cycle.
|
||||
///
|
||||
/// This method is not const so you can modify private variables
|
||||
/// to your subclass, but it should definitely NOT modify the dfs
|
||||
/// stack or the tags map.
|
||||
///
|
||||
/// The default implementation, not very useful, will print the
|
||||
/// states in the cycle on std::cout.
|
||||
virtual bool cycle_found(const state* start);
|
||||
|
||||
private:
|
||||
// introduce a new state to the tags map.
|
||||
tagged_state tag_state(const state* s);
|
||||
// add a new state to the dfs_ stack
|
||||
void push_state(tagged_state ts);
|
||||
// block the edge (x,y) because it cannot contribute to a new
|
||||
// cycle currently (sub-procedure from the paper)
|
||||
void nocycle(tagged_state x, tagged_state y);
|
||||
// unmark the state y (sub-procedure from the paper)
|
||||
void unmark(tagged_state y);
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -27,6 +27,7 @@ namespace spot
|
|||
{
|
||||
namespace
|
||||
{
|
||||
// Look for a non-accepting cycle.
|
||||
class weak_checker: public enumerate_cycles
|
||||
{
|
||||
public:
|
||||
|
|
@ -40,16 +41,16 @@ namespace spot
|
|||
virtual bool
|
||||
cycle_found(const state* start)
|
||||
{
|
||||
dfs_stack::const_iterator i = dfs.begin();
|
||||
dfs_stack::const_reverse_iterator i = dfs_.rbegin();
|
||||
bdd acc = bddfalse;
|
||||
while (i->ts->first != start)
|
||||
++i;
|
||||
do
|
||||
for (;;)
|
||||
{
|
||||
acc |= i->succ->current_acceptance_conditions();
|
||||
if (i->ts->first == start)
|
||||
break;
|
||||
++i;
|
||||
assert(i != dfs_.rend());
|
||||
}
|
||||
while (i != dfs.end());
|
||||
if (acc != aut_->all_acceptance_conditions())
|
||||
{
|
||||
// We have found an non-accepting cycle, so the SCC is not
|
||||
|
|
|
|||
|
|
@ -30,14 +30,14 @@ namespace spot
|
|||
|
||||
/// \brief Whether the SCC number \a scc in \a aut is weak.
|
||||
///
|
||||
/// An SCC is weak if its cycles are all accepting, or the are all
|
||||
/// non-accepting.
|
||||
/// An SCC is weak if either its cycles are all accepting, or they
|
||||
/// are all non-accepting.
|
||||
///
|
||||
/// The scc_map \a map should have been built already. The absence
|
||||
/// of accepting cycle is easy to check (the scc_map can tell
|
||||
/// whether the SCC is non-accepting already). For the accepting
|
||||
/// SCC, this function works by enumerating all cycles in the given
|
||||
/// SCC (it stops if it find a non-accepting cycle).
|
||||
/// SCCs, this function enumerates all cycles in the given SCC (it
|
||||
/// stops if it find a non-accepting cycle).
|
||||
bool is_weak_scc(const tgba* aut, scc_map& map, unsigned scc);
|
||||
|
||||
/// @}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue