Use downcast when appropriate.
* src/taalgos/sba2ta.cc, src/ta/ta.cc, src/ta/taexplicit.cc, src/ta/taproduct.cc, src/taalgos/emptinessta.cc: Use downcast and cleanup whitespace.
This commit is contained in:
parent
bf01501e15
commit
c774ba141d
5 changed files with 684 additions and 678 deletions
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (C) 2010 Laboratoire de Recherche et Developpement
|
||||
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
|
||||
// de l Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
|
|
@ -78,5 +78,3 @@ namespace spot
|
|||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (C) 2010 Laboratoire de Recherche et Developpement
|
||||
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Developpement
|
||||
// de l Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
|
|
@ -103,15 +103,15 @@ namespace spot
|
|||
{
|
||||
|
||||
Sgi::hash_map<int, transitions*, Sgi::hash<int> >::const_iterator i =
|
||||
transitions_by_condition.find(condition.id());
|
||||
transitions_by_condition.find(condition.id());
|
||||
|
||||
if (i == transitions_by_condition.end())
|
||||
{
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return i->second;
|
||||
return i->second;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
@ -128,8 +128,8 @@ namespace spot
|
|||
|
||||
if (transitions_condition == 0)
|
||||
{
|
||||
transitions_condition = new transitions;
|
||||
transitions_by_condition[(t->condition).id()] = transitions_condition;
|
||||
transitions_condition = new transitions;
|
||||
transitions_by_condition[(t->condition).id()] = transitions_condition;
|
||||
}
|
||||
|
||||
transitions_condition->push_back(t);
|
||||
|
|
@ -188,7 +188,7 @@ namespace spot
|
|||
int
|
||||
state_ta_explicit::compare(const spot::state* other) const
|
||||
{
|
||||
const state_ta_explicit* o = dynamic_cast<const state_ta_explicit*> (other);
|
||||
const state_ta_explicit* o = down_cast<const state_ta_explicit*> (other);
|
||||
assert(o);
|
||||
|
||||
int compare_value = tgba_state_->compare(o->tgba_state_);
|
||||
|
|
@ -219,37 +219,37 @@ namespace spot
|
|||
|
||||
if (trans != 0)
|
||||
for (it_trans = trans->begin(); it_trans != trans->end();)
|
||||
{
|
||||
state_ta_explicit* dest = (*it_trans)->dest;
|
||||
bool is_stuttering_transition = (get_tgba_condition()
|
||||
== (dest)->get_tgba_condition());
|
||||
bool dest_is_livelock_accepting = dest->is_livelock_accepting_state();
|
||||
{
|
||||
state_ta_explicit* dest = (*it_trans)->dest;
|
||||
bool is_stuttering_transition = (get_tgba_condition()
|
||||
== (dest)->get_tgba_condition());
|
||||
bool dest_is_livelock_accepting = dest->is_livelock_accepting_state();
|
||||
|
||||
//Before deleting stuttering transitions, propaged back livelock and initial state's properties
|
||||
if (is_stuttering_transition)
|
||||
{
|
||||
if (dest_is_livelock_accepting)
|
||||
set_livelock_accepting_state(true);
|
||||
if (dest->is_initial_state())
|
||||
set_initial_state(true);
|
||||
}
|
||||
//Before deleting stuttering transitions, propaged back livelock and initial state's properties
|
||||
if (is_stuttering_transition)
|
||||
{
|
||||
if (dest_is_livelock_accepting)
|
||||
set_livelock_accepting_state(true);
|
||||
if (dest->is_initial_state())
|
||||
set_initial_state(true);
|
||||
}
|
||||
|
||||
//remove hole successors states
|
||||
state_ta_explicit::transitions* dest_trans =
|
||||
(dest)->get_transitions();
|
||||
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
|
||||
if (is_stuttering_transition || (dest_trans_empty
|
||||
&& (!dest_is_livelock_accepting)))
|
||||
{
|
||||
get_transitions((*it_trans)->condition)->remove(*it_trans);
|
||||
delete (*it_trans);
|
||||
it_trans = trans->erase(it_trans);
|
||||
}
|
||||
else
|
||||
{
|
||||
it_trans++;
|
||||
}
|
||||
}
|
||||
//remove hole successors states
|
||||
state_ta_explicit::transitions* dest_trans =
|
||||
(dest)->get_transitions();
|
||||
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
|
||||
if (is_stuttering_transition || (dest_trans_empty
|
||||
&& (!dest_is_livelock_accepting)))
|
||||
{
|
||||
get_transitions((*it_trans)->condition)->remove(*it_trans);
|
||||
delete (*it_trans);
|
||||
it_trans = trans->erase(it_trans);
|
||||
}
|
||||
else
|
||||
{
|
||||
it_trans++;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -262,18 +262,18 @@ namespace spot
|
|||
// they are not cloned.
