simplifier: add two new rules
Fixes #354. * spot/tl/simplify.cc: Implement the rules. * doc/tl/tl.tex, NEWS: Document them. * tests/core/reduccmp.test: Add tests. * tests/core/det.test, tests/core/satmin.test: Adjust.
This commit is contained in:
parent
8e3b982985
commit
ca1c67a73d
6 changed files with 51 additions and 29 deletions
7
NEWS
7
NEWS
|
|
@ -130,6 +130,13 @@ New in spot 2.5.3.dev (not yet released)
|
|||
the resulting TGBA makes it more likely that simulation-based
|
||||
reductions will reduce it.
|
||||
|
||||
- The LTL simplification routine learned the following reductions,
|
||||
where f is any formula, and q is a "suspendable" formula (a.k.a.
|
||||
both a pure eventuality and purely universal).
|
||||
|
||||
q R Xf = X(q R f)
|
||||
q U Xf = X(q U f)
|
||||
|
||||
Python:
|
||||
|
||||
- New spot.jupyter package. This currently contains a function for
|
||||
|
|
|
|||
|
|
@ -1669,22 +1669,22 @@ notation to distinguish the class of subformulas:
|
|||
\begin{center}
|
||||
\begin{tabular}{rl}
|
||||
\toprule
|
||||
$f,\,f_i,\,g,\,g_i$ & any PSL formula \\
|
||||
$e,\,e_i$ & a pure eventuality \\
|
||||
$u,\,u_i$ & a purely universal formula \\
|
||||
$f,\,f_i,\,g,\,g_i$ & any PSL formula \\
|
||||
$e,\,e_i$ & a pure eventuality \\
|
||||
$u,\,u_i$ & a purely universal formula \\
|
||||
$q,\,q_i$ & a pure eventuality that is also purely universal \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
\begin{align*}
|
||||
\F e & \equiv e & f \U e & \equiv e & e \M g & \equiv e\AND g & u_1 \M u_2 & \equiV (\F u_1) \AND u_2 \\
|
||||
\F(u)\OR q & \equivEU \F(u\OR q) & f \U (g\OR e) & \equivEU (f \U g)\OR e & f\M (g\AND u) & \equivEU (f \M g)\AND u \\
|
||||
& & f \U (g\AND q) & \equivEU (f \U g)\AND q & (f\AND q)\M g & \equivEU (f \M g)\AND q \\
|
||||
\G u & \equiv u & u \W g & \equiv u\OR g & f \R u & \equiv u & e_1 \W e_2 & \equiV (\G e_1) \OR e_2 \\
|
||||
\G(e)\AND q & \equiv \G(e\AND q) & f \W (g\OR e) & \equivEU (f \W g)\OR e & f\R (g\AND u) & \equivEU (f \R g)\AND u \\
|
||||
\X q & \equiv q & q \AND \X f & \equivNeu \X(q \AND f) & q\OR \X f & \equivNeu \X(q \OR f) \\
|
||||
& & \X(q \AND f) & \equivEU q \AND \X f & \X(q \OR f) & \equivEU q\OR \X f \\
|
||||
\F e & \equiv e & f \U e & \equiv e & e \M g & \equiv e\AND g & u_1 \M u_2 & \equiV (\F u_1) \AND u_2 \\
|
||||
\F(u)\OR q & \equivNeu \F(u\OR q) & f \U (g\OR e) & \equivEU (f \U g)\OR e & f\M (g\AND u) & \equivEU (f \M g)\AND u & q \U\X f & \equiv \X(q \U f) \\
|
||||
& & f \U (g\AND q) & \equivEU (f \U g)\AND q & (f\AND q)\M g & \equivEU (f \M g)\AND q \\
|
||||
\G u & \equiv u & u \W g & \equiv u\OR g & f \R u & \equiv u & e_1 \W e_2 & \equiV (\G e_1) \OR e_2 \\
|
||||
\G(e)\AND q & \equiv \G(e\AND q) & f \W (g\OR e) & \equivEU (f \W g)\OR e & f\R (g\AND u) & \equivEU (f \R g)\AND u & q \R\X f & \equiv \X(q \R f) \\
|
||||
\X q & \equiv q & q \AND \X f & \equivNeu \X(q \AND f) & q\OR \X f & \equivNeu \X(q \OR f) \\
|
||||
& & \X(q \AND f) & \equivEU q \AND \X f & \X(q \OR f) & \equivEU q\OR \X f \\
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
|
|
|
|||
|
|
@ -1682,8 +1682,19 @@ namespace spot
|
|||
if (a.is_universal() && bo.is(op::W))
|
||||
return recurse(formula::Or({a, b}));
|
||||
|
||||
// (q R Xf) = X(q R f)
|
||||
// (q U Xf) = X(q U f)
|
||||
if (a.is_eventual() && a.is_universal()
|
||||
&& bo.is(op::R, op::U) && b.is(op::X))
|
||||
return recurse(formula::X(formula::binop(o, a, b[0])));
|
||||
|
||||
// e₁ W e₂ = Ge₁ | e₂
|
||||
// u₁ M u₂ = Fu₁ & u₂
|
||||
//
|
||||
// The above formulas are actually true if e₁ and u₁ are
|
||||
// unconstrained, however there are many cases were such a
|
||||
// more generic reduction rule will actually produce more
|
||||
// states once the resulting formula is translated.
|
||||
if (!opt_.reduce_size_strictly)
|
||||
{
|
||||
if (bo.is(op::W) && a.is_eventual() && b.is_eventual())
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ cat >formulas <<'EOF'
|
|||
1,5,a M G(F!b | X!a)
|
||||
1,4,G!a R XFb
|
||||
1,4,XF(!a | GFb)
|
||||
1,6,GF!a U Xa
|
||||
1,5,X(GF!a U a)
|
||||
1,5,(a | G(a M !b)) W Fc
|
||||
1,6,Fa W Xb
|
||||
1,9,X(a R ((!b & F!c) M X!a))
|
||||
|
|
|
|||
|
|
@ -192,7 +192,11 @@ GFa <=> GFb, F(G(Fa&Fb)|G(!a&!b))
|
|||
FGa | (GFa & GFb), F(Ga | (G(Fa & Fb)))
|
||||
|
||||
Gb W a, Gb|a
|
||||
a W Fb, a W Fb
|
||||
Fb M Fa, Fa & Fb
|
||||
a M Gb, a M Gb
|
||||
GFa R Xf, X(GFa R f)
|
||||
GFa U Xf, X(GFa U f)
|
||||
|
||||
a U (b | G(a) | c), a W (b | c)
|
||||
a U (G(a)), Ga
|
||||
|
|
|
|||
|
|
@ -1140,8 +1140,8 @@ cat >expected <<'EOF'
|
|||
"!(X(F((!(p0)) | (G(F(p1))))))","15",3
|
||||
"!(X(F((!(p0)) | (G(F(p1))))))","16",3
|
||||
"!(X(F((!(p0)) | (G(F(p1))))))","17",3
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","1",6
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","2",6
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","1",5
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","2",5
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","3",5
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","4",5
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","6",5
|
||||
|
|
@ -1156,22 +1156,22 @@ cat >expected <<'EOF'
|
|||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","15",5
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","16",5
|
||||
"(G((F(!(p0))) U (!(p0)))) U (X(p0))","17",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","1",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","2",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","3",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","4",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","6",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","7",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","8",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","9",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","10",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","11",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","12",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","13",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","14",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","15",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","16",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","17",5
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","1",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","2",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","3",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","4",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","6",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","7",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","8",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","9",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","10",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","11",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","12",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","13",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","14",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","15",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","16",4
|
||||
"!((G((F(!(p0))) U (!(p0)))) U (X(p0)))","17",4
|
||||
"((p0) | (G((p0) M (!(p1))))) W (F(p2))","1",4
|
||||
"((p0) | (G((p0) M (!(p1))))) W (F(p2))","2",5
|
||||
"((p0) | (G((p0) M (!(p1))))) W (F(p2))","3",4
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue