genltl: add formulas from three papers
Fixes #166. * bin/genltl.cc: Add option --dac-patterns, --eh-patterns, --sb-patterns. * NEWS, bin/man/genltl.x, doc/org/genltl.org: Document them. * bench/ltl2tgba/formulae.ltl: Delete. * bench/ltl2tgba/known: Use genltl instead. * bench/ltl2tgba/Makefile.am, bench/ltl2tgba/README: Update. * tests/core/ltl2tgba2.test: New test case, using genltl. * tests/Makefile.am: Add it.
This commit is contained in:
parent
fd5d59984b
commit
b708ab778f
10 changed files with 650 additions and 115 deletions
|
|
@ -3,11 +3,13 @@
|
|||
#+SETUPFILE: setup.org
|
||||
#+HTML_LINK_UP: tools.html
|
||||
|
||||
This tool generates LTL formulas according to scalable patterns.
|
||||
These pattern are usually taken from the literature (see the man page
|
||||
for references). Sometimes the same pattern is given different names
|
||||
in different papers, so we alias different option names to the same
|
||||
pattern.
|
||||
This tool outputs LTL formulas that either comes from named lists of
|
||||
formulas, or from scalable patterns.
|
||||
|
||||
These patterns are usually taken from the literature (see the
|
||||
[[./man/genltl.1.html][=genltl=]](1) man page for references). Sometimes the same pattern is
|
||||
given different names in different papers, so we alias different
|
||||
option names to the same pattern.
|
||||
|
||||
#+BEGIN_SRC sh :results verbatim :exports results
|
||||
genltl --help | sed -n '/Pattern selection:/,/^$/p' | sed '1d;$d'
|
||||
|
|
@ -24,8 +26,11 @@ genltl --help | sed -n '/Pattern selection:/,/^$/p' | sed '1d;$d'
|
|||
--ccj-beta=RANGE F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))
|
||||
--ccj-beta-prime=RANGE F(p&(Xp)&(XXp)&...(X...X(p))) &
|
||||
F(q&(Xq)&(XXq)&...(X...X(q)))
|
||||
--gh-q=RANGE (F(p1)|G(p2))&(F(p2)|G(p3))&... &(F(pn)|G(p{n+1}))
|
||||
|
||||
--dac-patterns[=RANGE] Dwyer et al. [FMSP'98] Spec. Patterns for LTL
|
||||
(range should be included in 1..45)
|
||||
--eh-patterns[=RANGE] Etessami and Holzmann [Concur'00] patterns (range
|
||||
should be included in 1..12)
|
||||
--gh-q=RANGE (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))
|
||||
--gh-r=RANGE (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...
|
||||
&(GF(pn)|FG(p{n+1}))
|
||||
--go-theta=RANGE !((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))
|
||||
|
|
@ -41,6 +46,8 @@ genltl --help | sed -n '/Pattern selection:/,/^$/p' | sed '1d;$d'
|
|||
--rv-counter-carry-linear=RANGE
|
||||
n-bit counter w/ carry (linear size)
|
||||
--rv-counter-linear=RANGE n-bit counter (linear size)
|
||||
--sb-patterns[=RANGE] Somenzi and Bloem [CAV'00] patterns (range should
|
||||
be included in 1..27)
|
||||
--u-left=RANGE, --gh-u=RANGE
|
||||
(((p1 U p2) U p3) ... U pn)
|
||||
--u-right=RANGE, --gh-u2=RANGE, --go-phi=RANGE
|
||||
|
|
@ -111,5 +118,130 @@ genltl --ccj-alpha=3 --lbt
|
|||
This is because most tools using =lbt='s syntax require atomic
|
||||
propositions to have the form =pNN=.
|
||||
|
||||
|
||||
Three options provide lists of unrelated LTL formulas, taken from the
|
||||
literature (see the [[./man/genltl.1.html][=genltl=]](1) man page for references):
|
||||
=--dac-patterns=, =--eh-patterns=, and =--sb-patterns=. With these
|
||||
options, the range is used to select a subset of the list of formulas.
|
||||
Without range, all formulas are used. Here is the complete list:
|
||||
|
||||
#+BEGIN_SRC sh :results verbatim :exports both
|
||||
genltl --dac --eh --sb --format=%F,%L,%f
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
#+begin_example
|
||||
dac-patterns,1,G!p0
|
||||
dac-patterns,2,Fp0 -> (!p1 U p0)
|
||||
dac-patterns,3,G(p0 -> G!p1)
|
||||
dac-patterns,4,G((p0 & !p1 & Fp1) -> (!p2 U p1))
|
||||
dac-patterns,5,G((p0 & !p1) -> (!p2 W p1))
|
||||
dac-patterns,6,Fp0
|
||||
dac-patterns,7,!p0 W (!p0 & p1)
|
||||
dac-patterns,8,G!p0 | F(p0 & Fp1)
|
||||
dac-patterns,9,G((p0 & !p1) -> (!p1 W (!p1 & p2)))
|
||||
dac-patterns,10,G((p0 & !p1) -> (!p1 U (!p1 & p2)))
|
||||
dac-patterns,11,!p0 W (p0 W (!p0 W (p0 W G!p0)))
|
||||
dac-patterns,12,Fp0 -> ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | (!p1 U p0)))))))))
|
||||
dac-patterns,13,Fp0 -> (!p0 U (p0 & (!p1 W (p1 W (!p1 W (p1 W G!p1))))))
|
||||
dac-patterns,14,G((p0 & Fp1) -> ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | (!p2 U p1))))))))))
|
||||
dac-patterns,15,G(p0 -> ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | (!p1 W p2) | Gp1)))))))))
|
||||
dac-patterns,16,Gp0
|
||||
dac-patterns,17,Fp0 -> (p1 U p0)
|
||||
dac-patterns,18,G(p0 -> Gp1)
|
||||
dac-patterns,19,G((p0 & !p1 & Fp1) -> (p2 U p1))
|
||||
dac-patterns,20,G((p0 & !p1) -> (p2 W p1))
|
||||
dac-patterns,21,!p0 W p1
|
||||
dac-patterns,22,Fp0 -> (!p1 U (p0 | p2))
|
||||
dac-patterns,23,G!p0 | F(p0 & (!p1 W p2))
|
||||
dac-patterns,24,G((p0 & !p1 & Fp1) -> (!p2 U (p1 | p3)))
|
||||
dac-patterns,25,G((p0 & !p1) -> (!p2 W (p1 | p3)))
|
||||
dac-patterns,26,G(p0 -> Fp1)
|
||||
dac-patterns,27,Fp0 -> ((p1 -> (!p0 U (!p0 & p2))) U p0)
|
||||
dac-patterns,28,G(p0 -> G(p1 -> Fp2))
|
||||
dac-patterns,29,G((p0 & !p1 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3))) U p1))
|
||||
dac-patterns,30,G((p0 & !p1) -> ((p2 -> (!p1 U (!p1 & p3))) W p1))
|
||||
dac-patterns,31,Fp0 -> (!p0 U (!p0 & p1 & X(!p0 U p2)))
|
||||
dac-patterns,32,Fp0 -> (!p1 U (p0 | (!p1 & p2 & X(!p1 U p3))))
|
||||
dac-patterns,33,G!p0 | (!p0 U ((p0 & Fp1) -> (!p1 U (!p1 & p2 & X(!p1 U p3)))))
|
||||
dac-patterns,34,G((p0 & Fp1) -> (!p2 U (p1 | (!p2 & p3 & X(!p2 U p4)))))
|
||||
dac-patterns,35,G(p0 -> (Fp1 -> (!p1 U (p2 | (!p1 & p3 & X(!p1 U p4))))))
|
||||
dac-patterns,36,F(p0 & XFp1) -> (!p0 U p2)
|
||||
dac-patterns,37,Fp0 -> (!(!p0 & p1 & X(!p0 U (!p0 & p2))) U (p0 | p3))
|
||||
dac-patterns,38,G!p0 | (!p0 U (p0 & (F(p1 & XFp2) -> (!p1 U p3))))
|
||||
dac-patterns,39,G((p0 & Fp1) -> (!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4)))
|
||||
dac-patterns,40,G(p0 -> ((!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4)) | G!(p2 & XFp3)))
|
||||
dac-patterns,41,G((p0 & XFp1) -> XF(p1 & Fp2))
|
||||
dac-patterns,42,Fp0 -> (((p1 & X(!p0 U p2)) -> X(!p0 U (p2 & Fp3))) U p0)
|
||||
dac-patterns,43,G(p0 -> G((p1 & XFp2) -> X(!p2 U (p2 & Fp3))))
|
||||
dac-patterns,44,G((p0 & Fp1) -> (((p2 & X(!p1 U p3)) -> X(!p1 U (p3 & Fp4))) U p1))
|
||||
dac-patterns,45,G(p0 -> (((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4))) U (p2 | G((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4))))))
|
||||
dac-patterns,46,G(p0 -> F(p1 & XFp2))
|
||||
dac-patterns,47,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & X(!p0 U p3)))) U p0)
|
||||
dac-patterns,48,G(p0 -> G(p1 -> (p2 & XFp3)))
|
||||
dac-patterns,49,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & X(!p1 U p4)))) U p1))
|
||||
dac-patterns,50,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & X(!p2 U p4)))) U (p2 | G(p1 -> (p3 & XFp4)))))
|
||||
dac-patterns,51,G(p0 -> F(p1 & !p2 & X(!p2 U p3)))
|
||||
dac-patterns,52,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & !p3 & X((!p0 & !p3) U p4)))) U p0)
|
||||
dac-patterns,53,G(p0 -> G(p1 -> (p2 & !p3 & X(!p3 U p4))))
|
||||
dac-patterns,54,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & !p4 & X((!p1 & !p4) U p5)))) U p1))
|
||||
dac-patterns,55,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & !p4 & X((!p2 & !p4) U p5)))) U (p2 | G(p1 -> (p3 & !p4 & X(!p4 U p5))))))
|
||||
eh-patterns,1,p0 U (p1 & Gp2)
|
||||
eh-patterns,2,p0 U (p1 & X(p2 U p3))
|
||||
eh-patterns,3,p0 U (p1 & X(p2 & F(p3 & XF(p4 & XF(p5 & XFp6)))))
|
||||
eh-patterns,4,F(p0 & XGp1)
|
||||
eh-patterns,5,F(p0 & X(p1 & XFp2))
|
||||
eh-patterns,6,F(p0 & X(p1 U p2))
|
||||
eh-patterns,7,FGp0 | GFp1
|
||||
eh-patterns,8,G(p0 -> (p1 U p2))
|
||||
eh-patterns,9,G(p0 & XF(p1 & XF(p2 & XFp3)))
|
||||
eh-patterns,10,GFp0 & GFp1 & GFp2 & GFp3 & GFp4
|
||||
eh-patterns,11,(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1))
|
||||
eh-patterns,12,G(p0 -> (p1 U (Gp2 | Gp3)))
|
||||
sb-patterns,1,p0 U p1
|
||||
sb-patterns,2,p0 U (p1 U p2)
|
||||
sb-patterns,3,!(p0 U (p1 U p2))
|
||||
sb-patterns,4,GFp0 -> GFp1
|
||||
sb-patterns,5,Fp0 U Gp1
|
||||
sb-patterns,6,Gp0 U p1
|
||||
sb-patterns,7,!(Fp0 <-> Fp1)
|
||||
sb-patterns,8,!(GFp0 -> GFp1)
|
||||
sb-patterns,9,!(GFp0 <-> GFp1)
|
||||
sb-patterns,10,p0 R (p0 | p1)
|
||||
sb-patterns,11,(Xp0 U Xp1) | !X(p0 U p1)
|
||||
sb-patterns,12,(Xp0 U p1) | !X(p0 U (p0 & p1))
|
||||
sb-patterns,13,G(p0 -> Fp1) & ((Xp0 U p1) | !X(p0 U (p0 & p1)))
|
||||
sb-patterns,14,G(p0 -> Fp1) & ((Xp0 U Xp1) | !X(p0 U p1))
|
||||
sb-patterns,15,G(p0 -> Fp1)
|
||||
sb-patterns,16,!G(p0 -> X(p1 R p2))
|
||||
sb-patterns,17,!(FGp0 | FGp1)
|
||||
sb-patterns,18,G(Fp0 & Fp1)
|
||||
sb-patterns,19,Fp0 & F!p0
|
||||
sb-patterns,20,(p0 & Xp1) R X(((p2 U p3) R p0) U (p2 R p0))
|
||||
sb-patterns,21,Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0
|
||||
sb-patterns,22,Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1))
|
||||
sb-patterns,23,!(Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0)
|
||||
sb-patterns,24,!(Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1)))
|
||||
sb-patterns,25,G(p0 | XGp1) & G(p2 | XG!p1)
|
||||
sb-patterns,26,G(p0 | (Xp1 & X!p1))
|
||||
sb-patterns,27,p0 | (p1 U p0)
|
||||
#+end_example
|
||||
|
||||
Note that ~--sb-patterns=2 --sb-patterns=4 --sb-patterns=21..22~ also
|
||||
have their complement formula listed as ~--sb-patterns=3
|
||||
--sb-patterns=8 --sb-patterns=23..24~. So if you build the set of
|
||||
formula output by =genltl --sb-patterns= plus its negation, it will
|
||||
contain only 46 formulas, not 54.
|
||||
|
||||
#+BEGIN_SRC sh :results verbatim :exports both
|
||||
genltl --sb | ltlfilt --uniq --count
|
||||
(genltl --sb; genltl --sb | ltlfilt --negate) | ltlfilt --uniq --count
|
||||
#+END_SRC
|
||||
#+RESULTS:
|
||||
: 27
|
||||
: 46
|
||||
|
||||
# LocalWords: genltl num toc LTL scalable SRC sed gh pn fg FG gf qn
|
||||
# LocalWords: ccj Xp XXp Xq XXq rv GFp lbt
|
||||
# LocalWords: ccj Xp XXp Xq XXq rv GFp lbt utf SETUPFILE html dac
|
||||
# LocalWords: Dwyer et al FMSP Etessami Holzmann sb Somenzi Bloem
|
||||
# LocalWords: CAV LaTeX Fq Fp pNN Gp XFp XF XGp FGp XG ltlfilt uniq
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue