Get rid of all dynamic_cast<>s while working on LTL formulae.

They are too slow.

* src/ltlast/formula.hh (opkind, kind, kind_): Use an enum
to indicate the actual kind of the formula.  This way we can
check the kind of a formula without relying on dynamic_cast.
* src/ltlast/atomic_prop.cc, src/ltlast/automatop.cc,
src/ltlast/binop.cc, src/ltlast/bunop.cc, src/ltlast/constant.cc,
src/ltlast/multop.cc, src/ltlast/refformula.cc,
src/ltlast/refformula.hh, src/ltlast/unop.cc: Adjust constructors.
* src/ltlvisit/basicreduce.cc, src/ltlvisit/mark.cc,
src/ltlvisit/reduce.cc, src/ltlvisit/syntimpl.cc,
src/ltlvisit/tostring.cc: Replace all dynamic_cast by a
call to kind() followed by a static_cast.
This commit is contained in:
Alexandre Duret-Lutz 2010-12-09 13:19:44 +01:00
parent 48cde88b9b
commit 957ba664b7
15 changed files with 743 additions and 609 deletions

File diff suppressed because it is too large Load diff

View file

@ -221,13 +221,13 @@ namespace spot
{
formula* f = mo->nth(i);
binop* bo = dynamic_cast<binop*>(f);
if (!bo)
if (f->kind() != formula::BinOp)
{
res->push_back(recurse(f));
}
else
{
binop* bo = static_cast<binop*>(f);
switch (bo->op())
{
case binop::Xor:

View file

@ -179,16 +179,17 @@ namespace spot
}
/* a < b => a U (b U c) = (b U c) */
/* a < b => a U (b W c) = (b W c) */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && (bo->op() == binop::U || bo->op() == binop::W)
&& syntactic_implication(f1, bo->first()))
{
result_ = f2;
f1->destroy();
return;
}
}
if (f2->kind() == formula::BinOp)
{
binop* bo = static_cast<binop*>(f2);
if ((bo->op() == binop::U || bo->op() == binop::W)
&& syntactic_implication(f1, bo->first()))
{
result_ = f2;
f1->destroy();
return;
}
}
break;
case binop::R:
@ -206,30 +207,29 @@ namespace spot
f1->destroy();
return;
}
/* b < a => a R (b R c) = b R c */
/* b < a => a R (b M c) = b M c */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && (bo->op() == binop::R || bo->op() == binop::M)
&& syntactic_implication(bo->first(), f1))
{
result_ = f2;
f1->destroy();
return;
}
}
/* a < b => a R (b R c) = a R c */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && bo->op() == binop::R
&& syntactic_implication(f1, bo->first()))
{
result_ = binop::instance(binop::R, f1,
bo->second()->clone());
f2->destroy();
return;
}
}
if (f2->kind() == formula::BinOp)
{
/* b < a => a R (b R c) = b R c */
/* b < a => a R (b M c) = b M c */
binop* bo = static_cast<binop*>(f2);
if ((bo->op() == binop::R || bo->op() == binop::M)
&& syntactic_implication(bo->first(), f1))
{
result_ = f2;
f1->destroy();
return;
}
/* a < b => a R (b R c) = a R c */
if (bo->op() == binop::R
&& syntactic_implication(f1, bo->first()))
{
result_ = binop::instance(binop::R, f1,
bo->second()->clone());
f2->destroy();
return;
}
}
break;
case binop::W:
@ -249,16 +249,17 @@ namespace spot
return;
}
/* a < b => a W (b W c) = (b W c) */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && bo->op() == binop::W
&& syntactic_implication(f1, bo->first()))
{
result_ = f2;
f1->destroy();
return;
}
}
if (f2->kind() == formula::BinOp)
{
binop* bo = static_cast<binop*>(f2);
if (bo->op() == binop::W
&& syntactic_implication(f1, bo->first()))
{
result_ = f2;
f1->destroy();
return;
}
}
break;
case binop::M:
@ -277,30 +278,29 @@ namespace spot
f2->destroy();
return;
}
/* b < a => a M (b M c) = b M c */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && bo->op() == binop::M
&& syntactic_implication(bo->first(), f1))
{
result_ = f2;
f1->destroy();
return;
}
}
/* a < b => a M (b M c) = a M c */
/* a < b => a M (b R c) = a M c */
{
binop* bo = dynamic_cast<binop*>(f2);
if (bo && (bo->op() == binop::M || bo->op() == binop::R)
&& syntactic_implication(f1, bo->first()))
{
result_ = binop::instance(binop::M, f1,
bo->second()->clone());
f2->destroy();
return;
}
}
if (f2->kind() == formula::BinOp)
{
/* b < a => a M (b M c) = b M c */
binop* bo = static_cast<binop*>(f2);
if (bo->op() == binop::M
&& syntactic_implication(bo->first(), f1))
{
result_ = f2;
f1->destroy();
return;
}
/* a < b => a M (b M c) = a M c */
/* a < b => a M (b R c) = a M c */
if ((bo->op() == binop::M || bo->op() == binop::R)
&& syntactic_implication(f1, bo->first()))
{
result_ = binop::instance(binop::M, f1,
bo->second()->clone());
f2->destroy();
return;
}
}
break;
}
}

View file

@ -96,8 +96,10 @@ namespace spot
return;
case unop::X:
{
const unop* op = dynamic_cast<const unop*>(f);
if (op && op->op() == unop::X)
if (f->kind() != formula::UnOp)
return;
const unop* op = static_cast<const unop*>(f);
if (op->op() == unop::X)
result_ = syntactic_implication(op->child(), f1);
}
return;
@ -124,8 +126,6 @@ namespace spot
{
const formula* f1 = bo->first();
const formula* f2 = bo->second();
const binop* fb = dynamic_cast<const binop*>(f);
const unop* fu = dynamic_cast<const unop*>(f);
switch (bo->op())
{
case binop::Xor:
@ -141,39 +141,55 @@ namespace spot
result_ = true;
return;
case binop::R:
if (fb && fb->op() == binop::R)
if (syntactic_implication(fb->first(), f1) &&
syntactic_implication(fb->second(), f2))
{
result_ = true;
return;
}
if (fu && fu->op() == unop::G)
if (f1 == constant::false_instance() &&
syntactic_implication(fu->child(), f2))
{
result_ = true;
return;
}
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::R
&& syntactic_implication(fb->first(), f1)
&& syntactic_implication(fb->second(), f2))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::G
&& f1 == constant::false_instance()
&& syntactic_implication(fu->child(), f2))
{
result_ = true;
return;
}
}
if (syntactic_implication(f, f1)
&& syntactic_implication(f, f2))
result_ = true;
return;
case binop::M:
if (fb && fb->op() == binop::M)
if (syntactic_implication(fb->first(), f1) &&
syntactic_implication(fb->second(), f2))
{
result_ = true;
return;
}
if (fu && fu->op() == unop::F)
if (f2 == constant::true_instance() &&
syntactic_implication(fu->child(), f1))
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::M
&& syntactic_implication(fb->first(), f1)
&& syntactic_implication(fb->second(), f2))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::F
&& f2 == constant::true_instance()
&& syntactic_implication(fu->child(), f1))
{
result_ = true;
return;
}
}
if (syntactic_implication(f, f1)
&& syntactic_implication(f, f2))
result_ = true;
@ -238,8 +254,10 @@ namespace spot
bool
special_case(const binop* f2)
{
const binop* fb = dynamic_cast<const binop*>(f);
if (fb && fb->op() == f2->op()
if (f->kind() != formula::BinOp)
return false;
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == f2->op()
&& syntactic_implication(f2->first(), fb->first())
&& syntactic_implication(f2->second(), fb->second()))
return true;
@ -249,10 +267,9 @@ namespace spot
bool
special_case_check(const formula* f2)
{
const binop* f2b = dynamic_cast<const binop*>(f2);
if (!f2b)
if (f2->kind() != formula::BinOp)
return false;
return special_case(f2b);
return special_case(static_cast<const binop*>(f2));
}
int
@ -307,11 +324,12 @@ namespace spot
result_ = true;
return;
case unop::X:
{
const unop* op = dynamic_cast<const unop*>(f);
if (op && op->op() == unop::X)
result_ = syntactic_implication(f1, op->child());
}
if (f->kind() == formula::UnOp)
{
const unop* op = static_cast<const unop*>(f);
if (op->op() == unop::X)
result_ = syntactic_implication(f1, op->child());
}
return;
case unop::F:
{
@ -367,8 +385,6 @@ namespace spot
const formula* f1 = bo->first();
const formula* f2 = bo->second();
const binop* fb = dynamic_cast<const binop*>(f);
const unop* fu = dynamic_cast<const unop*>(f);
switch (bo->op())
{
case binop::Xor:
@ -380,63 +396,87 @@ namespace spot
return;
case binop::U:
/* (a < c) && (c < d) => a U b < c U d */
if (fb && fb->op() == binop::U)
if (syntactic_implication(f1, fb->first()) &&
syntactic_implication(f2, fb->second()))
{
result_ = true;
return;
}
if (fu && fu->op() == unop::F)
if (f1 == constant::true_instance() &&
syntactic_implication(f2, fu->child()))
{
result_ = true;
return;
}
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::U
&& syntactic_implication(f1, fb->first())
&& syntactic_implication(f2, fb->second()))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::F
&& f1 == constant::true_instance()
&& syntactic_implication(f2, fu->child()))
{
result_ = true;
return;
}
}
if (syntactic_implication(f1, f)
&& syntactic_implication(f2, f))
result_ = true;
return;
case binop::W:
/* (a < c) && (c < d) => a W b < c W d */
if (fb && fb->op() == binop::W)
if (syntactic_implication(f1, fb->first()) &&
syntactic_implication(f2, fb->second()))
{
result_ = true;
return;
}
if (fu && fu->op() == unop::G)
if (f2 == constant::false_instance() &&
syntactic_implication(f1, fu->child()))
{
result_ = true;
return;
}
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::W
&& syntactic_implication(f1, fb->first())
&& syntactic_implication(f2, fb->second()))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu && fu->op() == unop::G
&& f2 == constant::false_instance()
&& syntactic_implication(f1, fu->child()))
{
result_ = true;
return;
}
}
if (syntactic_implication(f1, f)
&& syntactic_implication(f2, f))
result_ = true;
return;
case binop::R:
if (fu && fu->op() == unop::G)
if (f1 == constant::false_instance() &&
syntactic_implication(f2, fu->child()))
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::G
&& f1 == constant::false_instance()
&& syntactic_implication(f2, fu->child()))
{
result_ = true;
return;
}
}
if (syntactic_implication(f2, f))
result_ = true;
return;
case binop::M:
if (fu && fu->op() == unop::F)
if (f2 == constant::true_instance() &&
syntactic_implication(f1, fu->child()))
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::F
&& f2 == constant::true_instance()
&& syntactic_implication(f1, fu->child()))
{
result_ = true;
return;
}
}
if (syntactic_implication(f2, f))
result_ = true;
return;

View file

@ -188,7 +188,7 @@ namespace spot
// a[*] is OK, no need to print {a}[*].
// However want braces for {!a}[*], the only unary
// operator that can be nested with [*].
bool need_parent = !!dynamic_cast<const unop*>(bo->child());
bool need_parent = (bo->child()->kind() == formula::UnOp);
if (need_parent || full_parent_)
openp();
@ -206,7 +206,7 @@ namespace spot
top_level_ = false;
// The parser treats F0, F1, G0, G1, X0, and X1 as atomic
// propositions. So make sure we output F(0), G(1), etc.
bool need_parent = !!dynamic_cast<const constant*>(uo->child());
bool need_parent = (uo->child()->kind() == formula::Constant);
bool top_level = top_level_;
if (full_parent_)
@ -456,7 +456,7 @@ namespace spot
case unop::X:
// The parser treats X0, and X1 as atomic
// propositions. So make sure we output X(0) and X(1).
need_parent = !!dynamic_cast<const constant*>(uo->child());
need_parent = (uo->child()->kind() == formula::Constant);
if (full_parent_)
need_parent = false;
os_ << "X";