Use downcast when appropriate.
* src/taalgos/sba2ta.cc, src/ta/ta.cc, src/ta/taexplicit.cc, src/ta/taproduct.cc, src/taalgos/emptinessta.cc: Use downcast and cleanup whitespace.
This commit is contained in:
parent
bf01501e15
commit
c774ba141d
5 changed files with 684 additions and 678 deletions
|
|
@ -1,8 +1,5 @@
|
|||
// Copyright (C) 2008 Laboratoire de Recherche et Développement
|
||||
// Copyright (C) 2010, 2011 Laboratoire de Recherche et Développement
|
||||
// de l'Epita (LRDE).
|
||||
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
|
||||
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
|
||||
// Université Pierre et Marie Curie.
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
//
|
||||
|
|
@ -57,7 +54,7 @@ namespace spot
|
|||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
|
|
@ -74,7 +71,7 @@ namespace spot
|
|||
std::stack<spot::state*> init_set;
|
||||
|
||||
Sgi::hash_map<const state*, std::string, state_ptr_hash, state_ptr_equal>
|
||||
colour;
|
||||
colour;
|
||||
|
||||
trace
|
||||
<< "PASS 1" << std::endl;
|
||||
|
|
@ -84,7 +81,7 @@ namespace spot
|
|||
//const std::string BLACK = "BK";
|
||||
|
||||
Sgi::hash_map<const state*, std::set<const state*, state_ptr_less_than>,
|
||||
state_ptr_hash, state_ptr_equal> liveset;
|
||||
state_ptr_hash, state_ptr_equal> liveset;
|
||||
|
||||
std::stack<spot::state*> livelock_roots;
|
||||
|
||||
|
|
@ -92,233 +89,233 @@ namespace spot
|
|||
ta::states_set_t::const_iterator it;
|
||||
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
|
||||
{
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
//colour[init_state] = WHITE;
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
//colour[init_state] = WHITE;
|
||||
|
||||
}
|
||||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
// Setup depth-first search from initial states.
|
||||
|
||||
{
|
||||
state* init = dynamic_cast<state*> (init_set.top());
|
||||
init_set.pop();
|
||||
{
|
||||
state* init = init_set.top();
|
||||
init_set.pop();
|
||||
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init, ++num);
|
||||
scc.push(num);
|
||||
h->insert(init, ++num);
|
||||
scc.push(num);
|
||||
|
||||
ta_succ_iterator* iter = a_->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
//colour[init] = GREY;
|
||||
inc_depth();
|
||||
ta_succ_iterator* iter = a_->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
//colour[init] = GREY;
|
||||
inc_depth();
|
||||
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(init))
|
||||
livelock_roots.push(init);
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(init))
|
||||
livelock_roots.push(init);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
state* curr = todo.top().first;
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 1 : backtrack" << std::endl;
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 1 : backtrack" << std::endl;
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
|
||||
scc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
scc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
|
||||
// set the h value of the Backtracked state to negative value.
|
||||
// colour[curr] = BLUE;
|
||||
*spi.second = -std::abs(*spi.second);
|
||||
// set the h value of the Backtracked state to negative value.
|
||||
// colour[curr] = BLUE;
|
||||
*spi.second = -std::abs(*spi.second);
|
||||
|
||||
// Backtrack livelock_roots.
|
||||
if (!livelock_roots.empty() && !livelock_roots.top()->compare(
|
||||
curr))
|
||||
livelock_roots.pop();
|
||||
// Backtrack livelock_roots.
|
||||
if (!livelock_roots.empty() && !livelock_roots.top()->compare(
|
||||
curr))
|
||||
livelock_roots.pop();
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!scc.empty());
|
||||
if (scc.top().index == std::abs(*spi.second))
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!scc.empty());
|
||||
if (scc.top().index == std::abs(*spi.second))
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
|
||||
for (i = scc.rem().begin(); i != scc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
//colour[*i] = BLACK;
|
||||
for (i = scc.rem().begin(); i != scc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
//colour[*i] = BLACK;
|
||||
|
||||
}
|
||||
dec_depth(scc.rem().size());
|
||||
scc.pop();
|
||||
}
|
||||
}
|
||||
dec_depth(scc.rem().size());
|
||||
scc.pop();
|
||||
}
|
||||
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
continue;
|
||||
}
|
||||
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 1: transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 1: transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
//may be Buchi accepting scc
|
||||
scc.top().is_accepting = a_->is_accepting_state(curr)
|
||||
&& !succ->is_stuttering_transition();
|
||||
//may be Buchi accepting scc
|
||||
scc.top().is_accepting = a_->is_accepting_state(curr)
|
||||
&& !succ->is_stuttering_transition();
|
||||
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
// Are we going to a new state?
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
// Are we going to a new state?
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
scc.push(num);
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
scc.push(num);
|
||||
|
||||
ta_succ_iterator* iter = a_->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
//colour[dest] = GREY;
|
||||
inc_depth();
|
||||
ta_succ_iterator* iter = a_->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
//colour[dest] = GREY;
|
||||
inc_depth();
|
||||
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(dest)
|
||||
&& !is_stuttering_transition)
|
||||
livelock_roots.push(dest);
|
||||
//push potential root of live-lock accepting cycle
|
||||
if (a_->is_livelock_accepting_state(dest)
|
||||
&& !is_stuttering_transition)
|
||||
livelock_roots.push(dest);
|
||||
|
||||
continue;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = std::abs(*spi.second);
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = std::abs(*spi.second);
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < scc.top().index)
|
||||
{
|
||||
assert(!scc.empty());
|
||||
while (threshold < scc.top().index)
|
||||
{
|
||||
assert(!scc.empty());
|
||||
|
||||
acc |= scc.top().is_accepting;
|
||||
acc |= scc.top().is_accepting;
|
||||
|
||||
rem.splice(rem.end(), scc.rem());
|
||||
scc.pop();
|
||||
rem.splice(rem.end(), scc.rem());
|
||||
scc.pop();
|
||||
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == scc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == scc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
scc.top().is_accepting |= acc;
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
scc.top().is_accepting |= acc;
|
||||
|
||||
scc.rem().splice(scc.rem().end(), rem);
|
||||
if (scc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 1: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
scc.rem().splice(scc.rem().end(), rem);
|
||||
if (scc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 1: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
//ADDLINKS
|
||||
if (!is_full_2_pass_ && a_->is_livelock_accepting_state(curr)
|
||||
&& is_stuttering_transition)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection " << std::endl;
|
||||
const state* dest = spi.first;
|
||||
std::set<const state*, state_ptr_less_than> liveset_dest =
|
||||
liveset[dest];
|
||||
//ADDLINKS
|
||||
if (!is_full_2_pass_ && a_->is_livelock_accepting_state(curr)
|
||||
&& is_stuttering_transition)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection " << std::endl;
|
||||
const state* dest = spi.first;
|
||||
std::set<const state*, state_ptr_less_than> liveset_dest =
|
||||
liveset[dest];
|
||||
|
||||
std::set<const state*, state_ptr_less_than> liveset_curr =
|
||||
liveset[curr];
|
||||
std::set<const state*, state_ptr_less_than> liveset_curr =
|
||||
liveset[curr];
|
||||
|
||||
int h_livelock_root = 0;
|
||||
if (!livelock_roots.empty())
|
||||
h_livelock_root = *(h->find((livelock_roots.top()))).second;
|
||||
int h_livelock_root = 0;
|
||||
if (!livelock_roots.empty())
|
||||
h_livelock_root = *(h->find((livelock_roots.top()))).second;
|
||||
|
||||
if (heuristic_livelock_detection(dest, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
if (heuristic_livelock_detection(dest, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
|
||||
std::set<const state*, state_ptr_less_than>::const_iterator it;
|
||||
for (it = liveset_dest.begin(); it != liveset_dest.end(); it++)
|
||||
{
|
||||
const state* succ = (*it);
|
||||
if (heuristic_livelock_detection(succ, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
std::set<const state*, state_ptr_less_than>::const_iterator it;
|
||||
for (it = liveset_dest.begin(); it != liveset_dest.end(); it++)
|
||||
{
|
||||
const state* succ = (*it);
|
||||
if (heuristic_livelock_detection(succ, h, h_livelock_root,
|
||||
liveset_curr))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -329,21 +326,21 @@ namespace spot
|
|||
bool
|
||||
ta_check::heuristic_livelock_detection(const state * u,
|
||||
numbered_state_heap* h, int h_livelock_root, std::set<const state*,
|
||||
state_ptr_less_than> liveset_curr)
|
||||
state_ptr_less_than> liveset_curr)
|
||||
{
|
||||
numbered_state_heap::state_index_p hu = h->find(u);
|
||||
|
||||
if (*hu.second > 0) // colour[u] == GREY
|
||||
{
|
||||
|
||||
if (*hu.second >= h_livelock_root)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
if (*hu.second >= h_livelock_root)
|
||||
{
|
||||
trace
|
||||
<< "PASS 1: heuristic livelock detection SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
liveset_curr.insert(u);
|
||||
liveset_curr.insert(u);
|
||||
}
|
||||
|
||||
return false;
|
||||
|
|
@ -361,7 +358,7 @@ namespace spot
|
|||
// * h: a hash of all visited nodes, with their order,
|
||||
// (it is called "Hash" in Couvreur's paper)
|
||||
numbered_state_heap* h =
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
||||
|
||||
// * num: the number of visited nodes. Used to set the order of each
|
||||
// visited node,
|
||||
|
|
@ -387,8 +384,8 @@ namespace spot
|
|||
ta::states_set_t::const_iterator it;
|
||||
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
|
||||
{
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
state* init_state = (*it);
|
||||
init_set.push(init_state);
|
||||
|
||||
|
||||
}
|
||||
|
|
@ -396,180 +393,180 @@ namespace spot
|
|||
|
||||
while (!init_set.empty())
|
||||
{
|
||||
// Setup depth-first search from initial states.
|
||||
{
|
||||
state* init = init_set.top();
|
||||
init_set.pop();
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
// Setup depth-first search from initial states.
|
||||
{
|
||||
state* init = init_set.top();
|
||||
init_set.pop();
|
||||
numbered_state_heap::state_index_p h_init = h->find(init);
|
||||
|
||||
if (h_init.first)
|
||||
continue;
|
||||
if (h_init.first)
|
||||
continue;
|
||||
|
||||
h->insert(init, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
|
||||
ta_succ_iterator* iter = t->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
inc_depth();
|
||||
h->insert(init, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
|
||||
ta_succ_iterator* iter = t->succ_iter(init);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(init, iter));
|
||||
inc_depth();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
while (!todo.empty())
|
||||
{
|
||||
while (!todo.empty())
|
||||
{
|
||||
|
||||
state* curr = todo.top().first;
|
||||
state* curr = todo.top().first;
|
||||
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
// We are looking at the next successor in SUCC.
|
||||
ta_succ_iterator* succ = todo.top().second;
|
||||
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
// If there is no more successor, backtrack.
|
||||
if (succ->done())
|
||||
{
|
||||
// We have explored all successors of state CURR.
|
||||
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 2 : backtrack" << std::endl;
|
||||
// Backtrack TODO.
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
trace
|
||||
<< "PASS 2 : backtrack" << std::endl;
|
||||
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
// fill rem with any component removed,
|
||||
numbered_state_heap::state_index_p spi =
|
||||
h->index(curr->clone());
|
||||
assert(spi.first);
|
||||
|
||||
sscc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
sscc.rem().push_front(curr);
|
||||
inc_depth();
|
||||
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
// When backtracking the root of an SSCC, we must also
|
||||
// remove that SSCC from the ROOT stacks. We must
|
||||
// discard from H all reachable states from this SSCC.
|
||||
assert(!sscc.empty());
|
||||
if (sscc.top().index == *spi.second)
|
||||
{
|
||||
// removing states
|
||||
std::list<state*>::iterator i;
|
||||
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
}
|
||||
dec_depth(sscc.rem().size());
|
||||
sscc.pop();
|
||||
}
|
||||
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
||||
{
|
||||
numbered_state_heap::state_index_p spi = h->index(
|
||||
(*i)->clone());
|
||||
assert(spi.first->compare(*i) == 0);
|
||||
assert(*spi.second != -1);
|
||||
*spi.second = -1;
|
||||
}
|
||||
dec_depth(sscc.rem().size());
|
||||
sscc.pop();
|
||||
}
|
||||
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
delete succ;
|
||||
// Do not delete CURR: it is a key in H.
|
||||
|
||||
continue;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 2 : transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
// We have a successor to look at.
|
||||
inc_transitions();
|
||||
trace
|
||||
<< "PASS 2 : transition" << std::endl;
|
||||
// Fetch the values destination state we are interested in...
|
||||
state* dest = succ->current_state();
|
||||
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
bool is_stuttering_transition = succ->is_stuttering_transition();
|
||||
// ... and point the iterator to the next successor, for
|
||||
// the next iteration.
|
||||
succ->next();
|
||||
// We do not need SUCC from now on.
|
||||
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
numbered_state_heap::state_index_p spi = h->find(dest);
|
||||
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
// Is this a new state?
|
||||
if (!spi.first)
|
||||
{
|
||||
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
// Are we going to a new state through a stuttering transition?
|
||||
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
continue;
|
||||
}
|
||||
if (!is_stuttering_transition)
|
||||
{
|
||||
init_set.push(dest);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
|
||||
// Number it, stack it, and register its successors
|
||||
// for later processing.
|
||||
h->insert(dest, ++num);
|
||||
sscc.push(num);
|
||||
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
|
||||
|
||||
ta_succ_iterator* iter = t->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
inc_depth();
|
||||
continue;
|
||||
}
|
||||
ta_succ_iterator* iter = t->succ_iter(dest);
|
||||
iter->first();
|
||||
todo.push(pair_state_iter(dest, iter));
|
||||
inc_depth();
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
// If we have reached a dead component, ignore it.
|
||||
if (*spi.second == -1)
|
||||
continue;
|
||||
|
||||
//self loop state
|
||||
if (!curr->compare(spi.first))
|
||||
{
|
||||
state * self_loop_state = (curr);
|
||||
//self loop state
|
||||
if (!curr->compare(spi.first))
|
||||
{
|
||||
state * self_loop_state = (curr);
|
||||
|
||||
if (t->is_livelock_accepting_state(self_loop_state))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
if (t->is_livelock_accepting_state(self_loop_state))
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
// Now this is the most interesting case. We have reached a
|
||||
// state S1 which is already part of a non-dead SSCC. Any such
|
||||
// non-dead SSCC has necessarily been crossed by our path to
|
||||
// this state: there is a state S2 in our path which belongs
|
||||
// to this SSCC too. We are going to merge all states between
|
||||
// this S1 and S2 into this SSCC.
|
||||
//
|
||||
// This merge is easy to do because the order of the SSCC in
|
||||
// ROOT is ascending: we just have to merge all SSCCs from the
|
||||
// top of ROOT that have an index greater to the one of
|
||||
// the SSCC of S2 (called the "threshold").
|
||||
int threshold = *spi.second;
|
||||
std::list<state*> rem;
|
||||
bool acc = false;
|
||||
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
while (threshold < sscc.top().index)
|
||||
{
|
||||
assert(!sscc.empty());
|
||||
|
||||
acc |= sscc.top().is_accepting;
|
||||
acc |= sscc.top().is_accepting;
|
||||
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
rem.splice(rem.end(), sscc.rem());
|
||||
sscc.pop();
|
||||
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
}
|
||||
// Note that we do not always have
|
||||
// threshold == sscc.top().index
|
||||
// after this loop, the SSCC whose index is threshold might have
|
||||
// been merged with a lower SSCC.
|
||||
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
// Accumulate all acceptance conditions into the merged SSCC.
|
||||
sscc.top().is_accepting |= acc;
|
||||
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
if (sscc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
sscc.rem().splice(sscc.rem().end(), rem);
|
||||
if (sscc.top().is_accepting)
|
||||
{
|
||||
clear(h, todo, init_set);
|
||||
trace
|
||||
<< "PASS 2: SUCCESS" << std::endl;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
clear(h, todo, init_set);
|
||||
|
|
@ -585,16 +582,16 @@ namespace spot
|
|||
|
||||
while (!init_states.empty())
|
||||
{
|
||||
a_->free_state(init_states.top());
|
||||
init_states.pop();
|
||||
a_->free_state(init_states.top());
|
||||
init_states.pop();
|
||||
}
|
||||
|
||||
// Release all iterators in TODO.
|
||||
while (!todo.empty())
|
||||
{
|
||||
delete todo.top().second;
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
delete todo.top().second;
|
||||
todo.pop();
|
||||
dec_depth();
|
||||
}
|
||||
delete h;
|
||||
}
|
||||
|
|
@ -607,7 +604,7 @@ namespace spot
|
|||
|
||||
//TODO sscc;
|
||||
os << scc.size() << " strongly connected components in search stack"
|
||||
<< std::endl;
|
||||
<< std::endl;
|
||||
os << transitions() << " transitions explored" << std::endl;
|
||||
os << max_depth() << " items max in DFS search stack" << std::endl;
|
||||
return os;
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue