ltsmin: prodcuce kripkecube

Warning! this patch introduces redundancy (or difference)
between wether you ask for a kripkecube or a kripke.

* spot/ltsmin/ltsmin.cc, spot/ltsmin/ltsmin.hh: here.
This commit is contained in:
Etienne Renault 2016-03-10 13:27:24 +01:00
parent 8e593611f6
commit b4bbf50794
2 changed files with 885 additions and 5 deletions

View file

@ -38,13 +38,17 @@
#include <spot/misc/intvcomp.hh>
#include <spot/misc/intvcmp2.hh>
#include <spot/twaalgos/reachiter.hh>
#include <string.h>
#include <spot/twacube/cube.hh>
#include <spot/mc/utils.hh>
using namespace std::string_literals;
namespace spot
{
namespace
{
////////////////////////////////////////////////////////////////////////
// spins interface
@ -948,7 +952,6 @@ namespace spot
//////////////////////////////////////////////////////////////////////////
// LOADER
// Call spins to compile "foo.prom" as "foo.prom.spins" if the latter
// does not exist already or is older.
static void
@ -970,6 +973,7 @@ namespace spot
else if (ext == ".dve")
{
command = "divine compile --ltsmin " + filename;
command += " 2> /dev/null"; // FIXME needed for Clang on MacOSX
compiled_ext = "2C";
}
else
@ -1004,7 +1008,6 @@ namespace spot
+ command.c_str() + "' returned exit code "
+ std::to_string(WEXITSTATUS(res)));
}
}
ltsmin_model
@ -1089,6 +1092,875 @@ namespace spot
return { d };
}
////////////////////////////////////////////////////////////////////////
// CSpins comparison functions & definitions
struct cspins_state_equal
{
bool
operator()(const cspins_state lhs,
const cspins_state rhs) const
{
return 0 == memcmp(lhs, rhs, (2+rhs[1])* sizeof(int));
}
};
struct cspins_state_hash
{
size_t
operator()(const cspins_state that) const
{
return that[0];
}
};
typedef std::unordered_map<const cspins_state, int, cspins_state_hash,
cspins_state_equal> cspins_state_map;
typedef std::unordered_set<cspins_state, cspins_state_hash,
cspins_state_equal> cspins_state_set;
////////////////////////////////////////////////////////////////////////
// A manager for Cspins states.
class cspins_state_manager final
{
public:
cspins_state_manager(unsigned int state_size,
int compress)
: p_((state_size+2)*sizeof(int)), compress_(compress),
/* reserve one integer for the hash value and size */
state_size_(state_size),
fn_compress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_compress
: int_array_array_compress2),
fn_decompress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_decompress
: int_array_array_decompress2)
{ }
int* unbox_state(cspins_state s) const
{
return s+2;
}
// cmp is the area we can use to compute the compressed rep of dst.
cspins_state alloc_setup(int *dst, int* cmp, size_t cmpsize)
{
cspins_state out = nullptr;
size_t size = state_size_;
int* ref = dst;
if (compress_)
{
size_t csize = cmpsize;
fn_compress_(dst, state_size_, cmp, csize);
ref = cmp;
size = csize;
out = (cspins_state) msp_.allocate((size+2)*sizeof(int));
}
else
out = (cspins_state) p_.allocate();
int hash_value = 0;
memcpy(unbox_state(out), ref, size * sizeof(int));
for (unsigned int i = 0; i < state_size_; ++i)
hash_value = wang32_hash(hash_value ^ dst[i]);
out[0] = hash_value;
out[1] = size;
return out;
}
void decompress(cspins_state s, int* uncompressed, unsigned size) const
{
fn_decompress_(s+2, s[1], uncompressed, size);
}
void dealloc(cspins_state s)
{
if (compress_)
msp_.deallocate(s, (s[1]+2)*sizeof(int));
else
p_.deallocate(s);
}
unsigned int size() const
{
return state_size_;
}
private:
fixed_size_pool p_;
multiple_size_pool msp_;
bool compress_;
const unsigned int state_size_;
void (*fn_compress_)(const int*, size_t, int*, size_t&);
void (*fn_decompress_)(const int*, size_t, int*, size_t);
};
////////////////////////////////////////////////////////////////////////
// Iterator over Cspins states
// This structure is used as a parameter during callback when
// generating states from the shared librarie produced by LTSmin
struct inner_callback_parameters
{
cspins_state_manager* manager; // The state manager
std::vector<cspins_state>* succ; // The successors of a state
cspins_state_map* map;
int* compressed_;
int* uncompressed_;
int default_value_;
bool compress;
bool selfloopize;
};
// This class provides an iterator over the successors of a state.
// All successors are computed once when an iterator is recycled or
// created.
class cspins_iterator final
{
public:
cspins_iterator(cspins_state s,
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
: current_(0), cond_(cond)
{
successors_.reserve(10);
inner.manager = &manager;
inner.map = &map;
inner.succ = &successors_;
inner.default_value_ = defvalue;
inner.compress = compress;
inner.selfloopize = selfloopize;
int* ref = s;
if (compress)
// already filled by compute_condition
ref = inner.uncompressed_;
int n = d->get_successors
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast<inner_callback_parameters*>(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s, inner->default_value_});
inner->succ->push_back((*(it.first)).first);
if (!it.second)
{
inner->manager->dealloc(s);
}
},
&inner);
if (!n && selfloopize)
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
}
void recycle(cspins_state s,
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
{
cond_ = cond;
current_ = 0;
// Constant time since int* is is_trivially_destructible
successors_.clear();
inner.manager = &manager;
inner.succ = &successors_;
inner.map = &map;
inner.default_value_ = defvalue;
inner.compress = compress;
inner.selfloopize = selfloopize;
int* ref = s;
if (compress)
// Already filled by compute_condition
ref = inner.uncompressed_;
int n = d->get_successors
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast<inner_callback_parameters*>(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s, inner->default_value_});
inner->succ->push_back((*(it.first)).first);
if (!it.second)
inner->manager->dealloc(s);
},
&inner);
if (!n && selfloopize)
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
}
~cspins_iterator()
{
// Do not release successors states, the manager
// will do it on time.
}
void next()
{
++current_;
}
bool done() const
{
return current_ >= successors_.size();
}
cspins_state state() const
{
return successors_[current_];
}
cube condition() const
{
return cond_;
}
private:
std::vector<cspins_state> successors_;
unsigned int current_;
cube cond_;
};
////////////////////////////////////////////////////////////////////////
// Concrete definition of the system
// A specialisation of the template class kripke
template<>
class kripkecube<cspins_state, cspins_iterator> final
{
typedef enum {
OP_EQ_VAR, OP_NE_VAR, OP_LT_VAR, OP_GT_VAR, OP_LE_VAR, OP_GE_VAR,
VAR_OP_EQ, VAR_OP_NE, VAR_OP_LT, VAR_OP_GT, VAR_OP_LE, VAR_OP_GE,
VAR_OP_EQ_VAR, VAR_OP_NE_VAR, VAR_OP_LT_VAR,
VAR_OP_GT_VAR, VAR_OP_LE_VAR, VAR_OP_GE_VAR, VAR_DEAD
} relop;
// Structure for complex atomic proposition
struct one_prop
{
int lval;
relop op;
int rval;
};
// Data structure to store complex atomic propositions
typedef std::vector<one_prop> prop_set;
prop_set pset_;
public:
kripkecube(spins_interface_ptr sip, bool compress,
std::vector<std::string> visible_aps,
bool selfloopize, std::string dead_prop)
: sip_(sip), d_(sip.get()), manager_(d_->get_state_size(), compress),
compress_(compress), cubeset_(visible_aps.size()),
selfloopize_(selfloopize), aps_(visible_aps)
{
map_.reserve(2000000);
recycle_.reserve(2000000);
inner_.compressed_ = new int[d_->get_state_size() * 2];
inner_.uncompressed_ = new int[d_->get_state_size()+30];
dead_idx_ = -1;
match_aps(visible_aps, dead_prop);
}
~kripkecube()
{
typename cspins_state_map::const_iterator s = map_.begin();
while (s != map_.end())
{
manager_.dealloc(s->first);
++s;
}
map_.clear();
for (auto i: recycle_)
{
cubeset_.release(i->condition());
delete i;
}
delete inner_.compressed_;
delete inner_.uncompressed_;
}
cspins_state initial()
{
d_->get_initial_state(inner_.uncompressed_);
return manager_.alloc_setup(inner_.uncompressed_, inner_.compressed_,
manager_.size() * 2);
}
std::string to_string(const cspins_state s) const
{
std::string res = "";
cspins_state out = manager_.unbox_state(s);
cspins_state ref = out;
if (compress_)
{
manager_.decompress(s, inner_.uncompressed_, manager_.size());
ref = inner_.uncompressed_;
}
for (int i = 0; i < d_->get_state_size(); ++i)
res += (d_->get_state_variable_name(i)) +
("=" + std::to_string(ref[i])) + ",";
res.pop_back();
return res;
}
cspins_iterator* succ(const cspins_state s)
{
if (SPOT_LIKELY(!recycle_.empty()))
{
auto tmp = recycle_.back();
recycle_.pop_back();
compute_condition(tmp->condition(), s);
tmp->recycle(s, d_, manager_, map_, inner_, -1,
tmp->condition(), compress_, selfloopize_,
cubeset_, dead_idx_);
return tmp;
}
cube cond = cubeset_.alloc();
compute_condition(cond, s);
return new cspins_iterator(s, d_, manager_, map_, inner_,
-1, cond, compress_, selfloopize_,
cubeset_, dead_idx_);
}
void recycle(cspins_iterator* it)
{
recycle_.push_back(it);
}
const std::vector<std::string> get_ap()
{
return aps_;
}
private:
// The two followings functions are too big to be inlined in
// this class. See below for more details
/// Parse the set of atomic proposition to have a more
/// efficient data strucure for computation
void match_aps(std::vector<std::string>& aps, std::string dead_prop);
/// Compute the cube associated to each state. The cube
/// will then be given to all iterators.
void compute_condition(cube c, cspins_state s);
spins_interface_ptr sip_;
const spot::spins_interface* d_; // To avoid numerous sip_.get()
cspins_state_manager manager_; // FIXME One per thread!
bool compress_;
std::vector<cspins_iterator*> recycle_;
inner_callback_parameters inner_; // FIXME Should be an array for threads.
cubeset cubeset_;
bool selfloopize_;
int dead_idx_;
std::vector<std::string> aps_;
cspins_state_map map_;
};
void
kripkecube<cspins_state,
cspins_iterator>::compute_condition(cube c, cspins_state s)
{
int i = -1;
int *vars = manager_.unbox_state(s);
// State is compressed, uncompress it
if (compress_)
{
manager_.decompress(s, inner_.uncompressed_+2, manager_.size());
vars = inner_.uncompressed_ + 2;
}
for (auto& ap: pset_)
{
++i;
bool cond = false;
switch (ap.op)
{
case OP_EQ_VAR:
cond = (ap.lval == vars[ap.rval]);
break;
case OP_NE_VAR:
cond = (ap.lval != vars[ap.rval]);
break;
case OP_LT_VAR:
cond = (ap.lval < vars[ap.rval]);
break;
case OP_GT_VAR:
cond = (ap.lval > vars[ap.rval]);
break;
case OP_LE_VAR:
cond = (ap.lval <= vars[ap.rval]);
break;
case OP_GE_VAR:
cond = (ap.lval >= vars[ap.rval]);
break;
case VAR_OP_EQ:
cond = (vars[ap.lval] == ap.rval);
break;
case VAR_OP_NE:
cond = (vars[ap.lval] != ap.rval);
break;
case VAR_OP_LT:
cond = (vars[ap.lval] < ap.rval);
break;
case VAR_OP_GT:
cond = (vars[ap.lval] > ap.rval);
break;
case VAR_OP_LE:
cond = (vars[ap.lval] <= ap.rval);
break;
case VAR_OP_GE:
cond = (vars[ap.lval] >= ap.rval);
break;
case VAR_OP_EQ_VAR:
cond = (vars[ap.lval] == vars[ap.rval]);
break;
case VAR_OP_NE_VAR:
cond = (vars[ap.lval] != vars[ap.rval]);
break;
case VAR_OP_LT_VAR:
cond = (vars[ap.lval] < vars[ap.rval]);
break;
case VAR_OP_GT_VAR:
cond = (vars[ap.lval] > vars[ap.rval]);
break;
case VAR_OP_LE_VAR:
cond = (vars[ap.lval] <= vars[ap.rval]);
break;
case VAR_OP_GE_VAR:
cond = (vars[ap.lval] >= vars[ap.rval]);
break;
case VAR_DEAD:
break;
default:
assert(false);
}
if (cond)
cubeset_.set_true_var(c, i);
else
cubeset_.set_false_var(c, i);
}
}
// FIXME I think we only need visbles aps, i.e. if the system has
// following variables, i.e. P_0.var1 and P_0.var2 but the property
// automaton only mention P_0.var2, we do not need to capture (in
// the resulting cube) any atomic proposition for P_0.var1
void
kripkecube<cspins_state,
cspins_iterator>::match_aps(std::vector<std::string>& aps,
std::string dead_prop)
{
// Keep trace of errors
int errors = 0;
std::ostringstream err;
// First we capture state name of each processes.
int type_count = d_->get_type_count();
typedef std::map<std::string, int> enum_map_t;
std::vector<enum_map_t> enum_map(type_count);
std::unordered_map<std::string, int> matcher;
for (int i = 0; i < type_count; ++i)
{
matcher[d_->get_type_name(i)] = i;
int enum_count = d_->get_type_value_count(i);
for (int j = 0; j < enum_count; ++j)
enum_map[i].emplace(d_->get_type_value_name(i, j), j);
}
// Then we extract the basic atomics propositions from the Kripke
std::vector<std::string> k_aps;
int state_size = d_->get_state_size();
for (int i = 0; i < state_size; ++i)
k_aps.push_back(d_->get_state_variable_name(i));
int i = -1;
for (auto ap: aps)
{
++i;
// Grab dead property
if (ap.compare(dead_prop) == 0)
{
dead_idx_ = i;
pset_.push_back({i , VAR_DEAD, 0});
continue;
}
// Get ap name and remove all extra whitespace
ap.erase(std::remove_if(ap.begin(), ap.end(),
[](char x){
return std::isspace(x);
}),
ap.end());
// Look if it is a well known atomic proposition
auto it = std::find(k_aps.begin(), k_aps.end(), ap);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
pset_.push_back({(int)std::distance(k_aps.begin(), it),
VAR_OP_NE, 0});
continue;
}
// The ap is not known. We distinguish many cases:
// - It is a State name, i.e P_0.S or P_0 == S
// - It refers a specific variable value, i.e. P_0.var == 2,
// P_0.var < 2, P_0.var != 2, ...
// - It's an unknown variable
// Note that we do not support P_0.state1 == 12 since we do not
// know how to interpret such atomic proposition.
// We split the formula according to operators
std::size_t found_op_first = ap.find_first_of("=<>!");
std::size_t found_op_last = ap.find_last_of("=<>!");
std::string left;
std::string right;
std::string ap_error;
std::string op;
if (found_op_first == 0 || found_op_last == ap.size()-1)
{
err << "Invalid operator use in " << ap << '\n';
++errors;
continue;
}
if (std::string::npos == found_op_first)
{
left = ap;
right = "";
op = "";
}
else
{
left = ap.substr(0, found_op_first);
right = ap.substr(found_op_last+1, ap.size()-found_op_last);
op = ap.substr(found_op_first, found_op_last+1-found_op_first);
}
// Variables to store the left part of the atomic proposition
bool left_is_digit = false;
int lval;
// Variables to store the right part of the atomic proposition
bool right_is_digit = false;
int rval;
// And finally the operator
relop oper;
// Now, left and (possibly) right are should refer atomic
// propositions or specific state inside of a process.
// First check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), left);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
lval = std::distance(k_aps.begin(), it);
}
else
{
// Detect if it is a process state
std::size_t found_dot = left.find_first_of('.');
if (std::string::npos != found_dot)
{
std::string proc_name = left.substr(0, found_dot);
std::string st_name = left.substr(found_dot+1,
left.size()-found_dot);
auto ni = matcher.find(proc_name);
if (ni == matcher.end())
{
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(st_name);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
if (right.compare("") != 0)
{
// We are in the case P.state1 == something.. We don't
// know how to interpret this.
ap_error = op + right;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << left << ")\n";
++errors;
continue;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), proc_name)),
VAR_OP_EQ, ei->second});
continue;
}
else
{
// Finally, it's a number...
left_is_digit = true;
for (auto c: left)
if (!isdigit(c))
left_is_digit = false;
if (left_is_digit)
lval = std::strtol (left.c_str(), nullptr, 10);
else
{
// ... or something like: State1 == P_0
// so it doesn't contains '.'
if (std::string::npos != right.find_first_of('.'))
{
err << "\nOperation \"" << right
<< "\" does not refer a process"
<< " (i.e. " << left << " is not valid)\n";
++errors;
continue;
}
// or something like: P_0 == State1
auto ni = matcher.find(right);
if (ni == matcher.end())
{
ap_error = ap;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(left);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), right)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
// Here Left is known. Just detect cases where left is digit there is
// no right part.
if (left_is_digit && right.empty())
{
ap_error = ap;
goto error_ap_unknown;
}
assert(!right.empty() && !op.empty());
// Parse right part of the atomic proposition
// Check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), right);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
rval = std::distance(k_aps.begin(), it);
}
else
{
// We are is the right part, so if it is a process state
// we do not know how to interpret (xxx == P.state1). Abort
std::size_t found_dot = right.find_first_of('.');
if (std::string::npos != found_dot)
{
ap_error = left + op;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << right << ")\n";
++errors;
continue;
}
else
{
// Finally, it's a number
right_is_digit = true;
for (auto c: right)
if (!isdigit(c))
right_is_digit = false;
if (right_is_digit)
rval = std::strtol (right.c_str(), nullptr, 10);
else
{
if (std::string::npos != left.find_first_of('.'))
{
err << "\nProposition \"" << ap
<< "\" cannot be interpreted"
<< " (i.e. " << op + right << " is not valid)\n";
++errors;
continue;
}
// or something like: P_0 == State1
auto ni = matcher.find(left);
if (ni == matcher.end())
{
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(right);
if (ei == enum_map[type_num].end())
{
ap_error = right;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), left)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
if (left_is_digit && right_is_digit)
{
err << "\nOperation \"" << op
<< "\" between two numbers not available"
<< " (i.e. " << right << " and, "
<< left << ")\n";
++errors;
continue;
}
// Left and Right are know, just analyse the operator.
if (op.compare("==") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_EQ_VAR :
(left_is_digit? OP_EQ_VAR : VAR_OP_EQ);
else if (op.compare("!=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_NE_VAR :
(left_is_digit? OP_NE_VAR : VAR_OP_NE);
else if (op.compare("<") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LT_VAR :
(left_is_digit? OP_LT_VAR : VAR_OP_LT);
else if (op.compare(">") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GT_VAR :
(left_is_digit? OP_GT_VAR : VAR_OP_GT);
else if (op.compare("<=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LE_VAR :
(left_is_digit? OP_LE_VAR : VAR_OP_LE);
else if (op.compare(">=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GE_VAR :
(left_is_digit? OP_GE_VAR : VAR_OP_GE);
else
{
err << "\nOperation \"" << op
<< "\" is unknown\n";
++errors;
continue;
}
pset_.push_back({lval, oper, rval});
continue;
error_ap_unknown:
err << "\nProposition \"" << ap_error << "\" does not exist\n";
++errors;
continue;
}
if (errors)
throw std::runtime_error(err.str());
}
spot::kripkecube<spot::cspins_state, spot::cspins_iterator>*
ltsmin_model::kripkecube(const atomic_prop_set* to_observe,
const formula dead, int compress) const
{
// Register the "dead" proposition. There are three cases to
// consider:
// * If DEAD is "false", it means we are not interested in finite
// sequences of the system.
// * If DEAD is "true", we want to check finite sequences as well
// as infinite sequences, but do not need to distinguish them.
// * If DEAD is any other string, this is the name a property
// that should be true when looping on a dead state, and false
// otherwise.
std::string dead_ap = "";
bool selfloopize = true;
if (dead == spot::formula::ff())
selfloopize = false;
else if (dead != spot::formula::tt())
dead_ap = dead.ap_name();
// Build the set of observed propositons, i.e. those in the
// formula
std::vector<std::string> observed;
bool add_dead = true;
for (auto it: *to_observe)
{
observed.push_back(it.ap_name());
// Dead proposition is already in observed prop
if (it.ap_name().compare(dead_ap))
add_dead = false;
}
if (dead_ap.compare("") != 0 && add_dead)
observed.push_back(dead_ap);
// Finally build the system.
return new spot::kripkecube<spot::cspins_state, spot::cspins_iterator>
(iface, compress, observed, selfloopize, dead_ap);
}
kripke_ptr
ltsmin_model::kripke(const atomic_prop_set* to_observe,
@ -1122,7 +1994,6 @@ namespace spot
{
}
int ltsmin_model::state_size() const
{
return iface->get_state_size();
@ -1157,5 +2028,4 @@ namespace spot
{
return iface->get_type_value_name(type, val);
}
}

View file

@ -25,6 +25,8 @@
namespace spot
{
struct spins_interface;
class cspins_iterator;
using cspins_state = int*;
class SPOT_API ltsmin_model final
{
@ -71,6 +73,14 @@ namespace spot
formula dead = formula::tt(),
int compress = 0) const;
// \brief The same as above but returns a kripkecube, i.e. a kripke
// that can be use in parallel. Moreover, it support more ellaborated
// atomic propositions such as "P.a == P.c"
spot::kripkecube<spot::cspins_state, spot::cspins_iterator>*
kripkecube(const atomic_prop_set* to_observe,
formula dead = formula::tt(),
int compress = 0) const;
/// Number of variables in a state
int state_size() const;
/// Name of each variable