|
||||
if (trans != 0)
|
||||
for (it_trans = trans->begin(); it_trans != trans->end(); it_trans++)
|
||||
{
|
||||
delete *it_trans;
|
||||
}
|
||||
{
|
||||
delete *it_trans;
|
||||
}
|
||||
delete trans;
|
||||
get_tgba_state()->destroy();
|
||||
|
||||
Sgi::hash_map<int, transitions*, Sgi::hash<int> >::iterator i =
|
||||
transitions_by_condition.begin();
|
||||
transitions_by_condition.begin();
|
||||
while (i != transitions_by_condition.end())
|
||||
{
|
||||
delete i->second;
|
||||
++i;
|
||||
delete i->second;
|
||||
++i;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
@ -293,10 +293,10 @@ namespace spot
|
|||
ta::states_set_t::iterator it;
|
||||
for (it = states_set_.begin(); it != states_set_.end(); it++)
|
||||
{
|
||||
state_ta_explicit* s = dynamic_cast<state_ta_explicit*> (*it);
|
||||
state_ta_explicit* s = down_cast<state_ta_explicit*> (*it);
|
||||
|
||||
s->free_transitions();
|
||||
delete s;
|
||||
s->free_transitions();
|
||||
delete s;
|
||||
}
|
||||
get_dict()->unregister_all_my_variables(this);
|
||||
delete tgba_;
|
||||
|
|
@ -306,17 +306,17 @@ namespace spot
|
|||
ta_explicit::add_state(state_ta_explicit* s)
|
||||
{
|
||||
std::pair<ta::states_set_t::iterator, bool> add_state_to_ta =
|
||||
states_set_.insert(s);
|
||||
states_set_.insert(s);
|
||||
|
||||
return dynamic_cast<state_ta_explicit*> (*add_state_to_ta.first);
|
||||
return static_cast<state_ta_explicit*> (*add_state_to_ta.first);
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
ta_explicit::add_to_initial_states_set(state* state)
|
||||
{
|
||||
state_ta_explicit * s = dynamic_cast<state_ta_explicit*> (state);
|
||||
|
||||
state_ta_explicit * s = down_cast<state_ta_explicit*> (state);
|
||||
assert(s);
|
||||
s->set_initial_state(true);
|
||||
|
||||
initial_states_set_.insert(s);
|
||||
|
|
@ -326,7 +326,8 @@ namespace spot
|
|||
void
|
||||
ta_explicit::delete_stuttering_and_hole_successors(spot::state* s)
|
||||
{
|
||||
state_ta_explicit * state = dynamic_cast<state_ta_explicit*> (s);
|
||||
state_ta_explicit * state = down_cast<state_ta_explicit*> (s);
|
||||
assert(state);
|
||||
state->delete_stuttering_and_hole_successors();
|
||||
if (state->is_initial_state()) add_to_initial_states_set(state);
|
||||
|
||||
|
|
@ -354,35 +355,39 @@ namespace spot
|
|||
ta_explicit::get_state_condition(const spot::state* initial_state) const
|
||||
{
|
||||
const state_ta_explicit* sta =
|
||||
dynamic_cast<const state_ta_explicit*> (initial_state);
|
||||
down_cast<const state_ta_explicit*> (initial_state);
|
||||
assert(sta);
|
||||
return sta->get_tgba_condition();
|
||||
}
|
||||
|
||||
bool
|
||||
ta_explicit::is_accepting_state(const spot::state* s) const
|
||||
{
|
||||
const state_ta_explicit* sta = dynamic_cast<const state_ta_explicit*> (s);
|
||||
const state_ta_explicit* sta = down_cast<const state_ta_explicit*> (s);
|
||||
assert(sta);
|
||||
return sta->is_accepting_state();
|
||||
}
|
||||
|
||||
bool
|
||||
ta_explicit::is_initial_state(const spot::state* s) const
|
||||
{
|
||||
const state_ta_explicit* sta = dynamic_cast<const state_ta_explicit*> (s);
|
||||
const state_ta_explicit* sta = down_cast<const state_ta_explicit*> (s);
|
||||
assert(sta);
|
||||
return sta->is_initial_state();
|
||||
}
|
||||
|
||||
bool
|
||||
ta_explicit::is_livelock_accepting_state(const spot::state* s) const
|
||||
{
|
||||
const state_ta_explicit* sta = dynamic_cast<const state_ta_explicit*> (s);
|
||||
const state_ta_explicit* sta = down_cast<const state_ta_explicit*> (s);
|
||||
assert(sta);
|
||||
return sta->is_livelock_accepting_state();
|
||||
}
|
||||
|
||||
ta_succ_iterator*
|
||||
ta_explicit::succ_iter(const spot::state* state) const
|
||||
{
|
||||
const state_ta_explicit* s = dynamic_cast<const state_ta_explicit*> (state);
|
||||
const state_ta_explicit* s = down_cast<const state_ta_explicit*> (state);
|
||||
assert(s);
|
||||
return new ta_explicit_succ_iterator(s);
|
||||
}
|
||||
|
|
@ -390,7 +395,7 @@ namespace spot
|
|||
ta_succ_iterator*
|
||||
ta_explicit::succ_iter(const spot::state* state, bdd condition) const
|
||||
{
|
||||
const state_ta_explicit* s = dynamic_cast<const state_ta_explicit*> (state);
|
||||
const state_ta_explicit* s = down_cast<const state_ta_explicit*> (state);
|
||||
assert(s);
|
||||
return new ta_explicit_succ_iterator(s, condition);
|
||||
}
|
||||
|
|
@ -410,14 +415,14 @@ namespace spot
|
|||
std::string
|
||||
ta_explicit::format_state(const spot::state* s) const
|
||||
{
|
||||
const state_ta_explicit* sta = dynamic_cast<const state_ta_explicit*> (s);
|
||||
const state_ta_explicit* sta = down_cast<const state_ta_explicit*> (s);
|
||||
assert(sta);
|
||||
|
||||
if (sta->get_tgba_condition() == bddtrue)
|
||||
return tgba_->format_state(sta->get_tgba_state());
|
||||
|
||||
