simplifier: add two new rules

Fixes #354.

* spot/tl/simplify.cc: Implement the rules.
* doc/tl/tl.tex, NEWS: Document them.
* tests/core/reduccmp.test: Add tests.
* tests/core/det.test, tests/core/satmin.test: Adjust.
This commit is contained in:
Alexandre Duret-Lutz 2018-06-04 13:49:40 +02:00
parent 8e3b982985
commit ca1c67a73d
6 changed files with 51 additions and 29 deletions

View file

@ -1669,22 +1669,22 @@ notation to distinguish the class of subformulas:
\begin{center}
\begin{tabular}{rl}
\toprule
$f,\,f_i,\,g,\,g_i$ & any PSL formula \\
$e,\,e_i$ & a pure eventuality \\
$u,\,u_i$ & a purely universal formula \\
$f,\,f_i,\,g,\,g_i$ & any PSL formula \\
$e,\,e_i$ & a pure eventuality \\
$u,\,u_i$ & a purely universal formula \\
$q,\,q_i$ & a pure eventuality that is also purely universal \\
\bottomrule
\end{tabular}
\end{center}
\begin{align*}
\F e & \equiv e & f \U e & \equiv e & e \M g & \equiv e\AND g & u_1 \M u_2 & \equiV (\F u_1) \AND u_2 \\
\F(u)\OR q & \equivEU \F(u\OR q) & f \U (g\OR e) & \equivEU (f \U g)\OR e & f\M (g\AND u) & \equivEU (f \M g)\AND u \\
& & f \U (g\AND q) & \equivEU (f \U g)\AND q & (f\AND q)\M g & \equivEU (f \M g)\AND q \\
\G u & \equiv u & u \W g & \equiv u\OR g & f \R u & \equiv u & e_1 \W e_2 & \equiV (\G e_1) \OR e_2 \\
\G(e)\AND q & \equiv \G(e\AND q) & f \W (g\OR e) & \equivEU (f \W g)\OR e & f\R (g\AND u) & \equivEU (f \R g)\AND u \\
\X q & \equiv q & q \AND \X f & \equivNeu \X(q \AND f) & q\OR \X f & \equivNeu \X(q \OR f) \\
& & \X(q \AND f) & \equivEU q \AND \X f & \X(q \OR f) & \equivEU q\OR \X f \\
\F e & \equiv e & f \U e & \equiv e & e \M g & \equiv e\AND g & u_1 \M u_2 & \equiV (\F u_1) \AND u_2 \\
\F(u)\OR q & \equivNeu \F(u\OR q) & f \U (g\OR e) & \equivEU (f \U g)\OR e & f\M (g\AND u) & \equivEU (f \M g)\AND u & q \U\X f & \equiv \X(q \U f) \\
& & f \U (g\AND q) & \equivEU (f \U g)\AND q & (f\AND q)\M g & \equivEU (f \M g)\AND q \\
\G u & \equiv u & u \W g & \equiv u\OR g & f \R u & \equiv u & e_1 \W e_2 & \equiV (\G e_1) \OR e_2 \\
\G(e)\AND q & \equiv \G(e\AND q) & f \W (g\OR e) & \equivEU (f \W g)\OR e & f\R (g\AND u) & \equivEU (f \R g)\AND u & q \R\X f & \equiv \X(q \R f) \\
\X q & \equiv q & q \AND \X f & \equivNeu \X(q \AND f) & q\OR \X f & \equivNeu \X(q \OR f) \\
& & \X(q \AND f) & \equivEU q \AND \X f & \X(q \OR f) & \equivEU q\OR \X f \\
\end{align*}
\begin{align*}