Create the iterated simulations.

* src/tgbaalgos/simulation.cc: Create the iterated_simulations.
(direct_simulation) Add an attribute "stat" that represents the
number of states and transitions of the resulting automaton.
* src/tgbaalgos/simulation.hh: Declare the iterated_simulations.
* src/tgbatest/spotlbtt.test: Test the iterated_simulations.
* src/tgbatest/ltl2tgba.cc: Associate the option -RIS to the
iterated_simulations.
This commit is contained in:
Thomas Badie 2012-08-18 15:30:43 +02:00 committed by Alexandre Duret-Lutz
parent 242386b19a
commit a0cce10512
4 changed files with 101 additions and 2 deletions

View file

@ -28,6 +28,7 @@
#include "misc/minato.hh"
#include "tgba/bddprint.hh"
#include "tgbaalgos/reachiter.hh"
#include "tgbaalgos/sccfilter.hh"
// The way we developed this algorithm is the following: We take an
// automaton, and reverse all these acceptance conditions. We reverse
@ -104,6 +105,22 @@ namespace spot
typedef std::map<bdd, std::list<const state*>,
bdd_less_than> map_bdd_lstate;
struct automaton_size
{
automaton_size()
: transitions(0),
states(0)
{
}
inline bool operator!= (const automaton_size& r)
{
return transitions != r.transitions || states != r.states;
}
int transitions;
int states;
};
// This class takes an automaton and creates a copy with all
// acceptance conditions complemented.
@ -146,7 +163,6 @@ namespace spot
int src = get_state(in_s);
int dst = get_state(out_s);
// In the case of the cosimulation, we want to have all the
// ingoing transition, and to keep the rest of the code
// similar, we just create equivalent transition in the other
@ -223,7 +239,6 @@ namespace spot
bdd init = bdd_ithvar(set_num++);
used_var_.push_back(init);
all_class_var_ = init;
// We fetch the result the run of acc_compl_automaton which
// has recorded all the state in a hash table, and we set all
@ -240,6 +255,7 @@ namespace spot
// of these in a variable all_class_var_ which will be used
// to understand the destination part in the signature when
// building the resulting automaton.
all_class_var_ = init;
for (unsigned i = set_num; i < set_num + size_a_ - 1; ++i)
{
free_var_.push(i);
@ -443,6 +459,14 @@ namespace spot
}
}
automaton_size get_stat() const
{
assert(stat.states != 0);
return stat;
}
// Build the minimal resulting automaton.
tgba* build_result()
{
@ -489,6 +513,9 @@ namespace spot
bdd2state[relation_[part]] = current_max;
}
stat.states = bdd_lstate_.size();
stat.transitions = 0;
// For each partition, we will create
// all the transitions between the states.
for (map_bdd_lstate::iterator it = bdd_lstate_.begin();
@ -533,6 +560,8 @@ namespace spot
bdd cond_acc_dest;
while ((cond_acc_dest = isop.next()) != bddfalse)
{
++stat.transitions;
// Take the transition, and keep only the variable which
// are used to represent the class.
bdd dest = bdd_existcomp(cond_acc_dest,
@ -665,6 +694,8 @@ namespace spot
// Initial state of the automaton we are working on
state* initial_state;
automaton_size stat;
};
} // End namespace anonymous.
@ -685,4 +716,38 @@ namespace spot
return simul.run();
}
tgba*
iterated_simulations(const tgba* t)
{
tgba* res = const_cast<tgba*> (t);
automaton_size prev;
automaton_size next;
do
{
prev = next;
direct_simulation<false> simul(res);
tgba* after_simulation = simul.run();
if (res != t)
delete res;
direct_simulation<true> cosimul(after_simulation);
tgba* after_cosimulation = cosimul.run();
next = cosimul.get_stat();
res = scc_filter(after_cosimulation, false);
delete after_cosimulation;
delete after_simulation;
}
while (prev != next);
return res;
}
} // End namespace spot.