return tgba_->format_state(sta->get_tgba_state()) + "\n"
|
||||
+ bdd_format_formula(get_dict(), sta->get_tgba_condition());
|
||||
+ bdd_format_formula(get_dict(), sta->get_tgba_condition());
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -428,26 +433,26 @@ namespace spot
|
|||
for (it = states_set_.begin(); it != states_set_.end(); it++)
|
||||
{
|
||||
|
||||
const state_ta_explicit* source =
|
||||
dynamic_cast<const state_ta_explicit*> (*it);
|
||||
const state_ta_explicit* source =
|
||||
static_cast<const state_ta_explicit*> (*it);
|
||||
|
||||
state_ta_explicit::transitions* trans = source->get_transitions();
|
||||
state_ta_explicit::transitions::iterator it_trans;
|
||||
state_ta_explicit::transitions* trans = source->get_transitions();
|
||||
state_ta_explicit::transitions::iterator it_trans;
|
||||
|
||||
if (trans != 0)
|
||||
for (it_trans = trans->begin(); it_trans != trans->end();)
|
||||
{
|
||||
if (source->get_tgba_condition()
|
||||
== ((*it_trans)->dest)->get_tgba_condition())
|
||||
{
|
||||
delete *it_trans;
|
||||
it_trans = trans->erase(it_trans);
|
||||
}
|
||||
else
|
||||
{
|
||||
it_trans++;
|
||||
}
|
||||
}
|
||||
if (trans != 0)
|
||||
for (it_trans = trans->begin(); it_trans != trans->end();)
|
||||
{
|
||||
if (source->get_tgba_condition()
|
||||
== ((*it_trans)->dest)->get_tgba_condition())
|
||||
{
|
||||
delete *it_trans;
|
||||
it_trans = trans->erase(it_trans);
|
||||
}
|
||||
else
|
||||
{
|
||||
it_trans++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ namespace spot
|
|||
|
||||
state_ta_product::state_ta_product(const state_ta_product& o) :
|
||||
state(), ta_state_(o.get_ta_state()), kripke_state_(
|
||||
o.get_kripke_state()->clone())
|
||||
o.get_kripke_state()->clone())
|
||||
{
|
||||
}
|
||||
|
||||
|
|
@ -44,7 +44,7 @@ namespace spot
|
|||
int
|
||||
state_ta_product::compare(const state* other) const
|
||||
{
|
||||
const state_ta_product* o = dynamic_cast<const state_ta_product*> (other);
|
||||
const state_ta_product* o = down_cast<const state_ta_product*> (other);
|
||||
assert(o);
|
||||
int res = ta_state_->compare(o->get_ta_state());
|
||||
if (res != 0)
|
||||
|
|
@ -91,9 +91,9 @@ namespace spot
|
|||
ta_succ_it_->next();
|
||||
if (ta_succ_it_->done())
|
||||
{
|
||||
delete ta_succ_it_;
|
||||
ta_succ_it_ = 0;
|
||||
kripke_succ_it_->next();
|
||||
delete ta_succ_it_;
|
||||
ta_succ_it_ = 0;
|
||||
kripke_succ_it_->next();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -111,9 +111,9 @@ namespace spot
|
|||
// done().)
|
||||
if (kripke_succ_it_->done())
|
||||
{
|
||||
delete kripke_succ_it_;
|
||||
kripke_succ_it_ = 0;
|
||||
return;
|
||||
delete kripke_succ_it_;
|
||||
kripke_succ_it_ = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
next_non_stuttering_();
|
||||
|
|
@ -126,8 +126,8 @@ namespace spot
|
|||
current_state_ = 0;
|
||||
if (is_stuttering_transition())
|
||||
{
|
||||
ta_succ_it_ = 0;
|
||||
kripke_succ_it_->next();
|
||||
ta_succ_it_ = 0;
|
||||
kripke_succ_it_->next();
|
||||
}
|
||||
else
|
||||
step_();
|
||||
|
|
@ -144,34 +144,34 @@ namespace spot
|
|||
|
||||
while (!done())
|
||||
{
|
||||
state * kripke_succ_it_current_state = kripke_succ_it_->current_state();
|
||||
bdd dc = kripke_->state_condition(kripke_succ_it_current_state);
|
||||
state * kripke_succ_it_current_state = kripke_succ_it_->current_state();
|
||||
bdd dc = kripke_->state_condition(kripke_succ_it_current_state);
|
||||
|
||||
is_stuttering_transition_ = (sc == dc);
|
||||
if (is_stuttering_transition_)
|
||||
{
|
||||
//if stuttering transition, the TA automata stays in the same state
|
||||
current_state_ = new state_ta_product(source_->get_ta_state(),
|
||||
kripke_succ_it_current_state);
|
||||
current_condition_ = bddtrue;
|
||||
return;
|
||||
}
|
||||
is_stuttering_transition_ = (sc == dc);
|
||||
if (is_stuttering_transition_)
|
||||
{
|
||||
//if stuttering transition, the TA automata stays in the same state
|
||||
current_state_ = new state_ta_product(source_->get_ta_state(),
|
||||
kripke_succ_it_current_state);
|
||||
current_condition_ = bddtrue;
|
||||
return;
|
||||
}
|
||||
|
||||
if (ta_succ_it_ == 0){
|
||||
current_condition_ = bdd_setxor(sc, dc);
|
||||
ta_succ_it_ = ta_->succ_iter(source_->get_ta_state(), current_condition_);
|
||||
ta_succ_it_->first();
|
||||
}
|
||||
if (ta_succ_it_ == 0){
|
||||
current_condition_ = bdd_setxor(sc, dc);
|
||||
ta_succ_it_ = ta_->succ_iter(source_->get_ta_state(), current_condition_);
|
||||
ta_succ_it_->first();
|
||||
}
|
||||
|
||||
if (!ta_succ_it_->done())
|
||||
{
|
||||
current_state_ = new state_ta_product(ta_succ_it_->current_state(),
|
||||
kripke_succ_it_current_state);
|
||||
return;
|
||||
}
|
||||
if (!ta_succ_it_->done())
|
||||
{
|
||||
current_state_ = new state_ta_product(ta_succ_it_->current_state(),
|
||||
kripke_succ_it_current_state);
|
||||
return;
|
||||
}
|
||||
|
||||
kripke_succ_it_current_state->destroy();
|
||||
step_();
|
||||
kripke_succ_it_current_state->destroy();
|
||||
step_();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -227,7 +227,7 @@ namespace spot
|
|||
ta_product::ta_product(const ta* testing_automata,
|
||||
const kripke* kripke_structure) :
|
||||
dict_(testing_automata->get_dict()), ta_(testing_automata), kripke_(
|
||||
kripke_structure)
|
||||
kripke_structure)
|
||||
{
|
||||
assert(dict_ == kripke_structure->get_dict());
|
||||
dict_->register_all_variables_of(&ta_, this);
|
||||
|
|
@ -252,19 +252,19 @@ namespace spot
|
|||
|
||||
for (it = ta_init_states_set.begin(); it != ta_init_states_set.end(); it++)
|
||||
{
|
||||
state* kripke_init_state = kripke_->get_init_state();
|
||||
if ((kripke_->state_condition(kripke_init_state))
|
||||
== (ta_->get_state_condition(*it)))
|
||||
{
|
||||
state_ta_product* stp = new state_ta_product((*it),
|
||||
kripke_init_state);
|
||||
state* kripke_init_state = kripke_->get_init_state();
|
||||
if ((kripke_->state_condition(kripke_init_state))
|
||||
== (ta_->get_state_condition(*it)))
|
||||
{
|
||||
state_ta_product* stp = new state_ta_product((*it),
|
||||
kripke_init_state);
|
||||
|
||||
initial_states_set.insert(stp);
|
||||
}
|
||||
else
|
||||
{
|
||||
kripke_init_state->destroy();
|
||||
}
|
||||
initial_states_set.insert(stp);
|
||||
}
|
||||
else
|
||||
{
|
||||
kripke_init_state->destroy();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -274,7 +274,7 @@ namespace spot
|
|||
ta_succ_iterator_product*
|
||||
ta_product::succ_iter(const state* s) const
|
||||
{
|
||||
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
|
||||
const state_ta_product* stp = down_cast<const state_ta_product*> (s);
|
||||
assert(s);
|
||||
|
||||
return new ta_succ_iterator_product(stp, ta_, kripke_);
|
||||
|
|
@ -289,16 +289,17 @@ namespace spot
|
|||
std::string
|
||||
ta_product::format_state(const state* state) const
|
||||
{
|
||||
const state_ta_product* s = dynamic_cast<const state_ta_product*> (state);
|
||||
const state_ta_product* s = down_cast<const state_ta_product*> (state);
|
||||
assert(s);
|
||||
return kripke_->format_state(s->get_kripke_state()) + " * \n"
|
||||
+ ta_->format_state(s->get_ta_state());
|
||||
+ ta_->format_state(s->get_ta_state());
|
||||
}
|
||||
|
||||
bool
|
||||
ta_product::is_accepting_state(const spot::state* s) const
|
||||
{
|
||||
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
|
||||
const state_ta_product* stp = down_cast<const state_ta_product*> (s);
|
||||
assert(stp);
|
||||
|
||||
return ta_->is_accepting_state(stp->get_ta_state());
|
||||
}
|
||||
|
|
@ -306,7 +307,8 @@ namespace spot
|
|||
bool
|
||||
ta_product::is_livelock_accepting_state(const spot::state* s) const
|
||||
{
|
||||
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
|
||||
const state_ta_product* stp = down_cast<const state_ta_product*> (s);
|
||||
assert(stp);
|
||||
|
||||
return ta_->is_livelock_accepting_state(stp->get_ta_state());
|
||||
}
|
||||
|
|
@ -314,21 +316,23 @@ namespace spot
|
|||
bool
|
||||
ta_product::is_initial_state(const spot::state* s) const
|
||||
{
|
||||
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
|
||||
const state_ta_product* stp = down_cast<const state_ta_product*> (s);
|
||||
assert(stp);
|
||||
|
||||
state* ta_s = stp->get_ta_state();
|
||||
state* kr_s = stp->get_kripke_state();
|
||||
|
||||
return (ta_->is_initial_state(ta_s))
|
||||
&& ((kripke_->get_init_state())->compare(kr_s) == 0)
|
||||
&& ((kripke_->state_condition(kr_s))
|
||||
== (ta_->get_state_condition(ta_s)));
|
||||
&& ((kripke_->get_init_state())->compare(kr_s) == 0)
|
||||
&& ((kripke_->state_condition(kr_s))
|
||||
== (ta_->get_state_condition(ta_s)));
|
||||
}
|
||||
|
||||
bdd
|
||||
ta_product::get_state_condition(const spot::state* s) const
|
||||
{
|
||||
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
|
||||
const state_ta_product* stp = down_cast<const state_ta_product*> (s);
|
||||
assert(stp);
|
||||
state* ta_s = stp->get_ta_state();
|
||||
return ta_->get_state_condition(ta_s);
|
||||
}
|
||||
|
|
@ -337,7 +341,8 @@ namespace spot
|
|||
ta_product::free_state(const spot::state* s) const
|
||||
{
|
||||
|
||||
const state_ta_product* stp = dynamic_cast<const state_ta_product*> (s);
|
||||
const state_ta_product* stp = down_cast<const state_ta_product*> (s);
|
||||
assert(stp);
|
||||
ta_->free_state(stp->get_ta_state());
|
||||
delete stp;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,8 +1,5 @@
|
|||
// Copyright (C) 2008 Laboratoire de Recherche et Développement
|
||||
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Développement
|
||||
// de l'Epita (LRDE).
|
||||
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
|
||||
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
|
||||
// Université Pierre et Marie Curie.
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
//
|
||||
|
|
@ -57,7 +54,7 @@ namespace spot
|
|||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
|
|
@ -74,7 +71,7 @@ namespace spot
|
|||
std::stack<spot::state*> init_set;
|
||||
|
||||
Sgi::hash_map<const state*, std::string, state_ptr_hash, state_ptr_equal>
|
||||
colour;
|
||||
colour;
|
||||
|
||||
trace
|
||||
<< "PASS 1" << std::endl;
|
||||
|
|
@ -84,7 +81,7 @@ namespace spot
|
|||
//const std::string BLACK = "BK";
|
||||
|
||||
Sgi::hash_map<const state*, std::set<const state*, state_ptr_less_than>,
|
||||
state_ptr_hash, state_ptr_equal> liveset;
|
||||
state_ptr_hash, state_ptr_equal> liveset;
|
||||
|
||||
std::stack<spot::state*> livelock_roots;
|
||||
|
||||
|
|
@ -92,233 +89,233 @@ namespace spot
|
|||
ta::states_set_t::const_iterator it;
|
||||
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
|
||||
{
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
//colour[init_state] = WHITE;
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
//colour[init_state] = WHITE;
|
||||
|
||||
}
|
||||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
// Setup depth-first search from initial states.
|
||||
|
||||
{
|
||||
state* init = dynamic_cast<state*> (init_set.top());
|
||||
init_set.pop();
|
||||
{
|
||||
state* init = init_set.top();
|
||||
init_set.pop();
|
||||
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init, ++num);
|
||||
scc.push(num);
|
||||
h->insert(init, ++num);
|
||||
scc.push(num);
|
||||
|
||||
ta_succ_iterator* iter = a_->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
//colour[init] = GREY;
|
||||
inc_depth();
|
||||
ta_succ_iterator* iter = a_->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
//colour[init] = GREY;
|
||||
inc_depth();
|
||||
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(init))
|
||||
livelock_roots.push(init);
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(init))
|
||||
livelock_roots.push(init);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
state* curr = todo.top().first;
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 1 : backtrack" << std::endl;
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 1 : backtrack" << std::endl;
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
|
||||
scc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
scc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
|
||||
// set the h value of the Backtracked state to negative value.
|
||||
// colour[curr] = BLUE;
|
||||
*spi.second = -std::abs(*spi.second);
|
||||
// set the h value of the Backtracked state to negative value.
|
||||
// colour[curr] = BLUE;
|
||||
*spi.second = -std::abs(*spi.second);
|
||||
|
||||
// Backtrack livelock_roots.
|
||||
if (!livelock_roots.empty() && !livelock_roots.top()->compare(
|
||||
curr))
|
||||
livelock_roots.pop();
|
||||
// Backtrack livelock_roots.
|
||||
if (!livelock_roots.empty() && !livelock_roots.top()->compare(
|
||||
curr))
|
||||
livelock_roots.pop();
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!scc.empty());
|
||||
if (scc.top().index == std::abs(*spi.second))
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!scc.empty());
|
||||
if (scc.top().index == std::abs(*spi.second))
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
|
||||
for (i = scc.rem().begin(); i != scc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
//colour[*i] = BLACK;
|
||||
for (i = scc.rem().begin(); i != scc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
//colour[*i] = BLACK;
|
||||
|
||||
}
|
||||
dec_depth(scc.rem().size());
|
||||
scc.pop();
|
||||
}
|
||||
}
|
||||
dec_depth(scc.rem().size());
|
||||
scc.pop();
|
||||
}
|
||||
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 1: transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 1: transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
//may be Buchi accepting scc
|
||||
scc.top().is_accepting = a_->is_accepting_state(curr)
|
||||
&& !succ->is_stuttering_transition();
|
||||
//may be Buchi accepting scc
|
||||
scc.top().is_accepting = a_->is_accepting_state(curr)
|
||||
&& !succ->is_stuttering_transition();
|
||||
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
// Are we going to a new state?
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
// Are we going to a new state?
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
scc.push(num);
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
scc.push(num);
|
||||
|
||||
ta_succ_iterator* iter = a_->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
//colour[dest] = GREY;
|
||||
inc_depth();
|
||||
ta_succ_iterator* iter = a_->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
//colour[dest] = GREY;
|
||||
inc_depth();
|
||||
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(dest)
|
||||
&& !is_stuttering_transition)
|
||||
livelock_roots.push(dest);
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(dest)
|
||||
&& !is_stuttering_transition)
|
||||
livelock_roots.push(dest);
|
||||
|
||||
continue;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = std::abs(*spi.second);
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = std::abs(*spi.second);
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < scc.top().index)
|
||||
{
|
||||
assert(!scc.empty());
|
||||
while (threshold < scc.top().index)
|
||||
{
|
||||
assert(!scc.empty());
|
||||
|
||||
acc |= scc.top().is_accepting;
|
||||
acc |= scc.top().is_accepting;
|
||||
|
||||
rem.splice(rem.end(), scc.rem());
|
||||
scc.pop();
|
||||
rem.splice(rem.end(), scc.rem());
|
||||
scc.pop();
|
||||
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == scc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == scc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
scc.top().is_accepting |= acc;
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
scc.top().is_accepting |= acc;
|
||||
|
||||
scc.rem().splice(scc.rem().end(), rem);
|
||||
if (scc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 1: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
scc.rem().splice(scc.rem().end(), rem);
|
||||
if (scc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 1: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
//ADDLINKS
|
||||
if (!is_full_2_pass_ && a_->is_livelock_accepting_state(curr)
|
||||
&& is_stuttering_transition)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection " << std::endl;
|
||||
const state* dest = spi.first;
|
||||
std::set<const state*, state_ptr_less_than> liveset_dest =
|
||||
liveset[dest];
|
||||
//ADDLINKS
|
||||
if (!is_full_2_pass_ && a_->is_livelock_accepting_state(curr)
|
||||
&& is_stuttering_transition)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection " << std::endl;
|
||||
const state* dest = spi.first;
|
||||
std::set<const state*, state_ptr_less_than> liveset_dest =
|
||||
liveset[dest];
|
||||
|
||||
std::set<const state*, state_ptr_less_than> liveset_curr =
|
||||
liveset[curr];
|
||||
std::set<const state*, state_ptr_less_than> liveset_curr =
|
||||
liveset[curr];
|
||||
|
||||
int h_livelock_root = 0;
|
||||
if (!livelock_roots.empty())
|
||||
h_livelock_root = *(h->find((livelock_roots.top()))).second;
|
||||
int h_livelock_root = 0;
|
||||
if (!livelock_roots.empty())
|
||||
h_livelock_root = *(h->find((livelock_roots.top()))).second;
|
||||
|
||||
if (heuristic_livelock_detection(dest, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
if (heuristic_livelock_detection(dest, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
|
||||
std::set<const state*, state_ptr_less_than>::const_iterator it;
|
||||
for (it = liveset_dest.begin(); it != liveset_dest.end(); it++)
|
||||
{
|
||||
const state* succ = (*it);
|
||||
if (heuristic_livelock_detection(succ, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
std::set<const state*, state_ptr_less_than>::const_iterator it;
|
||||
for (it = liveset_dest.begin(); it != liveset_dest.end(); it++)
|
||||
{
|
||||
const state* succ = (*it);
|
||||
if (heuristic_livelock_detection(succ, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -329,21 +326,21 @@ namespace spot
|
|||
bool
|
||||
ta_check::heuristic_livelock_detection(const state * u,
|
||||
numbered_state_heap* h, int h_livelock_root, std::set<const state*,
|
||||
state_ptr_less_than> liveset_curr)
|
||||
state_ptr_less_than> liveset_curr)
|
||||
{
|
||||
numbered_state_heap::state_index_p hu = h->find(u);
|
||||
|
||||
if (*hu.second > 0) // colour[u] == GREY
|
||||
{
|
||||
|
||||
if (*hu.second >= h_livelock_root)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
if (*hu.second >= h_livelock_root)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
liveset_curr.insert(u);
|
||||
liveset_curr.insert(u);
|
||||
}
|
||||
|
||||
return false;
|
||||
|
|
@ -361,7 +358,7 @@ namespace spot
|
|||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
|
|
@ -387,8 +384,8 @@ namespace spot
|
|||
ta::states_set_t::const_iterator it;
|
||||
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
|
||||
{
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
|
||||
|
||||
}
|
||||
|
|
@ -396,180 +393,180 @@ namespace spot
|
|||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
{
|
||||
state* init = init_set.top();
|
||||
init_set.pop();
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
// Setup depth-first search from initial states.
|
||||
{
|
||||
state* init = init_set.top();
|
||||
init_set.pop();
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
|
||||
ta_succ_iterator* iter = t->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
inc_depth();
|
||||
h->insert(init, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
|
||||
ta_succ_iterator* iter = t->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
inc_depth();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
state* curr = todo.top().first;
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 2 : backtrack" << std::endl;
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 2 : backtrack" << std::endl;
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
|
||||
sscc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
sscc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
}
|
||||
dec_depth(sscc.rem().size());
|
||||
sscc.pop();
|
||||
}
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
}
|
||||
dec_depth(sscc.rem().size());
|
||||
sscc.pop();
|
||||
}
|
||||
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
|
||||
continue;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 2 : transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 2 : transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
continue;
|
||||
}
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
|
||||
|
||||
ta_succ_iterator* iter = t->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
inc_depth();
|
||||
continue;
|
||||
}
|
||||
ta_succ_iterator* iter = t->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
inc_depth();
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
//self loop state
|
||||
if (!curr->compare(spi.first))
|
||||
{
|
||||
state * self_loop_state = (curr);
|
||||
//self loop state
|
||||
if (!curr->compare(spi.first))
|
||||
{
|
||||
state * self_loop_state = (curr);
|
||||
|
||||
if (t->is_livelock_accepting_state(self_loop_state))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
if (t->is_livelock_accepting_state(self_loop_state))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
|
||||
acc |= sscc.top().is_accepting;
|
||||
acc |= sscc.top().is_accepting;
|
||||
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
if (sscc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
if (sscc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
clear(h, todo, init_set);
|
||||
|
|
@ -585,16 +582,16 @@ namespace spot
|
|||
|
||||
while (!init_states.empty())
|
||||
{
|
||||
a_->free_state(init_states.top());
|
||||
init_states.pop();
|
||||
a_->free_state(init_states.top());
|
||||
init_states.pop();
|
||||
}
|
||||
|
||||
// Release all iterators in TODO.
|
||||
while (!todo.empty())
|
||||
{
|
||||
delete todo.top().second;
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
delete todo.top().second;
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
}
|
||||
delete h;
|
||||
}
|
||||
|
|
@ -607,7 +604,7 @@ namespace spot
|
|||
|
||||
//TODO sscc;
|
||||
os << scc.size() << " strongly connected components in search stack"
|
||||
<< std::endl;
|
||||
<< std::endl;
|
||||
os << transitions() << " transitions explored" << std::endl;
|
||||
os << max_depth() << " items max in DFS search stack" << std::endl;
|
||||
return os;
|
||||
|
|
|
|||
|
|
@ -50,70 +50,70 @@ namespace spot
|
|||
|
||||
bdd satone_tgba_condition;
|
||||
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
tgba_condition -= satone_tgba_condition;
|
||||
state_ta_explicit* init_state = new state_ta_explicit(
|
||||
tgba_init_state->clone(), satone_tgba_condition, true,
|
||||
tgba_->state_is_accepting(tgba_init_state));
|
||||
state_ta_explicit* is = ta->add_state(init_state);
|
||||
assert(is == init_state);
|
||||
ta->add_to_initial_states_set(is);
|
||||
todo.push(init_state);
|
||||
tgba_condition -= satone_tgba_condition;
|
||||
state_ta_explicit* init_state = new state_ta_explicit(
|
||||
tgba_init_state->clone(), satone_tgba_condition, true,
|
||||
tgba_->state_is_accepting(tgba_init_state));
|
||||
state_ta_explicit* is = ta->add_state(init_state);
|
||||
assert(is == init_state);
|
||||
ta->add_to_initial_states_set(is);
|
||||
todo.push(init_state);
|
||||
}
|
||||
tgba_init_state->destroy();
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
state_ta_explicit* source = todo.top();
|
||||
todo.pop();
|
||||
state_ta_explicit* source = todo.top();
|
||||
todo.pop();
|
||||
|
||||
tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter(
|
||||
source->get_tgba_state());
|
||||
for (tgba_succ_it->first(); !tgba_succ_it->done(); tgba_succ_it->next())
|
||||
{
|
||||
const state* tgba_state = tgba_succ_it->current_state();
|
||||
bdd tgba_condition = tgba_succ_it->current_condition();
|
||||
bdd satone_tgba_condition;
|
||||
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
tgba_succ_iterator* tgba_succ_it = tgba_->succ_iter(
|
||||
source->get_tgba_state());
|
||||
for (tgba_succ_it->first(); !tgba_succ_it->done(); tgba_succ_it->next())
|
||||
{
|
||||
const state* tgba_state = tgba_succ_it->current_state();
|
||||
bdd tgba_condition = tgba_succ_it->current_condition();
|
||||
bdd satone_tgba_condition;
|
||||
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
|
||||
tgba_condition -= satone_tgba_condition;
|
||||
tgba_condition -= satone_tgba_condition;
|
||||
|
||||
bdd all_props = bddtrue;
|
||||
bdd dest_condition;
|
||||
if (satone_tgba_condition == source->get_tgba_condition())
|
||||
while ((dest_condition = bdd_satoneset(all_props,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
all_props -= dest_condition;
|
||||
state_ta_explicit* new_dest = new state_ta_explicit(
|
||||
tgba_state->clone(), dest_condition, false,
|
||||
tgba_->state_is_accepting(tgba_state));
|
||||
bdd all_props = bddtrue;
|
||||
bdd dest_condition;
|
||||
if (satone_tgba_condition == source->get_tgba_condition())
|
||||
while ((dest_condition = bdd_satoneset(all_props,
|
||||
atomic_propositions_set_, bddtrue)) != bddfalse)
|
||||
{
|
||||
all_props -= dest_condition;
|
||||
state_ta_explicit* new_dest = new state_ta_explicit(
|
||||
tgba_state->clone(), dest_condition, false,
|
||||
tgba_->state_is_accepting(tgba_state));
|
||||
|
||||
state_ta_explicit* dest = ta->add_state(new_dest);
|
||||
state_ta_explicit* dest = ta->add_state(new_dest);
|
||||
|
||||
if (dest != new_dest)
|
||||
{
|
||||
// the state dest already exists in the testing automata
|
||||
new_dest->get_tgba_state()->destroy();
|
||||
delete new_dest;
|
||||
}
|
||||
else
|
||||
{
|
||||
todo.push(dest);
|
||||
}
|
||||
if (dest != new_dest)
|
||||
{
|
||||
// the state dest already exists in the testing automata
|
||||
new_dest->get_tgba_state()->destroy();
|
||||
delete new_dest;
|
||||
}
|
||||
else
|
||||
{
|
||||
todo.push(dest);
|
||||
}
|
||||
|
||||
ta->create_transition(source, bdd_setxor(
|
||||
source->get_tgba_condition(),
|
||||
dest->get_tgba_condition()), dest);
|
||||
}
|
||||
ta->create_transition(source, bdd_setxor(
|
||||
source->get_tgba_condition(),
|
||||
dest->get_tgba_condition()), dest);
|
||||
}
|
||||
|
||||
}
|
||||
tgba_state->destroy();
|
||||
}
|
||||
delete tgba_succ_it;
|
||||
}
|
||||
tgba_state->destroy();
|
||||
}
|
||||
delete tgba_succ_it;
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -138,7 +138,7 @@ namespace spot
|
|||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
|
|
@ -158,196 +158,197 @@ namespace spot
|
|||
ta::states_set_t init_states = testing_automata->get_initial_states_set();
|
||||
for (it = init_states.begin(); it != init_states.end(); it++)
|
||||
{
|
||||
state* init_state = down_cast<state_ta_explicit*> (*it);
|
||||
init_set.push(init_state);
|
||||
state* init_state = down_cast<state_ta_explicit*> (*it);
|
||||
init_set.push(init_state);
|
||||
|
||||
}
|
||||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
{
|
||||
state_ta_explicit* init =
|
||||
down_cast<state_ta_explicit*> (init_set.top());
|
||||
init_set.pop();
|
||||
state_ta_explicit* init_clone = init->clone();
|
||||
numbered_state_heap::state_index_p h_init = h->find(init_clone);
|
||||
// Setup depth-first search from initial states.
|
||||
{
|
||||
state_ta_explicit* init =
|
||||
down_cast<state_ta_explicit*> (init_set.top());
|
||||
init_set.pop();
|
||||
state_ta_explicit* init_clone = init->clone();
|
||||
numbered_state_heap::state_index_p h_init = h->find(init_clone);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init_clone, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting
|
||||
= testing_automata->is_accepting_state(init);
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
h->insert(init_clone, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting
|
||||
= testing_automata->is_accepting_state(init);
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
state* curr = todo.top().first;
|
||||
|
||||
numbered_state_heap::state_index_p spi = h->find(curr->clone());
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
{
|
||||
todo.pop();
|
||||
continue;
|
||||
}
|
||||
numbered_state_heap::state_index_p spi = h->find(curr->clone());
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
{
|
||||
todo.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
tgba_succ_iterator* succ = todo.top().second;
|
||||
// We are looking at the next successor in SUCC.
|
||||
tgba_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
|
||||
sscc.rem().push_front(curr);
|
||||
sscc.rem().push_front(curr);
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
bool is_livelock_accepting_sscc = (sscc.top().is_accepting
|
||||
&& (sscc.rem().size() > 1));
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
if (is_livelock_accepting_sscc)
|
||||
{//if it is an accepting sscc
|
||||
//add the state to G (=the livelock-accepting states set)
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
bool is_livelock_accepting_sscc = (sscc.top().is_accepting
|
||||
&& (sscc.rem().size() > 1));
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
if (is_livelock_accepting_sscc)
|
||||
{//if it is an accepting sscc
|
||||
//add the state to G (=the livelock-accepting states set)
|
||||
|
||||
state_ta_explicit * livelock_accepting_state =
|
||||
down_cast<state_ta_explicit*> (*i);
|
||||
state_ta_explicit * livelock_accepting_state =
|
||||
down_cast<state_ta_explicit*> (*i);
|
||||
|
||||
livelock_accepting_state->set_livelock_accepting_state(
|
||||
true);
|
||||
livelock_accepting_state->set_livelock_accepting_state(
|
||||
true);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
sscc.pop();
|
||||
sscc.pop();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// automata reduction
|
||||
testing_automata->delete_stuttering_and_hole_successors(curr);
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
// automata reduction
|
||||
testing_automata->delete_stuttering_and_hole_successors(curr);
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
bool is_stuttering_transition =
|
||||
testing_automata->get_state_condition(curr)
|
||||
== testing_automata->get_state_condition(dest);
|
||||
state* dest_clone = dest->clone();
|
||||
spi = h->find(dest_clone);
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
bool is_stuttering_transition =
|
||||
testing_automata->get_state_condition(curr)
|
||||
== testing_automata->get_state_condition(dest);
|
||||
state* dest_clone = dest->clone();
|
||||
spi = h->find(dest_clone);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
dest_clone->destroy();
|
||||
continue;
|
||||
}
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
dest_clone->destroy();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest_clone, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = testing_automata->is_accepting_state(
|
||||
dest);
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest_clone, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = testing_automata->is_accepting_state(
|
||||
dest);
|
||||
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
continue;
|
||||
}
|
||||
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
if (!curr->compare(dest))
|
||||
{
|
||||
state_ta_explicit * self_loop_state =
|
||||
dynamic_cast<state_ta_explicit*> (curr);
|
||||
if (!curr->compare(dest))
|
||||
{
|
||||
state_ta_explicit * self_loop_state =
|
||||
down_cast<state_ta_explicit*> (curr);
|
||||
assert(self_loop_state);
|
||||
|
||||
if (testing_automata->is_accepting_state(self_loop_state))
|
||||
self_loop_state->set_livelock_accepting_state(true);
|
||||
if (testing_automata->is_accepting_state(self_loop_state))
|
||||
self_loop_state->set_livelock_accepting_state(true);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
|
||||
acc |= sscc.top().is_accepting;
|
||||
acc |= sscc.top().is_accepting;
|
||||
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
delete h;
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue