kill the ltl namespace
* NEWS: Mention it. * bench/stutter/stutter_invariance_formulas.cc, bench/stutter/stutter_invariance_randomgraph.cc, doc/mainpage.dox, doc/org/tut01.org, doc/org/tut02.org, doc/org/tut10.org, doc/tl/tl.tex, iface/ltsmin/ltsmin.cc, iface/ltsmin/ltsmin.hh, iface/ltsmin/modelcheck.cc, src/bin/autfilt.cc, src/bin/common_aoutput.cc, src/bin/common_aoutput.hh, src/bin/common_finput.cc, src/bin/common_finput.hh, src/bin/common_output.cc, src/bin/common_output.hh, src/bin/common_r.hh, src/bin/common_trans.cc, src/bin/common_trans.hh, src/bin/dstar2tgba.cc, src/bin/genltl.cc, src/bin/ltl2tgba.cc, src/bin/ltl2tgta.cc, src/bin/ltlcross.cc, src/bin/ltldo.cc, src/bin/ltlfilt.cc, src/bin/ltlgrind.cc, src/bin/randaut.cc, src/bin/randltl.cc, src/kripke/kripkeexplicit.cc, src/kripke/kripkeexplicit.hh, src/kripkeparse/kripkeparse.yy, src/kripkeparse/public.hh, src/ltlparse/fmterror.cc, src/ltlparse/ltlparse.yy, src/ltlparse/ltlscan.ll, src/ltlparse/parsedecl.hh, src/ltlparse/public.hh, src/parseaut/parseaut.yy, src/parseaut/public.hh, src/tests/checkpsl.cc, src/tests/checkta.cc, src/tests/complementation.cc, src/tests/consterm.cc, src/tests/emptchk.cc, src/tests/equalsf.cc, src/tests/ikwiad.cc, src/tests/kind.cc, src/tests/length.cc, src/tests/ltlprod.cc, src/tests/ltlrel.cc, src/tests/parse.test, src/tests/parse_print_test.cc, src/tests/randtgba.cc, src/tests/readltl.cc, src/tests/reduc.cc, src/tests/syntimpl.cc, src/tests/taatgba.cc, src/tests/tostring.cc, src/tests/tostring.test, src/tl/apcollect.cc, src/tl/apcollect.hh, src/tl/contain.cc, src/tl/contain.hh, src/tl/declenv.cc, src/tl/declenv.hh, src/tl/defaultenv.cc, src/tl/defaultenv.hh, src/tl/dot.cc, src/tl/dot.hh, src/tl/environment.hh, src/tl/exclusive.cc, src/tl/exclusive.hh, src/tl/formula.cc, src/tl/formula.hh, src/tl/length.cc, src/tl/length.hh, src/tl/mark.cc, src/tl/mark.hh, src/tl/mutation.cc, src/tl/mutation.hh, src/tl/nenoform.cc, src/tl/nenoform.hh, src/tl/print.cc, src/tl/print.hh, src/tl/randomltl.cc, src/tl/randomltl.hh, src/tl/relabel.cc, src/tl/relabel.hh, src/tl/remove_x.cc, src/tl/remove_x.hh, src/tl/simpfg.cc, src/tl/simpfg.hh, src/tl/simplify.cc, src/tl/simplify.hh, src/tl/snf.cc, src/tl/snf.hh, src/tl/unabbrev.cc, src/tl/unabbrev.hh, src/twa/bdddict.cc, src/twa/bdddict.hh, src/twa/bddprint.cc, src/twa/formula2bdd.cc, src/twa/formula2bdd.hh, src/twa/taatgba.cc, src/twa/taatgba.hh, src/twa/twa.hh, src/twa/twagraph.cc, src/twa/twagraph.hh, src/twaalgos/compsusp.cc, src/twaalgos/compsusp.hh, src/twaalgos/ltl2taa.cc, src/twaalgos/ltl2taa.hh, src/twaalgos/ltl2tgba_fm.cc, src/twaalgos/ltl2tgba_fm.hh, src/twaalgos/minimize.cc, src/twaalgos/minimize.hh, src/twaalgos/neverclaim.cc, src/twaalgos/postproc.cc, src/twaalgos/postproc.hh, src/twaalgos/powerset.cc, src/twaalgos/powerset.hh, src/twaalgos/randomgraph.cc, src/twaalgos/randomgraph.hh, src/twaalgos/relabel.cc, src/twaalgos/relabel.hh, src/twaalgos/remprop.cc, src/twaalgos/remprop.hh, src/twaalgos/stats.cc, src/twaalgos/stats.hh, src/twaalgos/stutter.cc, src/twaalgos/stutter.hh, src/twaalgos/translate.cc, src/twaalgos/translate.hh, wrap/python/spot_impl.i: Remove the ltl namespace.
This commit is contained in:
parent
6ded5e75c4
commit
cb39210166
137 changed files with 10771 additions and 10919 deletions
|
|
@ -26,43 +26,40 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
atomic_prop_set create_atomic_prop_set(unsigned n)
|
||||
{
|
||||
atomic_prop_set create_atomic_prop_set(unsigned n)
|
||||
{
|
||||
atomic_prop_set res;
|
||||
for (unsigned i = 0; i < n; ++i)
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << 'p' << i;
|
||||
res.insert(formula::ap(p.str()));
|
||||
}
|
||||
return res;
|
||||
}
|
||||
atomic_prop_set res;
|
||||
for (unsigned i = 0; i < n; ++i)
|
||||
{
|
||||
std::ostringstream p;
|
||||
p << 'p' << i;
|
||||
res.insert(formula::ap(p.str()));
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
atomic_prop_set*
|
||||
atomic_prop_collect(formula f, atomic_prop_set* s)
|
||||
{
|
||||
if (!s)
|
||||
s = new atomic_prop_set;
|
||||
f.traverse([&](const formula& f)
|
||||
{
|
||||
if (f.is(op::ap))
|
||||
s->insert(f);
|
||||
return false;
|
||||
});
|
||||
return s;
|
||||
}
|
||||
atomic_prop_set*
|
||||
atomic_prop_collect(formula f, atomic_prop_set* s)
|
||||
{
|
||||
if (!s)
|
||||
s = new atomic_prop_set;
|
||||
f.traverse([&](const formula& f)
|
||||
{
|
||||
if (f.is(op::ap))
|
||||
s->insert(f);
|
||||
return false;
|
||||
});
|
||||
return s;
|
||||
}
|
||||
|
||||
bdd
|
||||
atomic_prop_collect_as_bdd(formula f, const twa_ptr& a)
|
||||
{
|
||||
spot::ltl::atomic_prop_set aps;
|
||||
atomic_prop_collect(f, &aps);
|
||||
bdd res = bddtrue;
|
||||
for (auto f: aps)
|
||||
res &= bdd_ithvar(a->register_ap(f));
|
||||
return res;
|
||||
}
|
||||
bdd
|
||||
atomic_prop_collect_as_bdd(formula f, const twa_ptr& a)
|
||||
{
|
||||
spot::atomic_prop_set aps;
|
||||
atomic_prop_collect(f, &aps);
|
||||
bdd res = bddtrue;
|
||||
for (auto f: aps)
|
||||
res &= bdd_ithvar(a->register_ap(f));
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -29,38 +29,35 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
/// \addtogroup ltl_misc
|
||||
/// @{
|
||||
/// \addtogroup ltl_misc
|
||||
/// @{
|
||||
|
||||
/// Set of atomic propositions.
|
||||
typedef std::set<formula> atomic_prop_set;
|
||||
/// Set of atomic propositions.
|
||||
typedef std::set<formula> atomic_prop_set;
|
||||
|
||||
/// \brief construct an atomic_prop_set with n propositions
|
||||
SPOT_API
|
||||
atomic_prop_set create_atomic_prop_set(unsigned n);
|
||||
/// \brief construct an atomic_prop_set with n propositions
|
||||
SPOT_API
|
||||
atomic_prop_set create_atomic_prop_set(unsigned n);
|
||||
|
||||
/// \brief Return the set of atomic propositions occurring in a formula.
|
||||
///
|
||||
/// \param f the formula to inspect
|
||||
/// \param s an existing set to fill with atomic_propositions discovered,
|
||||
/// or 0 if the set should be allocated by the function.
|
||||
/// \return A pointer to the supplied set, \c s, augmented with
|
||||
/// atomic propositions occurring in \c f; or a newly allocated
|
||||
/// set containing all these atomic propositions if \c s is 0.
|
||||
SPOT_API atomic_prop_set*
|
||||
atomic_prop_collect(formula f, atomic_prop_set* s = nullptr);
|
||||
/// \brief Return the set of atomic propositions occurring in a formula.
|
||||
///
|
||||
/// \param f the formula to inspect
|
||||
/// \param s an existing set to fill with atomic_propositions discovered,
|
||||
/// or 0 if the set should be allocated by the function.
|
||||
/// \return A pointer to the supplied set, \c s, augmented with
|
||||
/// atomic propositions occurring in \c f; or a newly allocated
|
||||
/// set containing all these atomic propositions if \c s is 0.
|
||||
SPOT_API atomic_prop_set*
|
||||
atomic_prop_collect(formula f, atomic_prop_set* s = nullptr);
|
||||
|
||||
/// \brief Return the set of atomic propositions occurring in a
|
||||
/// formula, as a BDD.
|
||||
///
|
||||
/// \param f the formula to inspect
|
||||
/// \param a that automaton that should register the BDD variables used.
|
||||
/// \return A conjunction the atomic propositions.
|
||||
SPOT_API bdd
|
||||
atomic_prop_collect_as_bdd(formula f, const twa_ptr& a);
|
||||
/// \brief Return the set of atomic propositions occurring in a
|
||||
/// formula, as a BDD.
|
||||
///
|
||||
/// \param f the formula to inspect
|
||||
/// \param a that automaton that should register the BDD variables used.
|
||||
/// \return A conjunction the atomic propositions.
|
||||
SPOT_API bdd
|
||||
atomic_prop_collect_as_bdd(formula f, const twa_ptr& a);
|
||||
|
||||
/// @}
|
||||
}
|
||||
/// @}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -27,114 +27,110 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
|
||||
language_containment_checker::language_containment_checker
|
||||
(const bdd_dict_ptr& dict, bool exprop, bool symb_merge,
|
||||
bool branching_postponement, bool fair_loop_approx)
|
||||
: dict_(dict), exprop_(exprop), symb_merge_(symb_merge),
|
||||
language_containment_checker::language_containment_checker
|
||||
(const bdd_dict_ptr& dict, bool exprop, bool symb_merge,
|
||||
bool branching_postponement, bool fair_loop_approx)
|
||||
: dict_(dict), exprop_(exprop), symb_merge_(symb_merge),
|
||||
branching_postponement_(branching_postponement),
|
||||
fair_loop_approx_(fair_loop_approx)
|
||||
{
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
language_containment_checker::~language_containment_checker()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
language_containment_checker::~language_containment_checker()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
void
|
||||
language_containment_checker::clear()
|
||||
{
|
||||
translated_.clear();
|
||||
}
|
||||
void
|
||||
language_containment_checker::clear()
|
||||
{
|
||||
translated_.clear();
|
||||
}
|
||||
|
||||
bool
|
||||
language_containment_checker::incompatible_(record_* l, record_* g)
|
||||
{
|
||||
record_::incomp_map::const_iterator i = l->incompatible.find(g);
|
||||
if (i != l->incompatible.end())
|
||||
return i->second;
|
||||
bool
|
||||
language_containment_checker::incompatible_(record_* l, record_* g)
|
||||
{
|
||||
record_::incomp_map::const_iterator i = l->incompatible.find(g);
|
||||
if (i != l->incompatible.end())
|
||||
return i->second;
|
||||
|
||||
bool res = product(l->translation, g->translation)->is_empty();
|
||||
l->incompatible[g] = res;
|
||||
g->incompatible[l] = res;
|
||||
return res;
|
||||
}
|
||||
bool res = product(l->translation, g->translation)->is_empty();
|
||||
l->incompatible[g] = res;
|
||||
g->incompatible[l] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
// Check whether L(l) is a subset of L(g).
|
||||
bool
|
||||
language_containment_checker::contained(formula l,
|
||||
formula g)
|
||||
{
|
||||
if (l == g)
|
||||
return true;
|
||||
record_* rl = register_formula_(l);
|
||||
record_* rng = register_formula_(formula::Not(g));
|
||||
return incompatible_(rl, rng);
|
||||
}
|
||||
// Check whether L(l) is a subset of L(g).
|
||||
bool
|
||||
language_containment_checker::contained(formula l,
|
||||
formula g)
|
||||
{
|
||||
if (l == g)
|
||||
return true;
|
||||
record_* rl = register_formula_(l);
|
||||
record_* rng = register_formula_(formula::Not(g));
|
||||
return incompatible_(rl, rng);
|
||||
}
|
||||
|
||||
// Check whether L(!l) is a subset of L(g).
|
||||
bool
|
||||
language_containment_checker::neg_contained(formula l,
|
||||
formula g)
|
||||
{
|
||||
if (l == g)
|
||||
return false;
|
||||
formula nl = formula::Not(l);
|
||||
record_* rnl = register_formula_(nl);
|
||||
record_* rng = register_formula_(formula::Not(g));
|
||||
if (nl == g)
|
||||
return true;
|
||||
return incompatible_(rnl, rng);
|
||||
}
|
||||
// Check whether L(!l) is a subset of L(g).
|
||||
bool
|
||||
language_containment_checker::neg_contained(formula l,
|
||||
formula g)
|
||||
{
|
||||
if (l == g)
|
||||
return false;
|
||||
formula nl = formula::Not(l);
|
||||
record_* rnl = register_formula_(nl);
|
||||
record_* rng = register_formula_(formula::Not(g));
|
||||
if (nl == g)
|
||||
return true;
|
||||
return incompatible_(rnl, rng);
|
||||
}
|
||||
|
||||
// Check whether L(l) is a subset of L(!g).
|
||||
bool
|
||||
language_containment_checker::contained_neg(formula l,
|
||||
formula g)
|
||||
{
|
||||
if (l == g)
|
||||
return false;
|
||||
record_* rl = register_formula_(l);
|
||||
record_* rg = register_formula_(g);
|
||||
return incompatible_(rl, rg);
|
||||
}
|
||||
// Check whether L(l) is a subset of L(!g).
|
||||
bool
|
||||
language_containment_checker::contained_neg(formula l,
|
||||
formula g)
|
||||
{
|
||||
if (l == g)
|
||||
return false;
|
||||
record_* rl = register_formula_(l);
|
||||
record_* rg = register_formula_(g);
|
||||
return incompatible_(rl, rg);
|
||||
}
|
||||
|
||||
// Check whether L(l) = L(g).
|
||||
bool
|
||||
language_containment_checker::equal(formula l, formula g)
|
||||
{
|
||||
return contained(l, g) && contained(g, l);
|
||||
}
|
||||
// Check whether L(l) = L(g).
|
||||
bool
|
||||
language_containment_checker::equal(formula l, formula g)
|
||||
{
|
||||
return contained(l, g) && contained(g, l);
|
||||
}
|
||||
|
||||
language_containment_checker::record_*
|
||||
language_containment_checker::register_formula_(formula f)
|
||||
{
|
||||
trans_map::iterator i = translated_.find(f);
|
||||
if (i != translated_.end())
|
||||
return &i->second;
|
||||
language_containment_checker::record_*
|
||||
language_containment_checker::register_formula_(formula f)
|
||||
{
|
||||
trans_map::iterator i = translated_.find(f);
|
||||
if (i != translated_.end())
|
||||
return &i->second;
|
||||
|
||||
auto e = ltl_to_tgba_fm(f, dict_, exprop_, symb_merge_,
|
||||
branching_postponement_, fair_loop_approx_);
|
||||
record_& r = translated_[f];
|
||||
r.translation = e;
|
||||
return &r;
|
||||
}
|
||||
auto e = ltl_to_tgba_fm(f, dict_, exprop_, symb_merge_,
|
||||
branching_postponement_, fair_loop_approx_);
|
||||
record_& r = translated_[f];
|
||||
r.translation = e;
|
||||
return &r;
|
||||
}
|
||||
|
||||
|
||||
formula
|
||||
reduce_tau03(formula f, bool stronger)
|
||||
{
|
||||
if (!f.is_psl_formula())
|
||||
return f;
|
||||
formula
|
||||
reduce_tau03(formula f, bool stronger)
|
||||
{
|
||||
if (!f.is_psl_formula())
|
||||
return f;
|
||||
|
||||
ltl_simplifier_options opt(false, false, false,
|
||||
true, stronger);
|
||||
ltl_simplifier simpl(opt);
|
||||
return simpl.simplify(f);
|
||||
}
|
||||
ltl_simplifier_options opt(false, false, false,
|
||||
true, stronger);
|
||||
ltl_simplifier simpl(opt);
|
||||
return simpl.simplify(f);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -29,54 +29,51 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
/// Check containment between LTL formulae.
|
||||
class SPOT_API language_containment_checker
|
||||
{
|
||||
/// Check containment between LTL formulae.
|
||||
class SPOT_API language_containment_checker
|
||||
struct record_
|
||||
{
|
||||
struct record_
|
||||
{
|
||||
const_twa_graph_ptr translation;
|
||||
typedef std::map<const record_*, bool> incomp_map;
|
||||
incomp_map incompatible;
|
||||
};
|
||||
typedef std::unordered_map<formula, record_> trans_map;
|
||||
public:
|
||||
/// This class uses spot::ltl_to_tgba_fm to translate LTL
|
||||
/// formulae. See that function for the meaning of these options.
|
||||
language_containment_checker(const bdd_dict_ptr& dict, bool exprop,
|
||||
bool symb_merge,
|
||||
bool branching_postponement,
|
||||
bool fair_loop_approx);
|
||||
|
||||
~language_containment_checker();
|
||||
|
||||
/// Clear the cache.
|
||||
void clear();
|
||||
|
||||
/// Check whether L(l) is a subset of L(g).
|
||||
bool contained(formula l, formula g);
|
||||
/// Check whether L(!l) is a subset of L(g).
|
||||
bool neg_contained(formula l, formula g);
|
||||
/// Check whether L(l) is a subset of L(!g).
|
||||
bool contained_neg(formula l, formula g);
|
||||
|
||||
/// Check whether L(l) = L(g).
|
||||
bool equal(formula l, formula g);
|
||||
|
||||
protected:
|
||||
bool incompatible_(record_* l, record_* g);
|
||||
|
||||
record_* register_formula_(formula f);
|
||||
|
||||
/* Translation options */
|
||||
bdd_dict_ptr dict_;
|
||||
bool exprop_;
|
||||
bool symb_merge_;
|
||||
bool branching_postponement_;
|
||||
bool fair_loop_approx_;
|
||||
/* Translation Maps */
|
||||
trans_map translated_;
|
||||
const_twa_graph_ptr translation;
|
||||
typedef std::map<const record_*, bool> incomp_map;
|
||||
incomp_map incompatible;
|
||||
};
|
||||
}
|
||||
typedef std::unordered_map<formula, record_> trans_map;
|
||||
public:
|
||||
/// This class uses spot::ltl_to_tgba_fm to translate LTL
|
||||
/// formulae. See that function for the meaning of these options.
|
||||
language_containment_checker(const bdd_dict_ptr& dict, bool exprop,
|
||||
bool symb_merge,
|
||||
bool branching_postponement,
|
||||
bool fair_loop_approx);
|
||||
|
||||
~language_containment_checker();
|
||||
|
||||
/// Clear the cache.
|
||||
void clear();
|
||||
|
||||
/// Check whether L(l) is a subset of L(g).
|
||||
bool contained(formula l, formula g);
|
||||
/// Check whether L(!l) is a subset of L(g).
|
||||
bool neg_contained(formula l, formula g);
|
||||
/// Check whether L(l) is a subset of L(!g).
|
||||
bool contained_neg(formula l, formula g);
|
||||
|
||||
/// Check whether L(l) = L(g).
|
||||
bool equal(formula l, formula g);
|
||||
|
||||
protected:
|
||||
bool incompatible_(record_* l, record_* g);
|
||||
|
||||
record_* register_formula_(formula f);
|
||||
|
||||
/* Translation options */
|
||||
bdd_dict_ptr dict_;
|
||||
bool exprop_;
|
||||
bool symb_merge_;
|
||||
bool branching_postponement_;
|
||||
bool fair_loop_approx_;
|
||||
/* Translation Maps */
|
||||
trans_map translated_;
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,42 +24,38 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
declarative_environment::declarative_environment()
|
||||
{
|
||||
}
|
||||
|
||||
declarative_environment::declarative_environment()
|
||||
{
|
||||
}
|
||||
bool
|
||||
declarative_environment::declare(const std::string& prop_str)
|
||||
{
|
||||
if (props_.find(prop_str) != props_.end())
|
||||
return false;
|
||||
props_[prop_str] = formula::ap(prop_str);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool
|
||||
declarative_environment::declare(const std::string& prop_str)
|
||||
{
|
||||
if (props_.find(prop_str) != props_.end())
|
||||
return false;
|
||||
props_[prop_str] = formula::ap(prop_str);
|
||||
return true;
|
||||
}
|
||||
formula
|
||||
declarative_environment::require(const std::string& prop_str)
|
||||
{
|
||||
prop_map::iterator i = props_.find(prop_str);
|
||||
if (i == props_.end())
|
||||
return nullptr;
|
||||
return i->second;
|
||||
}
|
||||
|
||||
formula
|
||||
declarative_environment::require(const std::string& prop_str)
|
||||
{
|
||||
prop_map::iterator i = props_.find(prop_str);
|
||||
if (i == props_.end())
|
||||
return nullptr;
|
||||
return i->second;
|
||||
}
|
||||
const std::string&
|
||||
declarative_environment::name() const
|
||||
{
|
||||
static std::string name("declarative environment");
|
||||
return name;
|
||||
}
|
||||
|
||||
const std::string&
|
||||
declarative_environment::name() const
|
||||
{
|
||||
static std::string name("declarative environment");
|
||||
return name;
|
||||
}
|
||||
|
||||
const declarative_environment::prop_map&
|
||||
declarative_environment::get_prop_map() const
|
||||
{
|
||||
return props_;
|
||||
}
|
||||
const declarative_environment::prop_map&
|
||||
declarative_environment::get_prop_map() const
|
||||
{
|
||||
return props_;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -29,36 +29,32 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
/// \ingroup ltl_environment
|
||||
/// \brief A declarative environment.
|
||||
///
|
||||
/// This environment recognizes all atomic propositions
|
||||
/// that have been previously declared. It will reject other.
|
||||
class SPOT_API declarative_environment : public environment
|
||||
{
|
||||
public:
|
||||
declarative_environment();
|
||||
~declarative_environment() = default;
|
||||
|
||||
/// \ingroup ltl_environment
|
||||
/// \brief A declarative environment.
|
||||
///
|
||||
/// This environment recognizes all atomic propositions
|
||||
/// that have been previously declared. It will reject other.
|
||||
class SPOT_API declarative_environment : public environment
|
||||
{
|
||||
public:
|
||||
declarative_environment();
|
||||
~declarative_environment() = default;
|
||||
/// Declare an atomic proposition. Return false iff the
|
||||
/// proposition was already declared.
|
||||
bool declare(const std::string& prop_str);
|
||||
|
||||
/// Declare an atomic proposition. Return false iff the
|
||||
/// proposition was already declared.
|
||||
bool declare(const std::string& prop_str);
|
||||
virtual formula require(const std::string& prop_str);
|
||||
|
||||
virtual formula require(const std::string& prop_str);
|
||||
/// Get the name of the environment.
|
||||
virtual const std::string& name() const;
|
||||
|
||||
/// Get the name of the environment.
|
||||
virtual const std::string& name() const;
|
||||
typedef std::map<const std::string, formula> prop_map;
|
||||
|
||||
typedef std::map<const std::string, formula> prop_map;
|
||||
/// Get the map of atomic proposition known to this environment.
|
||||
const prop_map& get_prop_map() const;
|
||||
|
||||
/// Get the map of atomic proposition known to this environment.
|
||||
const prop_map& get_prop_map() const;
|
||||
|
||||
private:
|
||||
prop_map props_;
|
||||
};
|
||||
}
|
||||
private:
|
||||
prop_map props_;
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,36 +24,31 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
default_environment::~default_environment()
|
||||
{
|
||||
}
|
||||
|
||||
default_environment::~default_environment()
|
||||
{
|
||||
}
|
||||
formula
|
||||
default_environment::require(const std::string& s)
|
||||
{
|
||||
return formula::ap(s);
|
||||
}
|
||||
|
||||
formula
|
||||
default_environment::require(const std::string& s)
|
||||
{
|
||||
return formula::ap(s);
|
||||
}
|
||||
const std::string&
|
||||
default_environment::name() const
|
||||
{
|
||||
static std::string name("default environment");
|
||||
return name;
|
||||
}
|
||||
|
||||
const std::string&
|
||||
default_environment::name() const
|
||||
{
|
||||
static std::string name("default environment");
|
||||
return name;
|
||||
}
|
||||
|
||||
default_environment::default_environment()
|
||||
{
|
||||
}
|
||||
|
||||
default_environment&
|
||||
default_environment::instance()
|
||||
{
|
||||
static default_environment* singleton = new default_environment();
|
||||
return *singleton;
|
||||
}
|
||||
default_environment::default_environment()
|
||||
{
|
||||
}
|
||||
|
||||
default_environment&
|
||||
default_environment::instance()
|
||||
{
|
||||
static default_environment* singleton = new default_environment();
|
||||
return *singleton;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -27,27 +27,23 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
/// \ingroup ltl_environment
|
||||
/// \brief A laxist environment.
|
||||
///
|
||||
/// This environment recognizes all atomic propositions.
|
||||
///
|
||||
/// This is a singleton. Use default_environment::instance()
|
||||
/// to obtain the instance.
|
||||
class SPOT_API default_environment final: public environment
|
||||
{
|
||||
public:
|
||||
virtual ~default_environment();
|
||||
virtual formula require(const std::string& prop_str);
|
||||
virtual const std::string& name() const;
|
||||
|
||||
/// \ingroup ltl_environment
|
||||
/// \brief A laxist environment.
|
||||
///
|
||||
/// This environment recognizes all atomic propositions.
|
||||
///
|
||||
/// This is a singleton. Use default_environment::instance()
|
||||
/// to obtain the instance.
|
||||
class SPOT_API default_environment final: public environment
|
||||
{
|
||||
public:
|
||||
virtual ~default_environment();
|
||||
virtual formula require(const std::string& prop_str);
|
||||
virtual const std::string& name() const;
|
||||
|
||||
/// Get the sole instance of spot::ltl::default_environment.
|
||||
static default_environment& instance();
|
||||
protected:
|
||||
default_environment();
|
||||
};
|
||||
}
|
||||
/// Get the sole instance of spot::default_environment.
|
||||
static default_environment& instance();
|
||||
protected:
|
||||
default_environment();
|
||||
};
|
||||
}
|
||||
|
|
|
|||
187
src/tl/dot.cc
187
src/tl/dot.cc
|
|
@ -28,110 +28,107 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
namespace
|
||||
{
|
||||
namespace
|
||||
struct dot_printer final
|
||||
{
|
||||
struct dot_printer final
|
||||
{
|
||||
std::ostream& os_;
|
||||
std::unordered_map<formula, int> node_;
|
||||
std::ostringstream* sinks_;
|
||||
std::ostream& os_;
|
||||
std::unordered_map<formula, int> node_;
|
||||
std::ostringstream* sinks_;
|
||||
|
||||
dot_printer(std::ostream& os, formula f)
|
||||
: os_(os), sinks_(new std::ostringstream)
|
||||
{
|
||||
os_ << "digraph G {\n";
|
||||
rec(f);
|
||||
os_ << " subgraph atoms {\n rank=sink;\n"
|
||||
<< sinks_->str() << " }\n}\n";
|
||||
}
|
||||
dot_printer(std::ostream& os, formula f)
|
||||
: os_(os), sinks_(new std::ostringstream)
|
||||
{
|
||||
os_ << "digraph G {\n";
|
||||
rec(f);
|
||||
os_ << " subgraph atoms {\n rank=sink;\n"
|
||||
<< sinks_->str() << " }\n}\n";
|
||||
}
|
||||
|
||||
~dot_printer()
|
||||
~dot_printer()
|
||||
{
|
||||
delete sinks_;
|
||||
}
|
||||
|
||||
int rec(formula f)
|
||||
{
|
||||
auto i = node_.emplace(f, node_.size());
|
||||
int src = i.first->second;
|
||||
if (!i.second)
|
||||
return src;
|
||||
|
||||
op o = f.kind();
|
||||
std::string str = (o == op::ap) ? f.ap_name() : f.kindstr();
|
||||
|
||||
if (o == op::ap || f.is_constant())
|
||||
*sinks_ << " " << src << " [label=\""
|
||||
<< str << "\", shape=box];\n";
|
||||
else
|
||||
os_ << " " << src << " [label=\"" << str << "\"];\n";
|
||||
|
||||
int childnum = 0;
|
||||
switch (o)
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::Or:
|
||||
case op::OrRat:
|
||||
case op::And:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
childnum = 0; // No number for children
|
||||
break;
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
childnum = -2; // L and R markers
|
||||
break;
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
childnum = 1; // Numbered children
|
||||
break;
|
||||
}
|
||||
|
||||
for (auto c: f)
|
||||
{
|
||||
os_ << " " << src << " -> " << rec(c);
|
||||
if (childnum > 0)
|
||||
os_ << " [taillabel=\"" << childnum << "\"]";
|
||||
if (childnum == -2)
|
||||
os_ << " [taillabel=\"L\"]";
|
||||
else if (childnum == -1)
|
||||
os_ << " [taillabel=\"R\"]";
|
||||
os_ << ";\n";
|
||||
++childnum;
|
||||
}
|
||||
|
||||
int rec(formula f)
|
||||
{
|
||||
auto i = node_.emplace(f, node_.size());
|
||||
int src = i.first->second;
|
||||
if (!i.second)
|
||||
return src;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
std::ostream&
|
||||
print_dot_psl(std::ostream& os, formula f)
|
||||
{
|
||||
dot_printer p(os, f);
|
||||
return os;
|
||||
}
|
||||
op o = f.kind();
|
||||
std::string str = (o == op::ap) ? f.ap_name() : f.kindstr();
|
||||
|
||||
if (o == op::ap || f.is_constant())
|
||||
*sinks_ << " " << src << " [label=\""
|
||||
<< str << "\", shape=box];\n";
|
||||
else
|
||||
os_ << " " << src << " [label=\"" << str << "\"];\n";
|
||||
|
||||
int childnum = 0;
|
||||
switch (o)
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::Or:
|
||||
case op::OrRat:
|
||||
case op::And:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
childnum = 0; // No number for children
|
||||
break;
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
childnum = -2; // L and R markers
|
||||
break;
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
childnum = 1; // Numbered children
|
||||
break;
|
||||
}
|
||||
|
||||
for (auto c: f)
|
||||
{
|
||||
os_ << " " << src << " -> " << rec(c);
|
||||
if (childnum > 0)
|
||||
os_ << " [taillabel=\"" << childnum << "\"]";
|
||||
if (childnum == -2)
|
||||
os_ << " [taillabel=\"L\"]";
|
||||
else if (childnum == -1)
|
||||
os_ << " [taillabel=\"R\"]";
|
||||
os_ << ";\n";
|
||||
++childnum;
|
||||
}
|
||||
|
||||
return src;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
std::ostream&
|
||||
print_dot_psl(std::ostream& os, formula f)
|
||||
{
|
||||
dot_printer p(os, f);
|
||||
return os;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -26,16 +26,13 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Write a formula tree using dot's syntax.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
///
|
||||
/// \c dot is part of the GraphViz package
|
||||
/// http://www.graphviz.org/
|
||||
SPOT_API
|
||||
std::ostream& print_dot_psl(std::ostream& os, formula f);
|
||||
}
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Write a formula tree using dot's syntax.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
///
|
||||
/// \c dot is part of the GraphViz package
|
||||
/// http://www.graphviz.org/
|
||||
SPOT_API
|
||||
std::ostream& print_dot_psl(std::ostream& os, formula f);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -27,34 +27,30 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
/// \ingroup ltl_essential
|
||||
/// \brief An environment that describes atomic propositions.
|
||||
class environment
|
||||
{
|
||||
/// \ingroup ltl_essential
|
||||
/// \brief An environment that describes atomic propositions.
|
||||
class environment
|
||||
public:
|
||||
/// \brief Obtain the formula associated to \a prop_str
|
||||
///
|
||||
/// Usually \a prop_str, is the name of an atomic proposition,
|
||||
/// and spot::require simply returns the associated
|
||||
/// spot::formula.
|
||||
///
|
||||
/// Note this is not a \c const method. Some environments will
|
||||
/// "create" the atomic proposition when requested.
|
||||
///
|
||||
/// \return 0 iff \a prop_str is not part of the environment,
|
||||
/// or the associated spot::formula otherwise.
|
||||
virtual formula require(const std::string& prop_str) = 0;
|
||||
|
||||
/// Get the name of the environment.
|
||||
virtual const std::string& name() const = 0;
|
||||
|
||||
virtual
|
||||
~environment()
|
||||
{
|
||||
public:
|
||||
/// \brief Obtain the formula associated to \a prop_str
|
||||
///
|
||||
/// Usually \a prop_str, is the name of an atomic proposition,
|
||||
/// and spot::ltl::require simply returns the associated
|
||||
/// spot::ltl::formula.
|
||||
///
|
||||
/// Note this is not a \c const method. Some environments will
|
||||
/// "create" the atomic proposition when requested.
|
||||
///
|
||||
/// \return 0 iff \a prop_str is not part of the environment,
|
||||
/// or the associated spot::ltl::formula otherwise.
|
||||
virtual formula require(const std::string& prop_str) = 0;
|
||||
|
||||
/// Get the name of the environment.
|
||||
virtual const std::string& name() const = 0;
|
||||
|
||||
virtual
|
||||
~environment()
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -27,10 +27,10 @@ namespace spot
|
|||
{
|
||||
namespace
|
||||
{
|
||||
static const std::vector<ltl::formula>
|
||||
static const std::vector<formula>
|
||||
split_aps(const char* arg)
|
||||
{
|
||||
std::vector<ltl::formula> group;
|
||||
std::vector<formula> group;
|
||||
auto start = arg;
|
||||
while (*start)
|
||||
{
|
||||
|
|
@ -61,7 +61,7 @@ namespace spot
|
|||
throw std::invalid_argument(s);
|
||||
}
|
||||
std::string ap(start, end - start);
|
||||
group.emplace_back(ltl::formula::ap(ap));
|
||||
group.emplace_back(formula::ap(ap));
|
||||
do
|
||||
++end;
|
||||
while (*end == ' ' || *end == '\t');
|
||||
|
|
@ -86,7 +86,7 @@ namespace spot
|
|||
while (rend > start && (rend[-1] == ' ' || rend[-1] == '\t'))
|
||||
--rend;
|
||||
std::string ap(start, rend - start);
|
||||
group.emplace_back(ltl::formula::ap(ap));
|
||||
group.emplace_back(formula::ap(ap));
|
||||
if (*end == ',')
|
||||
start = end + 1;
|
||||
else
|
||||
|
|
@ -102,27 +102,27 @@ namespace spot
|
|||
add_group(split_aps(ap_csv));
|
||||
}
|
||||
|
||||
void exclusive_ap::add_group(std::vector<ltl::formula> ap)
|
||||
void exclusive_ap::add_group(std::vector<formula> ap)
|
||||
{
|
||||
groups.push_back(ap);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
ltl::formula
|
||||
nand(ltl::formula lhs, ltl::formula rhs)
|
||||
formula
|
||||
nand(formula lhs, formula rhs)
|
||||
{
|
||||
return ltl::formula::Not(ltl::formula::And({lhs, rhs}));
|
||||
return formula::Not(formula::And({lhs, rhs}));
|
||||
}
|
||||
}
|
||||
|
||||
ltl::formula
|
||||
exclusive_ap::constrain(ltl::formula f) const
|
||||
formula
|
||||
exclusive_ap::constrain(formula f) const
|
||||
{
|
||||
auto* s = atomic_prop_collect(f);
|
||||
|
||||
std::vector<ltl::formula> group;
|
||||
std::vector<ltl::formula> v;
|
||||
std::vector<formula> group;
|
||||
std::vector<formula> v;
|
||||
|
||||
for (auto& g: groups)
|
||||
{
|
||||
|
|
@ -139,7 +139,7 @@ namespace spot
|
|||
};
|
||||
|
||||
delete s;
|
||||
return ltl::formula::And({f, ltl::formula::G(ltl::formula::And(v))});
|
||||
return formula::And({f, formula::G(formula::And(v))});
|
||||
}
|
||||
|
||||
twa_graph_ptr exclusive_ap::constrain(const_twa_graph_ptr aut,
|
||||
|
|
|
|||
|
|
@ -27,10 +27,10 @@ namespace spot
|
|||
{
|
||||
class SPOT_API exclusive_ap final
|
||||
{
|
||||
std::vector<std::vector<ltl::formula>> groups;
|
||||
std::vector<std::vector<formula>> groups;
|
||||
public:
|
||||
#ifndef SWIG
|
||||
void add_group(std::vector<ltl::formula> ap);
|
||||
void add_group(std::vector<formula> ap);
|
||||
#endif
|
||||
void add_group(const char* ap_csv);
|
||||
|
||||
|
|
@ -39,7 +39,7 @@ namespace spot
|
|||
return groups.empty();
|
||||
}
|
||||
|
||||
ltl::formula constrain(ltl::formula f) const;
|
||||
formula constrain(formula f) const;
|
||||
twa_graph_ptr constrain(const_twa_graph_ptr aut,
|
||||
bool simplify_guards = false) const;
|
||||
};
|
||||
|
|
|
|||
3116
src/tl/formula.cc
3116
src/tl/formula.cc
File diff suppressed because it is too large
Load diff
2079
src/tl/formula.hh
2079
src/tl/formula.hh
File diff suppressed because it is too large
Load diff
|
|
@ -25,56 +25,53 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
int
|
||||
length(formula f)
|
||||
{
|
||||
int
|
||||
length(formula f)
|
||||
{
|
||||
int len = 0;
|
||||
f.traverse([&len](const formula& x)
|
||||
{
|
||||
auto s = x.size();
|
||||
if (s > 1)
|
||||
len += s - 1;
|
||||
else
|
||||
++len;
|
||||
return false;
|
||||
});
|
||||
return len;
|
||||
}
|
||||
|
||||
int
|
||||
length_boolone(formula f)
|
||||
{
|
||||
int len = 0;
|
||||
f.traverse([&len](const formula& x)
|
||||
{
|
||||
if (x.is_boolean())
|
||||
{
|
||||
++len;
|
||||
return true;
|
||||
}
|
||||
auto s = x.size();
|
||||
if (s > 2)
|
||||
{
|
||||
int b = 0;
|
||||
for (const auto& y: x)
|
||||
if (y.is_boolean())
|
||||
++b;
|
||||
len += s - b * 2 + 1;
|
||||
}
|
||||
else if (s > 1)
|
||||
{
|
||||
len += s - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
++len;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return len;
|
||||
}
|
||||
|
||||
int len = 0;
|
||||
f.traverse([&len](const formula& x)
|
||||
{
|
||||
auto s = x.size();
|
||||
if (s > 1)
|
||||
len += s - 1;
|
||||
else
|
||||
++len;
|
||||
return false;
|
||||
});
|
||||
return len;
|
||||
}
|
||||
|
||||
int
|
||||
length_boolone(formula f)
|
||||
{
|
||||
int len = 0;
|
||||
f.traverse([&len](const formula& x)
|
||||
{
|
||||
if (x.is_boolean())
|
||||
{
|
||||
++len;
|
||||
return true;
|
||||
}
|
||||
auto s = x.size();
|
||||
if (s > 2)
|
||||
{
|
||||
int b = 0;
|
||||
for (const auto& y: x)
|
||||
if (y.is_boolean())
|
||||
++b;
|
||||
len += s - b * 2 + 1;
|
||||
}
|
||||
else if (s > 1)
|
||||
{
|
||||
len += s - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
++len;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return len;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -26,28 +26,25 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
/// \ingroup ltl_misc
|
||||
/// \brief Compute the length of a formula.
|
||||
///
|
||||
/// The length of a formula is the number of atomic propositions,
|
||||
/// constants, and operators (logical and temporal) occurring in
|
||||
/// the formula. n-ary operators count for n-1; for instance
|
||||
/// <code>a | b | c</code> has length 5, even if there is only as
|
||||
/// single <code>|</code> node internally.
|
||||
///
|
||||
/// If squash_boolean is set, all Boolean formulae are assumed
|
||||
/// to have length one.
|
||||
SPOT_API
|
||||
int length(formula f);
|
||||
/// \ingroup ltl_misc
|
||||
/// \brief Compute the length of a formula.
|
||||
///
|
||||
/// The length of a formula is the number of atomic propositions,
|
||||
/// constants, and operators (logical and temporal) occurring in
|
||||
/// the formula. n-ary operators count for n-1; for instance
|
||||
/// <code>a | b | c</code> has length 5, even if there is only as
|
||||
/// single <code>|</code> node internally.
|
||||
///
|
||||
/// If squash_boolean is set, all Boolean formulae are assumed
|
||||
/// to have length one.
|
||||
SPOT_API
|
||||
int length(formula f);
|
||||
|
||||
/// \ingroup ltl_misc
|
||||
/// \brief Compute the length of a formula, squashing Boolean formulae
|
||||
///
|
||||
/// This is similar to spot::ltl::length(), except all Boolean
|
||||
/// formulae are assumed to have length one.
|
||||
SPOT_API
|
||||
int length_boolone(formula f);
|
||||
}
|
||||
/// \ingroup ltl_misc
|
||||
/// \brief Compute the length of a formula, squashing Boolean formulae
|
||||
///
|
||||
/// This is similar to spot::length(), except all Boolean
|
||||
/// formulae are assumed to have length one.
|
||||
SPOT_API
|
||||
int length_boolone(formula f);
|
||||
}
|
||||
|
|
|
|||
316
src/tl/mark.cc
316
src/tl/mark.cc
|
|
@ -25,170 +25,166 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
formula
|
||||
mark_tools::mark_concat_ops(formula f)
|
||||
{
|
||||
formula
|
||||
mark_tools::mark_concat_ops(formula f)
|
||||
{
|
||||
f2f_map::iterator i = markops_.find(f);
|
||||
if (i != markops_.end())
|
||||
return i->second;
|
||||
f2f_map::iterator i = markops_.find(f);
|
||||
if (i != markops_.end())
|
||||
return i->second;
|
||||
|
||||
ltl::formula res;
|
||||
switch (f.kind())
|
||||
formula res;
|
||||
switch (f.kind())
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosureMarked:
|
||||
case op::OrRat:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
res = f;
|
||||
break;
|
||||
case op::NegClosure:
|
||||
res = formula::NegClosureMarked(f[0]);
|
||||
break;
|
||||
case op::EConcat:
|
||||
res = formula::EConcatMarked(f[0], f[1]);
|
||||
break;
|
||||
case op::Or:
|
||||
case op::And:
|
||||
res = f.map([this](formula f)
|
||||
{
|
||||
return this->mark_concat_ops(f);
|
||||
});
|
||||
break;
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
SPOT_UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
markops_[f] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
formula
|
||||
mark_tools::simplify_mark(formula f)
|
||||
{
|
||||
if (!f.is_marked())
|
||||
return f;
|
||||
|
||||
f2f_map::iterator i = simpmark_.find(f);
|
||||
if (i != simpmark_.end())
|
||||
return i->second;
|
||||
|
||||
auto recurse = [this](formula f)
|
||||
{
|
||||
return this->simplify_mark(f);
|
||||
};
|
||||
|
||||
formula res;
|
||||
switch (f.kind())
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
res = f;
|
||||
break;
|
||||
case op::Or:
|
||||
res = f.map(recurse);
|
||||
break;
|
||||
case op::And:
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosureMarked:
|
||||
case op::OrRat:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
res = f;
|
||||
break;
|
||||
case op::NegClosure:
|
||||
res = ltl::formula::NegClosureMarked(f[0]);
|
||||
break;
|
||||
case op::EConcat:
|
||||
res = ltl::formula::EConcatMarked(f[0], f[1]);
|
||||
break;
|
||||
case op::Or:
|
||||
case op::And:
|
||||
res = f.map([this](formula f)
|
||||
{
|
||||
return this->mark_concat_ops(f);
|
||||
});
|
||||
break;
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
SPOT_UNIMPLEMENTED();
|
||||
std::set<std::pair<formula, formula>> empairs;
|
||||
std::set<formula> nmset;
|
||||
std::vector<formula> elist;
|
||||
std::vector<formula> nlist;
|
||||
std::vector<formula> v;
|
||||
|
||||
for (auto c: f)
|
||||
{
|
||||
if (c.is(op::EConcatMarked))
|
||||
{
|
||||
empairs.emplace(c[0], c[1]);
|
||||
v.push_back(c.map(recurse));
|
||||
}
|
||||
else if (c.is(op::EConcat))
|
||||
{
|
||||
elist.push_back(c);
|
||||
}
|
||||
else if (c.is(op::NegClosureMarked))
|
||||
{
|
||||
nmset.insert(c[0]);
|
||||
v.push_back(c.map(recurse));
|
||||
}
|
||||
else if (c.is(op::NegClosure))
|
||||
{
|
||||
nlist.push_back(c);
|
||||
}
|
||||
else
|
||||
{
|
||||
v.push_back(c);
|
||||
}
|
||||
}
|
||||
// Keep only the non-marked EConcat for which we
|
||||
// have not seen a similar EConcatMarked.
|
||||
for (auto e: elist)
|
||||
if (empairs.find(std::make_pair(e[0], e[1]))
|
||||
== empairs.end())
|
||||
v.push_back(e);
|
||||
// Keep only the non-marked NegClosure for which we
|
||||
// have not seen a similar NegClosureMarked.
|
||||
for (auto n: nlist)
|
||||
if (nmset.find(n[0]) == nmset.end())
|
||||
v.push_back(n);
|
||||
res = formula::And(v);
|
||||
}
|
||||
break;
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::OrRat:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
SPOT_UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
markops_[f] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
formula
|
||||
mark_tools::simplify_mark(formula f)
|
||||
{
|
||||
if (!f.is_marked())
|
||||
return f;
|
||||
|
||||
f2f_map::iterator i = simpmark_.find(f);
|
||||
if (i != simpmark_.end())
|
||||
return i->second;
|
||||
|
||||
auto recurse = [this](formula f)
|
||||
{
|
||||
return this->simplify_mark(f);
|
||||
};
|
||||
|
||||
ltl::formula res;
|
||||
switch (f.kind())
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
res = f;
|
||||
break;
|
||||
case op::Or:
|
||||
res = f.map(recurse);
|
||||
break;
|
||||
case op::And:
|
||||
{
|
||||
std::set<std::pair<formula, formula>> empairs;
|
||||
std::set<formula> nmset;
|
||||
std::vector<formula> elist;
|
||||
std::vector<formula> nlist;
|
||||
std::vector<formula> v;
|
||||
|
||||
for (auto c: f)
|
||||
{
|
||||
if (c.is(op::EConcatMarked))
|
||||
{
|
||||
empairs.emplace(c[0], c[1]);
|
||||
v.push_back(c.map(recurse));
|
||||
}
|
||||
else if (c.is(op::EConcat))
|
||||
{
|
||||
elist.push_back(c);
|
||||
}
|
||||
else if (c.is(op::NegClosureMarked))
|
||||
{
|
||||
nmset.insert(c[0]);
|
||||
v.push_back(c.map(recurse));
|
||||
}
|
||||
else if (c.is(op::NegClosure))
|
||||
{
|
||||
nlist.push_back(c);
|
||||
}
|
||||
else
|
||||
{
|
||||
v.push_back(c);
|
||||
}
|
||||
}
|
||||
// Keep only the non-marked EConcat for which we
|
||||
// have not seen a similar EConcatMarked.
|
||||
for (auto e: elist)
|
||||
if (empairs.find(std::make_pair(e[0], e[1]))
|
||||
== empairs.end())
|
||||
v.push_back(e);
|
||||
// Keep only the non-marked NegClosure for which we
|
||||
// have not seen a similar NegClosureMarked.
|
||||
for (auto n: nlist)
|
||||
if (nmset.find(n[0]) == nmset.end())
|
||||
v.push_back(n);
|
||||
res = ltl::formula::And(v);
|
||||
}
|
||||
break;
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::OrRat:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
SPOT_UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
simpmark_[f] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
simpmark_[f] = res;
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,24 +24,20 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
class mark_tools final
|
||||
{
|
||||
class mark_tools final
|
||||
{
|
||||
public:
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Mark operators NegClosure and EConcat.
|
||||
///
|
||||
/// \param f The formula to rewrite.
|
||||
formula mark_concat_ops(formula f);
|
||||
public:
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Mark operators NegClosure and EConcat.
|
||||
///
|
||||
/// \param f The formula to rewrite.
|
||||
formula mark_concat_ops(formula f);
|
||||
|
||||
formula simplify_mark(formula f);
|
||||
formula simplify_mark(formula f);
|
||||
|
||||
private:
|
||||
typedef std::unordered_map<formula, formula> f2f_map;
|
||||
f2f_map simpmark_;
|
||||
f2f_map markops_;
|
||||
};
|
||||
|
||||
}
|
||||
private:
|
||||
typedef std::unordered_map<formula, formula> f2f_map;
|
||||
f2f_map simpmark_;
|
||||
f2f_map markops_;
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -32,340 +32,337 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
namespace
|
||||
{
|
||||
namespace
|
||||
formula substitute_ap(formula f, formula ap_src, formula ap_dst)
|
||||
{
|
||||
formula substitute_ap(formula f, formula ap_src, formula ap_dst)
|
||||
return f.map([&](formula f)
|
||||
{
|
||||
if (f == ap_src)
|
||||
return ap_dst;
|
||||
else
|
||||
return substitute_ap(f, ap_src, ap_dst);
|
||||
});
|
||||
}
|
||||
|
||||
typedef std::vector<formula> vec;
|
||||
class mutator final
|
||||
{
|
||||
int mutation_counter_ = 0;
|
||||
formula f_;
|
||||
unsigned opts_;
|
||||
public:
|
||||
mutator(formula f, unsigned opts) : f_(f), opts_(opts)
|
||||
{
|
||||
return f.map([&](formula f)
|
||||
{
|
||||
if (f == ap_src)
|
||||
return ap_dst;
|
||||
else
|
||||
return substitute_ap(f, ap_src, ap_dst);
|
||||
});
|
||||
}
|
||||
|
||||
typedef std::vector<formula> vec;
|
||||
class mutator final
|
||||
formula mutate(formula f)
|
||||
{
|
||||
int mutation_counter_ = 0;
|
||||
formula f_;
|
||||
unsigned opts_;
|
||||
public:
|
||||
mutator(formula f, unsigned opts) : f_(f), opts_(opts)
|
||||
{
|
||||
}
|
||||
auto recurse = [this](formula f)
|
||||
{
|
||||
return this->mutate(f);
|
||||
};
|
||||
|
||||
formula mutate(formula f)
|
||||
{
|
||||
auto recurse = [this](formula f)
|
||||
{
|
||||
return this->mutate(f);
|
||||
};
|
||||
|
||||
switch (f.kind())
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
switch (f.kind())
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
return f;
|
||||
case op::ap:
|
||||
if (opts_ & Mut_Ap2Const)
|
||||
{
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::tt();
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::ff();
|
||||
}
|
||||
return f;
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
if ((opts_ & Mut_Remove_Ops)
|
||||
&& mutation_counter_-- == 0)
|
||||
return f[0];
|
||||
// fall through
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
if (mutation_counter_ < 0)
|
||||
return f;
|
||||
case op::ap:
|
||||
if (opts_ & Mut_Ap2Const)
|
||||
else
|
||||
return f.map(recurse);
|
||||
case op::Or:
|
||||
case op::OrRat:
|
||||
case op::And:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
{
|
||||
int mos = f.size();
|
||||
if (opts_ & Mut_Remove_Multop_Operands)
|
||||
{
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::tt();
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::ff();
|
||||
for (int i = 0; i < mos; ++i)
|
||||
if (mutation_counter_-- == 0)
|
||||
return f.all_but(i);
|
||||
}
|
||||
return f;
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
if ((opts_ & Mut_Remove_Ops)
|
||||
&& mutation_counter_-- == 0)
|
||||
return f[0];
|
||||
// fall through
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
|
||||
if (opts_ & Mut_Split_Ops && f.is(op::AndNLM))
|
||||
{
|
||||
if (mutation_counter_ >= 0
|
||||
&& mutation_counter_ < 2 * (mos - 1))
|
||||
{
|
||||
vec v1;
|
||||
vec v2;
|
||||
v1.push_back(f[0]);
|
||||
bool reverse = false;
|
||||
int i = 1;
|
||||
while (i < mos)
|
||||
{
|
||||
if (mutation_counter_-- == 0)
|
||||
break;
|
||||
if (mutation_counter_-- == 0)
|
||||
{
|
||||
reverse = true;
|
||||
break;
|
||||
}
|
||||
v1.push_back(f[i++]);
|
||||
}
|
||||
for (; i < mos; ++i)
|
||||
v2.push_back(f[i]);
|
||||
formula first = AndNLM_(v1);
|
||||
formula second = AndNLM_(v2);
|
||||
formula ost = formula::one_star();
|
||||
if (!reverse)
|
||||
return AndRat_(Concat_(first, ost), second);
|
||||
else
|
||||
return AndRat_(Concat_(second, ost), first);
|
||||
}
|
||||
else
|
||||
{
|
||||
mutation_counter_ -= 2 * (mos - 1);
|
||||
}
|
||||
}
|
||||
|
||||
if (mutation_counter_ < 0)
|
||||
return f;
|
||||
else
|
||||
return f.map(recurse);
|
||||
case op::Or:
|
||||
case op::OrRat:
|
||||
case op::And:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
{
|
||||
int mos = f.size();
|
||||
if (opts_ & Mut_Remove_Multop_Operands)
|
||||
{
|
||||
for (int i = 0; i < mos; ++i)
|
||||
if (mutation_counter_-- == 0)
|
||||
return f.all_but(i);
|
||||
}
|
||||
|
||||
if (opts_ & Mut_Split_Ops && f.is(op::AndNLM))
|
||||
{
|
||||
if (mutation_counter_ >= 0
|
||||
&& mutation_counter_ < 2 * (mos - 1))
|
||||
{
|
||||
vec v1;
|
||||
vec v2;
|
||||
v1.push_back(f[0]);
|
||||
bool reverse = false;
|
||||
int i = 1;
|
||||
while (i < mos)
|
||||
{
|
||||
if (mutation_counter_-- == 0)
|
||||
break;
|
||||
if (mutation_counter_-- == 0)
|
||||
{
|
||||
reverse = true;
|
||||
break;
|
||||
}
|
||||
v1.push_back(f[i++]);
|
||||
}
|
||||
for (; i < mos; ++i)
|
||||
v2.push_back(f[i]);
|
||||
formula first = AndNLM_(v1);
|
||||
formula second = AndNLM_(v2);
|
||||
formula ost = formula::one_star();
|
||||
if (!reverse)
|
||||
return AndRat_(Concat_(first, ost), second);
|
||||
else
|
||||
return AndRat_(Concat_(second, ost), first);
|
||||
}
|
||||
else
|
||||
{
|
||||
mutation_counter_ -= 2 * (mos - 1);
|
||||
}
|
||||
}
|
||||
|
||||
if (mutation_counter_ < 0)
|
||||
return f;
|
||||
else
|
||||
return f.map(recurse);
|
||||
}
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
{
|
||||
formula first = f[0];
|
||||
formula second = f[1];
|
||||
op o = f.kind();
|
||||
bool left_is_sere = o == op::EConcat
|
||||
|| o == op::EConcatMarked
|
||||
|| o == op::UConcat;
|
||||
|
||||
if (opts_ & Mut_Remove_Ops && mutation_counter_-- == 0)
|
||||
{
|
||||
if (!left_is_sere)
|
||||
return first;
|
||||
else if (o == op::UConcat)
|
||||
return formula::NegClosure(first);
|
||||
else // EConcat or EConcatMarked
|
||||
return formula::Closure(first);
|
||||
}
|
||||
if (opts_ & Mut_Remove_Ops && mutation_counter_-- == 0)
|
||||
return second;
|
||||
if (opts_ & Mut_Rewrite_Ops)
|
||||
{
|
||||
switch (o)
|
||||
{
|
||||
case op::U:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::W(first, second);
|
||||
break;
|
||||
case op::M:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::R(first, second);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::U(second, first);
|
||||
break;
|
||||
case op::R:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::W(second, first);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (opts_ & Mut_Split_Ops)
|
||||
{
|
||||
switch (o)
|
||||
{
|
||||
case op::Equiv:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::Implies(first, second);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::Implies(second, first);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::And({first, second});
|
||||
if (mutation_counter_-- == 0)
|
||||
{
|
||||
// Negate the two argument sequentially (in this
|
||||
// case right before left, otherwise different
|
||||
// compilers will make different choices.
|
||||
auto right = formula::Not(second);
|
||||
return formula::And({formula::Not(first), right});
|
||||
}
|
||||
break;
|
||||
case op::Xor:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::And({first, formula::Not(second)});
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::And({formula::Not(first), second});
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (mutation_counter_ < 0)
|
||||
return f;
|
||||
else
|
||||
return f.map(recurse);
|
||||
}
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
{
|
||||
formula c = f[0];
|
||||
op o = f.kind();
|
||||
if (opts_ & Mut_Remove_Ops && mutation_counter_-- == 0)
|
||||
return c;
|
||||
if (opts_ & Mut_Simplify_Bounds)
|
||||
{
|
||||
auto min = f.min();
|
||||
auto max = f.max();
|
||||
if (min > 0)
|
||||
{
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, min - 1, max);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, 0, max);
|
||||
}
|
||||
if (max != formula::unbounded())
|
||||
{
|
||||
if (max > min && mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, min, max - 1);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, min,
|
||||
formula::unbounded());
|
||||
}
|
||||
}
|
||||
if (mutation_counter_ < 0)
|
||||
return f;
|
||||
else
|
||||
return f.map(recurse);
|
||||
}
|
||||
}
|
||||
SPOT_UNREACHABLE();
|
||||
}
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
{
|
||||
formula first = f[0];
|
||||
formula second = f[1];
|
||||
op o = f.kind();
|
||||
bool left_is_sere = o == op::EConcat
|
||||
|| o == op::EConcatMarked
|
||||
|| o == op::UConcat;
|
||||
|
||||
formula
|
||||
get_mutation(int n)
|
||||
{
|
||||
mutation_counter_ = n;
|
||||
formula mut = mutate(f_);
|
||||
if (mut == f_)
|
||||
return nullptr;
|
||||
return mut;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
bool
|
||||
formula_length_less_than(formula left, formula right)
|
||||
{
|
||||
assert(left != nullptr);
|
||||
assert(right != nullptr);
|
||||
if (left == right)
|
||||
return false;
|
||||
auto ll = length(left);
|
||||
auto lr = length(right);
|
||||
if (ll < lr)
|
||||
return true;
|
||||
if (ll > lr)
|
||||
return false;
|
||||
return left < right;
|
||||
}
|
||||
|
||||
typedef std::set<formula> fset_t;
|
||||
|
||||
void
|
||||
single_mutation_rec(formula f, fset_t& mutations, unsigned opts,
|
||||
unsigned& n, unsigned m)
|
||||
{
|
||||
if (m == 0)
|
||||
{
|
||||
if (mutations.insert(f).second)
|
||||
--n;
|
||||
}
|
||||
else
|
||||
{
|
||||
formula mut;
|
||||
int i = 0;
|
||||
mutator mv(f, opts);
|
||||
while (n > 0 && ((mut = mv.get_mutation(i++)) != nullptr))
|
||||
single_mutation_rec(mut, mutations, opts, n, m - 1);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
replace_ap_rec(formula f, fset_t& mutations, unsigned opts,
|
||||
unsigned& n, unsigned m)
|
||||
{
|
||||
if (m == 0)
|
||||
{
|
||||
if (mutations.insert(f).second)
|
||||
--n;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!n)
|
||||
return;
|
||||
auto aps =
|
||||
std::unique_ptr<atomic_prop_set>(atomic_prop_collect(f));
|
||||
for (auto ap1: *aps)
|
||||
for (auto ap2: *aps)
|
||||
if (opts_ & Mut_Remove_Ops && mutation_counter_-- == 0)
|
||||
{
|
||||
if (ap1 == ap2)
|
||||
continue;
|
||||
auto mut = substitute_ap(f, ap1, ap2);
|
||||
replace_ap_rec(mut, mutations, opts, n, m - 1);
|
||||
if (!n)
|
||||
return;
|
||||
if (!left_is_sere)
|
||||
return first;
|
||||
else if (o == op::UConcat)
|
||||
return formula::NegClosure(first);
|
||||
else // EConcat or EConcatMarked
|
||||
return formula::Closure(first);
|
||||
}
|
||||
if (opts_ & Mut_Remove_Ops && mutation_counter_-- == 0)
|
||||
return second;
|
||||
if (opts_ & Mut_Rewrite_Ops)
|
||||
{
|
||||
switch (o)
|
||||
{
|
||||
case op::U:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::W(first, second);
|
||||
break;
|
||||
case op::M:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::R(first, second);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::U(second, first);
|
||||
break;
|
||||
case op::R:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::W(second, first);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (opts_ & Mut_Split_Ops)
|
||||
{
|
||||
switch (o)
|
||||
{
|
||||
case op::Equiv:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::Implies(first, second);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::Implies(second, first);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::And({first, second});
|
||||
if (mutation_counter_-- == 0)
|
||||
{
|
||||
// Negate the two argument sequentially (in this
|
||||
// case right before left, otherwise different
|
||||
// compilers will make different choices.
|
||||
auto right = formula::Not(second);
|
||||
return formula::And({formula::Not(first), right});
|
||||
}
|
||||
break;
|
||||
case op::Xor:
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::And({first, formula::Not(second)});
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::And({formula::Not(first), second});
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (mutation_counter_ < 0)
|
||||
return f;
|
||||
else
|
||||
return f.map(recurse);
|
||||
}
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
{
|
||||
formula c = f[0];
|
||||
op o = f.kind();
|
||||
if (opts_ & Mut_Remove_Ops && mutation_counter_-- == 0)
|
||||
return c;
|
||||
if (opts_ & Mut_Simplify_Bounds)
|
||||
{
|
||||
auto min = f.min();
|
||||
auto max = f.max();
|
||||
if (min > 0)
|
||||
{
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, min - 1, max);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, 0, max);
|
||||
}
|
||||
if (max != formula::unbounded())
|
||||
{
|
||||
if (max > min && mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, min, max - 1);
|
||||
if (mutation_counter_-- == 0)
|
||||
return formula::bunop(o, c, min,
|
||||
formula::unbounded());
|
||||
}
|
||||
}
|
||||
if (mutation_counter_ < 0)
|
||||
return f;
|
||||
else
|
||||
return f.map(recurse);
|
||||
}
|
||||
}
|
||||
SPOT_UNREACHABLE();
|
||||
}
|
||||
|
||||
formula
|
||||
get_mutation(int n)
|
||||
{
|
||||
mutation_counter_ = n;
|
||||
formula mut = mutate(f_);
|
||||
if (mut == f_)
|
||||
return nullptr;
|
||||
return mut;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
bool
|
||||
formula_length_less_than(formula left, formula right)
|
||||
{
|
||||
assert(left != nullptr);
|
||||
assert(right != nullptr);
|
||||
if (left == right)
|
||||
return false;
|
||||
auto ll = length(left);
|
||||
auto lr = length(right);
|
||||
if (ll < lr)
|
||||
return true;
|
||||
if (ll > lr)
|
||||
return false;
|
||||
return left < right;
|
||||
}
|
||||
|
||||
std::vector<formula>
|
||||
mutate(formula f, unsigned opts, unsigned max_output,
|
||||
unsigned mutation_count, bool sort)
|
||||
{
|
||||
fset_t mutations;
|
||||
single_mutation_rec(f, mutations, opts, max_output, mutation_count);
|
||||
if (opts & Mut_Remove_One_Ap)
|
||||
replace_ap_rec(f, mutations, opts, max_output, mutation_count);
|
||||
typedef std::set<formula> fset_t;
|
||||
|
||||
vec res(mutations.begin(), mutations.end());
|
||||
if (sort)
|
||||
std::sort(res.begin(), res.end(), formula_length_less_than);
|
||||
return res;
|
||||
void
|
||||
single_mutation_rec(formula f, fset_t& mutations, unsigned opts,
|
||||
unsigned& n, unsigned m)
|
||||
{
|
||||
if (m == 0)
|
||||
{
|
||||
if (mutations.insert(f).second)
|
||||
--n;
|
||||
}
|
||||
else
|
||||
{
|
||||
formula mut;
|
||||
int i = 0;
|
||||
mutator mv(f, opts);
|
||||
while (n > 0 && ((mut = mv.get_mutation(i++)) != nullptr))
|
||||
single_mutation_rec(mut, mutations, opts, n, m - 1);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
replace_ap_rec(formula f, fset_t& mutations, unsigned opts,
|
||||
unsigned& n, unsigned m)
|
||||
{
|
||||
if (m == 0)
|
||||
{
|
||||
if (mutations.insert(f).second)
|
||||
--n;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!n)
|
||||
return;
|
||||
auto aps =
|
||||
std::unique_ptr<atomic_prop_set>(atomic_prop_collect(f));
|
||||
for (auto ap1: *aps)
|
||||
for (auto ap2: *aps)
|
||||
{
|
||||
if (ap1 == ap2)
|
||||
continue;
|
||||
auto mut = substitute_ap(f, ap1, ap2);
|
||||
replace_ap_rec(mut, mutations, opts, n, m - 1);
|
||||
if (!n)
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<formula>
|
||||
mutate(formula f, unsigned opts, unsigned max_output,
|
||||
unsigned mutation_count, bool sort)
|
||||
{
|
||||
fset_t mutations;
|
||||
single_mutation_rec(f, mutations, opts, max_output, mutation_count);
|
||||
if (opts & Mut_Remove_One_Ap)
|
||||
replace_ap_rec(f, mutations, opts, max_output, mutation_count);
|
||||
|
||||
vec res(mutations.begin(), mutations.end());
|
||||
if (sort)
|
||||
std::sort(res.begin(), res.end(), formula_length_less_than);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,25 +24,22 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
enum mut_opts
|
||||
{
|
||||
Mut_Ap2Const = 1U<<0,
|
||||
Mut_Simplify_Bounds = 1U<<1,
|
||||
Mut_Remove_Multop_Operands = 1U<<2,
|
||||
Mut_Remove_Ops = 1U<<3,
|
||||
Mut_Split_Ops = 1U<<4,
|
||||
Mut_Rewrite_Ops = 1U<<5,
|
||||
Mut_Remove_One_Ap = 1U<<6,
|
||||
Mut_All = -1U
|
||||
};
|
||||
enum mut_opts
|
||||
{
|
||||
Mut_Ap2Const = 1U<<0,
|
||||
Mut_Simplify_Bounds = 1U<<1,
|
||||
Mut_Remove_Multop_Operands = 1U<<2,
|
||||
Mut_Remove_Ops = 1U<<3,
|
||||
Mut_Split_Ops = 1U<<4,
|
||||
Mut_Rewrite_Ops = 1U<<5,
|
||||
Mut_Remove_One_Ap = 1U<<6,
|
||||
Mut_All = -1U
|
||||
};
|
||||
|
||||
SPOT_API
|
||||
std::vector<formula> mutate(formula f,
|
||||
unsigned opts = Mut_All,
|
||||
unsigned max_output = -1U,
|
||||
unsigned mutation_count = 1,
|
||||
bool sort = true);
|
||||
}
|
||||
SPOT_API
|
||||
std::vector<formula> mutate(formula f,
|
||||
unsigned opts = Mut_All,
|
||||
unsigned max_output = -1U,
|
||||
unsigned mutation_count = 1,
|
||||
bool sort = true);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -25,17 +25,13 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
formula
|
||||
negative_normal_form(formula f, bool negated)
|
||||
{
|
||||
formula
|
||||
negative_normal_form(formula f, bool negated)
|
||||
{
|
||||
if (!negated && f.is_in_nenoform())
|
||||
return f;
|
||||
|
||||
ltl_simplifier s;
|
||||
return s.negative_normal_form(f, negated);
|
||||
}
|
||||
if (!negated && f.is_in_nenoform())
|
||||
return f;
|
||||
|
||||
ltl_simplifier s;
|
||||
return s.negative_normal_form(f, negated);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -26,24 +26,21 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Build the negative normal form of \a f.
|
||||
///
|
||||
/// All negations of the formula are pushed in front of the
|
||||
/// atomic propositions.
|
||||
///
|
||||
/// \param f The formula to normalize.
|
||||
/// \param negated If \c true, return the negative normal form of
|
||||
/// \c !f
|
||||
///
|
||||
/// Note that this will not remove abbreviated operators. If you
|
||||
/// want to remove abbreviations, call spot::ltl::unabbreviate
|
||||
/// first. (Calling this function after
|
||||
/// spot::ltl::negative_normal_form would likely produce a formula
|
||||
/// which is not in negative normal form.)
|
||||
SPOT_API formula
|
||||
negative_normal_form(formula f, bool negated = false);
|
||||
}
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Build the negative normal form of \a f.
|
||||
///
|
||||
/// All negations of the formula are pushed in front of the
|
||||
/// atomic propositions.
|
||||
///
|
||||
/// \param f The formula to normalize.
|
||||
/// \param negated If \c true, return the negative normal form of
|
||||
/// \c !f
|
||||
///
|
||||
/// Note that this will not remove abbreviated operators. If you
|
||||
/// want to remove abbreviations, call spot::unabbreviate
|
||||
/// first. (Calling this function after
|
||||
/// spot::negative_normal_form would likely produce a formula
|
||||
/// which is not in negative normal form.)
|
||||
SPOT_API formula
|
||||
negative_normal_form(formula f, bool negated = false);
|
||||
}
|
||||
|
|
|
|||
2152
src/tl/print.cc
2152
src/tl/print.cc
File diff suppressed because it is too large
Load diff
359
src/tl/print.hh
359
src/tl/print.hh
|
|
@ -27,198 +27,195 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
/// \addtogroup ltl_io
|
||||
/// @{
|
||||
/// \addtogroup ltl_io
|
||||
/// @{
|
||||
|
||||
/// \brief Output a PSL formula as a string which is parsable.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_psl(std::ostream& os, formula f, bool full_parent = false);
|
||||
/// \brief Output a PSL formula as a string which is parsable.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_psl(std::ostream& os, formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Convert a PSL formula into a string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_psl(formula f, bool full_parent = false);
|
||||
/// \brief Convert a PSL formula into a string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_psl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a PSL formula as an utf-8 string which is parsable.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_utf8_psl(std::ostream& os, formula f,
|
||||
/// \brief Output a PSL formula as an utf-8 string which is parsable.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_utf8_psl(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Convert a PSL formula into a utf-8 string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_utf8_psl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a string which is parsable.
|
||||
/// \param f The formula to translate.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_sere(std::ostream& os, formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Convert a SERE formula into a string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_sere(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a utf-8 string which is parsable.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_utf8_sere(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Convert a SERE formula into a string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_utf8_sere(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output an LTL formula as a string parsable by Spin.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_spin_ltl(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Convert an LTL formula into a string parsable by Spin.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_spin_ltl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output an LTL formula as a string parsable by Wring.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
SPOT_API std::ostream&
|
||||
print_wring_ltl(std::ostream& os, formula f);
|
||||
|
||||
/// \brief Convert a formula into a string parsable by Wring
|
||||
/// \param f The formula to translate.
|
||||
SPOT_API std::string
|
||||
str_wring_ltl(formula f);
|
||||
|
||||
/// \brief Output a PSL formula as a LaTeX string.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_latex_psl(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Output a formula as a LaTeX string which is parsable.
|
||||
/// unless the formula contains automaton operators (used in ELTL formulae).
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_latex_psl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a LaTeX string.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_latex_sere(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Convert a PSL formula into a utf-8 string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_utf8_psl(formula f, bool full_parent = false);
|
||||
/// \brief Output a SERE formula as a LaTeX string which is parsable.
|
||||
/// unless the formula contains automaton operators (used in ELTL formulae).
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_latex_sere(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a string which is parsable.
|
||||
/// \param f The formula to translate.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_sere(std::ostream& os, formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Convert a SERE formula into a string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_sere(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a utf-8 string which is parsable.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_utf8_sere(std::ostream& os, formula f,
|
||||
/// \brief Output a PSL formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed back.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_sclatex_psl(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Convert a SERE formula into a string which is parsable
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_utf8_sere(formula f, bool full_parent = false);
|
||||
/// \brief Output a PSL formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed bacl.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_sclatex_psl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output an LTL formula as a string parsable by Spin.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_spin_ltl(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Convert an LTL formula into a string parsable by Spin.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_spin_ltl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output an LTL formula as a string parsable by Wring.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
SPOT_API std::ostream&
|
||||
print_wring_ltl(std::ostream& os, formula f);
|
||||
|
||||
/// \brief Convert a formula into a string parsable by Wring
|
||||
/// \param f The formula to translate.
|
||||
SPOT_API std::string
|
||||
str_wring_ltl(formula f);
|
||||
|
||||
/// \brief Output a PSL formula as a LaTeX string.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_latex_psl(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Output a formula as a LaTeX string which is parsable.
|
||||
/// unless the formula contains automaton operators (used in ELTL formulae).
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_latex_psl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a LaTeX string.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_latex_sere(std::ostream& os, formula f,
|
||||
/// \brief Output a SERE formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed back.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_sclatex_sere(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a LaTeX string which is parsable.
|
||||
/// unless the formula contains automaton operators (used in ELTL formulae).
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_latex_sere(formula f, bool full_parent = false);
|
||||
/// \brief Output a SERE formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed bacl.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_sclatex_sere(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a PSL formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed back.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_sclatex_psl(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
/// \brief Output an LTL formula as a string in LBT's format.
|
||||
///
|
||||
/// The formula must be an LTL formula (ELTL and PSL operators
|
||||
/// are not supported). The M and W operator will be output
|
||||
/// as-is, because this is accepted by LBTT, however if you
|
||||
/// plan to use the output with other tools, you should probably
|
||||
/// rewrite these two operators using unabbreviate_wm().
|
||||
///
|
||||
/// \param f The formula to translate.
|
||||
/// \param os The stream where it should be output.
|
||||
SPOT_API std::ostream&
|
||||
print_lbt_ltl(std::ostream& os, formula f);
|
||||
|
||||
/// \brief Output a PSL formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed bacl.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_sclatex_psl(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed back.
|
||||
/// \param os The stream where it should be output.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::ostream&
|
||||
print_sclatex_sere(std::ostream& os, formula f,
|
||||
bool full_parent = false);
|
||||
|
||||
/// \brief Output a SERE formula as a self-contained LaTeX string.
|
||||
///
|
||||
/// The result cannot be parsed bacl.
|
||||
/// \param f The formula to translate.
|
||||
/// \param full_parent Whether or not the string should by fully
|
||||
/// parenthesized.
|
||||
SPOT_API std::string
|
||||
str_sclatex_sere(formula f, bool full_parent = false);
|
||||
|
||||
/// \brief Output an LTL formula as a string in LBT's format.
|
||||
///
|
||||
/// The formula must be an LTL formula (ELTL and PSL operators
|
||||
/// are not supported). The M and W operator will be output
|
||||
/// as-is, because this is accepted by LBTT, however if you
|
||||
/// plan to use the output with other tools, you should probably
|
||||
/// rewrite these two operators using unabbreviate_wm().
|
||||
///
|
||||
/// \param f The formula to translate.
|
||||
/// \param os The stream where it should be output.
|
||||
SPOT_API std::ostream&
|
||||
print_lbt_ltl(std::ostream& os, formula f);
|
||||
|
||||
/// \brief Output an LTL formula as a string in LBT's format.
|
||||
///
|
||||
/// The formula must be an LTL formula (ELTL and PSL operators
|
||||
/// are not supported). The M and W operator will be output
|
||||
/// as-is, because this is accepted by LBTT, however if you
|
||||
/// plan to use the output with other tools, you should probably
|
||||
/// rewrite these two operators using unabbreviate_wm().
|
||||
///
|
||||
/// \param f The formula to translate.
|
||||
SPOT_API std::string
|
||||
str_lbt_ltl(formula f);
|
||||
/// @}
|
||||
}
|
||||
/// \brief Output an LTL formula as a string in LBT's format.
|
||||
///
|
||||
/// The formula must be an LTL formula (ELTL and PSL operators
|
||||
/// are not supported). The M and W operator will be output
|
||||
/// as-is, because this is accepted by LBTT, however if you
|
||||
/// plan to use the output with other tools, you should probably
|
||||
/// rewrite these two operators using unabbreviate_wm().
|
||||
///
|
||||
/// \param f The formula to translate.
|
||||
SPOT_API std::string
|
||||
str_lbt_ltl(formula f);
|
||||
/// @}
|
||||
}
|
||||
|
|
|
|||
1009
src/tl/randomltl.cc
1009
src/tl/randomltl.cc
File diff suppressed because it is too large
Load diff
|
|
@ -38,316 +38,312 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Base class for random formula generators
|
||||
class SPOT_API random_formula
|
||||
{
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Base class for random formula generators
|
||||
class SPOT_API random_formula
|
||||
public:
|
||||
random_formula(unsigned proba_size,
|
||||
const atomic_prop_set* ap):
|
||||
proba_size_(proba_size), proba_(new op_proba[proba_size_]), ap_(ap)
|
||||
{
|
||||
public:
|
||||
random_formula(unsigned proba_size,
|
||||
const atomic_prop_set* ap):
|
||||
proba_size_(proba_size), proba_(new op_proba[proba_size_]), ap_(ap)
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
virtual ~random_formula()
|
||||
{
|
||||
delete[] proba_;
|
||||
}
|
||||
virtual ~random_formula()
|
||||
{
|
||||
delete[] proba_;
|
||||
}
|
||||
|
||||
/// Return the set of atomic proposition used to build formulae.
|
||||
const atomic_prop_set*
|
||||
/// Return the set of atomic proposition used to build formulae.
|
||||
const atomic_prop_set*
|
||||
ap() const
|
||||
{
|
||||
return ap_;
|
||||
}
|
||||
|
||||
/// \brief Generate a formula of size \a n.
|
||||
///
|
||||
/// It is possible to obtain formulae that are smaller than \a
|
||||
/// n, because some simple simplifications are performed by the
|
||||
/// AST. (For instance the formula <code>a | a</code> is
|
||||
/// automatically reduced to <code>a</code> by spot::ltl::multop.)
|
||||
formula generate(int n) const;
|
||||
|
||||
/// \brief Print the priorities of each operator, constants,
|
||||
/// and atomic propositions.
|
||||
std::ostream& dump_priorities(std::ostream& os) const;
|
||||
|
||||
/// \brief Update the priorities used to generate the formulae.
|
||||
///
|
||||
/// \a options should be comma-separated list of KEY=VALUE
|
||||
/// assignments, using keys from the above list.
|
||||
/// For instance <code>"xor=0, F=3"</code> will prevent \c xor
|
||||
/// from being used, and will raise the relative probability of
|
||||
/// occurrences of the \c F operator.
|
||||
const char* parse_options(char* options);
|
||||
|
||||
protected:
|
||||
void update_sums();
|
||||
|
||||
struct op_proba
|
||||
{
|
||||
const char* name;
|
||||
int min_n;
|
||||
double proba;
|
||||
typedef formula (*builder)(const random_formula* rl, int n);
|
||||
builder build;
|
||||
void setup(const char* name, int min_n, builder build);
|
||||
};
|
||||
unsigned proba_size_;
|
||||
op_proba* proba_;
|
||||
double total_1_;
|
||||
op_proba* proba_2_;
|
||||
double total_2_;
|
||||
op_proba* proba_2_or_more_;
|
||||
double total_2_and_more_;
|
||||
const atomic_prop_set* ap_;
|
||||
};
|
||||
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random LTL formulae.
|
||||
///
|
||||
/// This class recursively constructs LTL formulae of a given
|
||||
/// size. The formulae will use the use atomic propositions from
|
||||
/// the set of propositions passed to the constructor, in addition
|
||||
/// to the constant and all LTL operators supported by Spot.
|
||||
///
|
||||
/// By default each operator has equal chance to be selected.
|
||||
/// Also, each atomic proposition has as much chance as each
|
||||
/// constant (i.e., true and false) to be picked. This can be
|
||||
/// tuned using parse_options().
|
||||
class SPOT_API random_ltl: public random_formula
|
||||
{
|
||||
public:
|
||||
/// Create a random LTL generator using atomic propositions from \a ap.
|
||||
///
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/** \verbatim
|
||||
ap n
|
||||
false 1
|
||||
true 1
|
||||
not 1
|
||||
F 1
|
||||
G 1
|
||||
X 1
|
||||
equiv 1
|
||||
implies 1
|
||||
xor 1
|
||||
R 1
|
||||
U 1
|
||||
W 1
|
||||
M 1
|
||||
and 1
|
||||
or 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// Where \c n is the number of atomic propositions in the
|
||||
/// set passed to the constructor.
|
||||
///
|
||||
/// This means that each operator has equal chance to be
|
||||
/// selected. Also, each atomic proposition has as much chance
|
||||
/// as each constant (i.e., true and false) to be picked.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
random_ltl(const atomic_prop_set* ap);
|
||||
return ap_;
|
||||
}
|
||||
|
||||
protected:
|
||||
void setup_proba_();
|
||||
random_ltl(int size, const atomic_prop_set* ap);
|
||||
};
|
||||
/// \brief Generate a formula of size \a n.
|
||||
///
|
||||
/// It is possible to obtain formulae that are smaller than \a
|
||||
/// n, because some simple simplifications are performed by the
|
||||
/// AST. (For instance the formula <code>a | a</code> is
|
||||
/// automatically reduced to <code>a</code> by spot::multop.)
|
||||
formula generate(int n) const;
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random Boolean formulae.
|
||||
/// \brief Print the priorities of each operator, constants,
|
||||
/// and atomic propositions.
|
||||
std::ostream& dump_priorities(std::ostream& os) const;
|
||||
|
||||
/// \brief Update the priorities used to generate the formulae.
|
||||
///
|
||||
/// This class recursively constructs Boolean formulae of a given size.
|
||||
/// The formulae will use the use atomic propositions from the
|
||||
/// set of propositions passed to the constructor, in addition to the
|
||||
/// constant and all Boolean operators supported by Spot.
|
||||
///
|
||||
/// By default each operator has equal chance to be selected.
|
||||
class SPOT_API random_boolean: public random_formula
|
||||
/// \a options should be comma-separated list of KEY=VALUE
|
||||
/// assignments, using keys from the above list.
|
||||
/// For instance <code>"xor=0, F=3"</code> will prevent \c xor
|
||||
/// from being used, and will raise the relative probability of
|
||||
/// occurrences of the \c F operator.
|
||||
const char* parse_options(char* options);
|
||||
|
||||
protected:
|
||||
void update_sums();
|
||||
|
||||
struct op_proba
|
||||
{
|
||||
public:
|
||||
/// Create a random Boolean formula generator using atomic
|
||||
/// propositions from \a ap.
|
||||
///
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/** \verbatim
|
||||
ap n
|
||||
false 1
|
||||
true 1
|
||||
not 1
|
||||
equiv 1
|
||||
implies 1
|
||||
xor 1
|
||||
and 1
|
||||
or 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// Where \c n is the number of atomic propositions in the
|
||||
/// set passed to the constructor.
|
||||
///
|
||||
/// This means that each operator has equal chance to be
|
||||
/// selected. Also, each atomic proposition has as much chance
|
||||
/// as each constant (i.e., true and false) to be picked.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
random_boolean(const atomic_prop_set* ap);
|
||||
const char* name;
|
||||
int min_n;
|
||||
double proba;
|
||||
typedef formula (*builder)(const random_formula* rl, int n);
|
||||
builder build;
|
||||
void setup(const char* name, int min_n, builder build);
|
||||
};
|
||||
unsigned proba_size_;
|
||||
op_proba* proba_;
|
||||
double total_1_;
|
||||
op_proba* proba_2_;
|
||||
double total_2_;
|
||||
op_proba* proba_2_or_more_;
|
||||
double total_2_and_more_;
|
||||
const atomic_prop_set* ap_;
|
||||
};
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random SERE.
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random LTL formulae.
|
||||
///
|
||||
/// This class recursively constructs LTL formulae of a given
|
||||
/// size. The formulae will use the use atomic propositions from
|
||||
/// the set of propositions passed to the constructor, in addition
|
||||
/// to the constant and all LTL operators supported by Spot.
|
||||
///
|
||||
/// By default each operator has equal chance to be selected.
|
||||
/// Also, each atomic proposition has as much chance as each
|
||||
/// constant (i.e., true and false) to be picked. This can be
|
||||
/// tuned using parse_options().
|
||||
class SPOT_API random_ltl: public random_formula
|
||||
{
|
||||
public:
|
||||
/// Create a random LTL generator using atomic propositions from \a ap.
|
||||
///
|
||||
/// This class recursively constructs SERE of a given size.
|
||||
/// The formulae will use the use atomic propositions from the
|
||||
/// set of propositions passed to the constructor, in addition to the
|
||||
/// constant and all SERE operators supported by Spot.
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/// By default each operator has equal chance to be selected.
|
||||
class SPOT_API random_sere: public random_formula
|
||||
{
|
||||
public:
|
||||
/// Create a random SERE genere using atomic propositions from \a ap.
|
||||
///
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/** \verbatim
|
||||
eword 1
|
||||
boolform 1
|
||||
star 1
|
||||
star_b 1
|
||||
equal_b 1
|
||||
goto_b 1
|
||||
and 1
|
||||
andNLM 1
|
||||
or 1
|
||||
concat 1
|
||||
fusion 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// Where "boolfrom" designates a Boolean formula generated
|
||||
/// by random_boolean.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
///
|
||||
/// In addition, you can set the properties of the Boolean
|
||||
/// formula generator used to build Boolean subformulae using
|
||||
/// the parse_options method of the \c rb attribute.
|
||||
random_sere(const atomic_prop_set* ap);
|
||||
|
||||
random_boolean rb;
|
||||
};
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random PSL formulae.
|
||||
/** \verbatim
|
||||
ap n
|
||||
false 1
|
||||
true 1
|
||||
not 1
|
||||
F 1
|
||||
G 1
|
||||
X 1
|
||||
equiv 1
|
||||
implies 1
|
||||
xor 1
|
||||
R 1
|
||||
U 1
|
||||
W 1
|
||||
M 1
|
||||
and 1
|
||||
or 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// This class recursively constructs PSL formulae of a given size.
|
||||
/// The formulae will use the use atomic propositions from the
|
||||
/// set of propositions passed to the constructor, in addition to the
|
||||
/// constant and all PSL operators supported by Spot.
|
||||
class SPOT_API random_psl: public random_ltl
|
||||
{
|
||||
public:
|
||||
/// Create a random PSL generator using atomic propositions from \a ap.
|
||||
///
|
||||
/// PSL formulae are built by combining LTL operators, plus
|
||||
/// three operators (EConcat, UConcat, Closure) taking a SERE
|
||||
/// as parameter.
|
||||
///
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/** \verbatim
|
||||
ap n
|
||||
false 1
|
||||
true 1
|
||||
not 1
|
||||
F 1
|
||||
G 1
|
||||
X 1
|
||||
Closure 1
|
||||
equiv 1
|
||||
implies 1
|
||||
xor 1
|
||||
R 1
|
||||
U 1
|
||||
W 1
|
||||
M 1
|
||||
and 1
|
||||
or 1
|
||||
EConcat 1
|
||||
UConcat 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// Where \c n is the number of atomic propositions in the
|
||||
/// set passed to the constructor.
|
||||
///
|
||||
/// This means that each operator has equal chance to be
|
||||
/// selected. Also, each atomic proposition has as much chance
|
||||
/// as each constant (i.e., true and false) to be picked.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
///
|
||||
/// In addition, you can set the properties of the SERE generator
|
||||
/// used to build SERE subformulae using the parse_options method
|
||||
/// of the \c rs attribute.
|
||||
random_psl(const atomic_prop_set* ap);
|
||||
/// Where \c n is the number of atomic propositions in the
|
||||
/// set passed to the constructor.
|
||||
///
|
||||
/// This means that each operator has equal chance to be
|
||||
/// selected. Also, each atomic proposition has as much chance
|
||||
/// as each constant (i.e., true and false) to be picked.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
random_ltl(const atomic_prop_set* ap);
|
||||
|
||||
/// The SERE generator used to generate SERE subformulae.
|
||||
random_sere rs;
|
||||
};
|
||||
protected:
|
||||
void setup_proba_();
|
||||
random_ltl(int size, const atomic_prop_set* ap);
|
||||
};
|
||||
|
||||
class SPOT_API randltlgenerator
|
||||
{
|
||||
typedef std::unordered_set<formula> fset_t;
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random Boolean formulae.
|
||||
///
|
||||
/// This class recursively constructs Boolean formulae of a given size.
|
||||
/// The formulae will use the use atomic propositions from the
|
||||
/// set of propositions passed to the constructor, in addition to the
|
||||
/// constant and all Boolean operators supported by Spot.
|
||||
///
|
||||
/// By default each operator has equal chance to be selected.
|
||||
class SPOT_API random_boolean: public random_formula
|
||||
{
|
||||
public:
|
||||
/// Create a random Boolean formula generator using atomic
|
||||
/// propositions from \a ap.
|
||||
///
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/** \verbatim
|
||||
ap n
|
||||
false 1
|
||||
true 1
|
||||
not 1
|
||||
equiv 1
|
||||
implies 1
|
||||
xor 1
|
||||
and 1
|
||||
or 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// Where \c n is the number of atomic propositions in the
|
||||
/// set passed to the constructor.
|
||||
///
|
||||
/// This means that each operator has equal chance to be
|
||||
/// selected. Also, each atomic proposition has as much chance
|
||||
/// as each constant (i.e., true and false) to be picked.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
random_boolean(const atomic_prop_set* ap);
|
||||
};
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random SERE.
|
||||
///
|
||||
/// This class recursively constructs SERE of a given size.
|
||||
/// The formulae will use the use atomic propositions from the
|
||||
/// set of propositions passed to the constructor, in addition to the
|
||||
/// constant and all SERE operators supported by Spot.
|
||||
///
|
||||
/// By default each operator has equal chance to be selected.
|
||||
class SPOT_API random_sere: public random_formula
|
||||
{
|
||||
public:
|
||||
/// Create a random SERE genere using atomic propositions from \a ap.
|
||||
///
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/** \verbatim
|
||||
eword 1
|
||||
boolform 1
|
||||
star 1
|
||||
star_b 1
|
||||
equal_b 1
|
||||
goto_b 1
|
||||
and 1
|
||||
andNLM 1
|
||||
or 1
|
||||
concat 1
|
||||
fusion 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// Where "boolfrom" designates a Boolean formula generated
|
||||
/// by random_boolean.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
///
|
||||
/// In addition, you can set the properties of the Boolean
|
||||
/// formula generator used to build Boolean subformulae using
|
||||
/// the parse_options method of the \c rb attribute.
|
||||
random_sere(const atomic_prop_set* ap);
|
||||
|
||||
random_boolean rb;
|
||||
};
|
||||
|
||||
/// \ingroup ltl_io
|
||||
/// \brief Generate random PSL formulae.
|
||||
///
|
||||
/// This class recursively constructs PSL formulae of a given size.
|
||||
/// The formulae will use the use atomic propositions from the
|
||||
/// set of propositions passed to the constructor, in addition to the
|
||||
/// constant and all PSL operators supported by Spot.
|
||||
class SPOT_API random_psl: public random_ltl
|
||||
{
|
||||
public:
|
||||
/// Create a random PSL generator using atomic propositions from \a ap.
|
||||
///
|
||||
/// PSL formulae are built by combining LTL operators, plus
|
||||
/// three operators (EConcat, UConcat, Closure) taking a SERE
|
||||
/// as parameter.
|
||||
///
|
||||
/// The default priorities are defined as follows:
|
||||
///
|
||||
/** \verbatim
|
||||
ap n
|
||||
false 1
|
||||
true 1
|
||||
not 1
|
||||
F 1
|
||||
G 1
|
||||
X 1
|
||||
Closure 1
|
||||
equiv 1
|
||||
implies 1
|
||||
xor 1
|
||||
R 1
|
||||
U 1
|
||||
W 1
|
||||
M 1
|
||||
and 1
|
||||
or 1
|
||||
EConcat 1
|
||||
UConcat 1
|
||||
\endverbatim */
|
||||
///
|
||||
/// Where \c n is the number of atomic propositions in the
|
||||
/// set passed to the constructor.
|
||||
///
|
||||
/// This means that each operator has equal chance to be
|
||||
/// selected. Also, each atomic proposition has as much chance
|
||||
/// as each constant (i.e., true and false) to be picked.
|
||||
///
|
||||
/// These priorities can be changed use the parse_options method.
|
||||
///
|
||||
/// In addition, you can set the properties of the SERE generator
|
||||
/// used to build SERE subformulae using the parse_options method
|
||||
/// of the \c rs attribute.
|
||||
random_psl(const atomic_prop_set* ap);
|
||||
|
||||
/// The SERE generator used to generate SERE subformulae.
|
||||
random_sere rs;
|
||||
};
|
||||
|
||||
class SPOT_API randltlgenerator
|
||||
{
|
||||
typedef std::unordered_set<formula> fset_t;
|
||||
|
||||
|
||||
public:
|
||||
randltlgenerator(int aprops_n, const option_map& opts,
|
||||
char* opt_pL = nullptr,
|
||||
char* opt_pS = nullptr,
|
||||
char* opt_pB = nullptr);
|
||||
public:
|
||||
randltlgenerator(int aprops_n, const option_map& opts,
|
||||
char* opt_pL = nullptr,
|
||||
char* opt_pS = nullptr,
|
||||
char* opt_pB = nullptr);
|
||||
|
||||
randltlgenerator(atomic_prop_set aprops, const option_map& opts,
|
||||
char* opt_pL = nullptr,
|
||||
char* opt_pS = nullptr,
|
||||
char* opt_pB = nullptr);
|
||||
randltlgenerator(atomic_prop_set aprops, const option_map& opts,
|
||||
char* opt_pL = nullptr,
|
||||
char* opt_pS = nullptr,
|
||||
char* opt_pB = nullptr);
|
||||
|
||||
~randltlgenerator();
|
||||
~randltlgenerator();
|
||||
|
||||
formula next();
|
||||
formula next();
|
||||
|
||||
void dump_ltl_priorities(std::ostream& os);
|
||||
void dump_bool_priorities(std::ostream& os);
|
||||
void dump_psl_priorities(std::ostream& os);
|
||||
void dump_sere_priorities(std::ostream& os);
|
||||
void dump_sere_bool_priorities(std::ostream& os);
|
||||
void remove_some_props(atomic_prop_set& s);
|
||||
void dump_ltl_priorities(std::ostream& os);
|
||||
void dump_bool_priorities(std::ostream& os);
|
||||
void dump_psl_priorities(std::ostream& os);
|
||||
void dump_sere_priorities(std::ostream& os);
|
||||
void dump_sere_bool_priorities(std::ostream& os);
|
||||
void remove_some_props(atomic_prop_set& s);
|
||||
|
||||
formula GF_n();
|
||||
formula GF_n();
|
||||
|
||||
private:
|
||||
fset_t unique_set_;
|
||||
atomic_prop_set aprops_;
|
||||
private:
|
||||
fset_t unique_set_;
|
||||
atomic_prop_set aprops_;
|
||||
|
||||
int opt_seed_;
|
||||
int opt_tree_size_min_;
|
||||
int opt_tree_size_max_;
|
||||
bool opt_unique_;
|
||||
bool opt_wf_;
|
||||
int opt_simpl_level_;
|
||||
ltl_simplifier simpl_;
|
||||
int opt_seed_;
|
||||
int opt_tree_size_min_;
|
||||
int opt_tree_size_max_;
|
||||
bool opt_unique_;
|
||||
bool opt_wf_;
|
||||
int opt_simpl_level_;
|
||||
ltl_simplifier simpl_;
|
||||
|
||||
int output_;
|
||||
int output_;
|
||||
|
||||
random_formula* rf_ = nullptr;
|
||||
random_psl* rp_ = nullptr;
|
||||
random_sere* rs_ = nullptr;
|
||||
};
|
||||
}
|
||||
random_formula* rf_ = nullptr;
|
||||
random_psl* rp_ = nullptr;
|
||||
random_sere* rs_ = nullptr;
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -27,461 +27,457 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Basic relabeler
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Basic relabeler
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace
|
||||
struct ap_generator
|
||||
{
|
||||
struct ap_generator
|
||||
{
|
||||
virtual formula next() = 0;
|
||||
virtual ~ap_generator() {}
|
||||
};
|
||||
virtual formula next() = 0;
|
||||
virtual ~ap_generator() {}
|
||||
};
|
||||
|
||||
struct pnn_generator final: ap_generator
|
||||
{
|
||||
unsigned nn;
|
||||
pnn_generator()
|
||||
: nn(0)
|
||||
{
|
||||
}
|
||||
|
||||
formula next()
|
||||
{
|
||||
std::ostringstream s;
|
||||
s << 'p' << nn++;
|
||||
return formula::ap(s.str());
|
||||
}
|
||||
};
|
||||
|
||||
struct abc_generator final: ap_generator
|
||||
{
|
||||
public:
|
||||
abc_generator()
|
||||
: nn(0)
|
||||
{
|
||||
}
|
||||
|
||||
unsigned nn;
|
||||
|
||||
formula next()
|
||||
{
|
||||
std::string s;
|
||||
unsigned n = nn++;
|
||||
do
|
||||
{
|
||||
s.push_back('a' + (n % 26));
|
||||
n /= 26;
|
||||
}
|
||||
while (n);
|
||||
return formula::ap(s);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class relabeler
|
||||
{
|
||||
public:
|
||||
typedef std::unordered_map<formula, formula> map;
|
||||
map newname;
|
||||
ap_generator* gen;
|
||||
relabeling_map* oldnames;
|
||||
|
||||
relabeler(ap_generator* gen, relabeling_map* m)
|
||||
: gen(gen), oldnames(m)
|
||||
{
|
||||
}
|
||||
|
||||
~relabeler()
|
||||
{
|
||||
delete gen;
|
||||
}
|
||||
|
||||
formula rename(formula old)
|
||||
{
|
||||
auto r = newname.emplace(old, nullptr);
|
||||
if (!r.second)
|
||||
{
|
||||
return r.first->second;
|
||||
}
|
||||
else
|
||||
{
|
||||
formula res = gen->next();
|
||||
r.first->second = res;
|
||||
if (oldnames)
|
||||
(*oldnames)[res] = old;
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
formula
|
||||
visit(formula f)
|
||||
{
|
||||
if (f.is(op::ap))
|
||||
return rename(f);
|
||||
else
|
||||
return f.map([this](formula f)
|
||||
{
|
||||
return this->visit(f);
|
||||
});
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
formula
|
||||
relabel(formula f, relabeling_style style, relabeling_map* m)
|
||||
struct pnn_generator final: ap_generator
|
||||
{
|
||||
ap_generator* gen = nullptr;
|
||||
switch (style)
|
||||
unsigned nn;
|
||||
pnn_generator()
|
||||
: nn(0)
|
||||
{
|
||||
case Pnn:
|
||||
gen = new pnn_generator;
|
||||
break;
|
||||
case Abc:
|
||||
gen = new abc_generator;
|
||||
break;
|
||||
}
|
||||
|
||||
relabeler r(gen, m);
|
||||
return r.visit(f);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Boolean-subexpression relabeler
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Here we want to rewrite a formula such as
|
||||
// "a & b & X(c & d) & GF(c & d)" into "p0 & Xp1 & GFp1"
|
||||
// where Boolean subexpressions are replaced by fresh propositions.
|
||||
//
|
||||
// Detecting Boolean subexpressions is not a problem.
|
||||
// Furthermore, because we are already representing LTL formulas
|
||||
// with sharing of identical sub-expressions we can easily rename
|
||||
// a subexpression (such as c&d above) only once. However this
|
||||
// scheme has two problems:
|
||||
//
|
||||
// 1. It will not detect inter-dependent Boolean subexpressions.
|
||||
// For instance it will mistakenly relabel "(a & b) U (a & !b)"
|
||||
// as "p0 U p1", hiding the dependency between a&b and a&!b.
|
||||
//
|
||||
// 2. Because of our n-ary operators, it will fail to
|
||||
// notice that (a & b) is a sub-expression of (a & b & c).
|
||||
//
|
||||
// The code below only addresses point 1 so that interdependent
|
||||
// subexpressions are not relabeled. Point 2 could be improved in
|
||||
// a future version of somebody feels inclined to do so.
|
||||
//
|
||||
// The way we compute the subexpressions that can be relabeled is
|
||||
// by transforming the formula syntax tree into an undirected
|
||||
// graph, and computing the cut points of this graph. The cut
|
||||
// points (or articulation points) are the nodes whose removal
|
||||
// would split the graph in two components. To ensure that a
|
||||
// Boolean operator is only considered as a cut point if it would
|
||||
// separate all of its children from the rest of the graph, we
|
||||
// connect all the children of Boolean operators.
|
||||
//
|
||||
// For instance (a & b) U (c & d) has two (Boolean) cut points
|
||||
// corresponding to the two AND operators:
|
||||
//
|
||||
// (a&b)U(c&d)
|
||||
// ╱ ╲
|
||||
// a&b c&d
|
||||
// ╱ ╲ ╱ ╲
|
||||
// a─────b c─────d
|
||||
//
|
||||
// (The root node is also a cut-point, but we only consider Boolean
|
||||
// cut-points for relabeling.)
|
||||
//
|
||||
// On the other hand, (a & b) U (b & !c) has only one Boolean
|
||||
// cut-point which corresponds to the NOT operator:
|
||||
//
|
||||
// (a&b)U(b&!c)
|
||||
// ╱ ╲
|
||||
// a&b b&c
|
||||
// ╱ ╲ ╱ ╲
|
||||
// a─────b────!c
|
||||
// │
|
||||
// c
|
||||
//
|
||||
// Note that if the children of a&b and b&c were not connected,
|
||||
// a&b and b&c would be considered as cut points because they
|
||||
// separate "a" or "!c" from the rest of the graph.
|
||||
//
|
||||
// The relabeling of a formula is therefore done in 3 passes:
|
||||
// 1. convert the formula's syntax tree into an undirected graph,
|
||||
// adding links between children of Boolean operators
|
||||
// 2. compute the (Boolean) cut points of that graph, using the
|
||||
// Hopcroft-Tarjan algorithm (see below for a reference)
|
||||
// 3. recursively scan the formula's tree until we reach
|
||||
// either a (Boolean) cut point or an atomic proposition, and
|
||||
// replace that node by a fresh atomic proposition.
|
||||
//
|
||||
// In the example above (a&b)U(b&!c), the last recursion
|
||||
// stop a, b, and !c, producing (p0&p1)U(p1&p2).
|
||||
namespace
|
||||
{
|
||||
typedef std::vector<formula> succ_vec;
|
||||
typedef std::map<formula, succ_vec> fgraph;
|
||||
|
||||
// Convert the formula's syntax tree into an undirected graph
|
||||
// labeled by subformulas.
|
||||
class formula_to_fgraph final
|
||||
formula next()
|
||||
{
|
||||
public:
|
||||
fgraph& g;
|
||||
std::stack<formula> s;
|
||||
std::ostringstream s;
|
||||
s << 'p' << nn++;
|
||||
return formula::ap(s.str());
|
||||
}
|
||||
};
|
||||
|
||||
formula_to_fgraph(fgraph& g):
|
||||
g(g)
|
||||
struct abc_generator final: ap_generator
|
||||
{
|
||||
public:
|
||||
abc_generator()
|
||||
: nn(0)
|
||||
{
|
||||
}
|
||||
|
||||
~formula_to_fgraph()
|
||||
{
|
||||
}
|
||||
unsigned nn;
|
||||
|
||||
void
|
||||
visit(formula f)
|
||||
{
|
||||
formula next()
|
||||
{
|
||||
std::string s;
|
||||
unsigned n = nn++;
|
||||
do
|
||||
{
|
||||
// Connect to parent
|
||||
auto in = g.emplace(f, succ_vec());
|
||||
if (!s.empty())
|
||||
{
|
||||
formula top = s.top();
|
||||
in.first->second.push_back(top);
|
||||
g[top].push_back(f);
|
||||
if (!in.second)
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(in.second);
|
||||
}
|
||||
s.push_back('a' + (n % 26));
|
||||
n /= 26;
|
||||
}
|
||||
s.push(f);
|
||||
while (n);
|
||||
return formula::ap(s);
|
||||
}
|
||||
};
|
||||
|
||||
unsigned sz = f.size();
|
||||
unsigned i = 0;
|
||||
if (sz > 2 && !f.is_boolean())
|
||||
|
||||
class relabeler
|
||||
{
|
||||
public:
|
||||
typedef std::unordered_map<formula, formula> map;
|
||||
map newname;
|
||||
ap_generator* gen;
|
||||
relabeling_map* oldnames;
|
||||
|
||||
relabeler(ap_generator* gen, relabeling_map* m)
|
||||
: gen(gen), oldnames(m)
|
||||
{
|
||||
}
|
||||
|
||||
~relabeler()
|
||||
{
|
||||
delete gen;
|
||||
}
|
||||
|
||||
formula rename(formula old)
|
||||
{
|
||||
auto r = newname.emplace(old, nullptr);
|
||||
if (!r.second)
|
||||
{
|
||||
return r.first->second;
|
||||
}
|
||||
else
|
||||
{
|
||||
formula res = gen->next();
|
||||
r.first->second = res;
|
||||
if (oldnames)
|
||||
(*oldnames)[res] = old;
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
formula
|
||||
visit(formula f)
|
||||
{
|
||||
if (f.is(op::ap))
|
||||
return rename(f);
|
||||
else
|
||||
return f.map([this](formula f)
|
||||
{
|
||||
return this->visit(f);
|
||||
});
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
formula
|
||||
relabel(formula f, relabeling_style style, relabeling_map* m)
|
||||
{
|
||||
ap_generator* gen = nullptr;
|
||||
switch (style)
|
||||
{
|
||||
case Pnn:
|
||||
gen = new pnn_generator;
|
||||
break;
|
||||
case Abc:
|
||||
gen = new abc_generator;
|
||||
break;
|
||||
}
|
||||
|
||||
relabeler r(gen, m);
|
||||
return r.visit(f);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Boolean-subexpression relabeler
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Here we want to rewrite a formula such as
|
||||
// "a & b & X(c & d) & GF(c & d)" into "p0 & Xp1 & GFp1"
|
||||
// where Boolean subexpressions are replaced by fresh propositions.
|
||||
//
|
||||
// Detecting Boolean subexpressions is not a problem.
|
||||
// Furthermore, because we are already representing LTL formulas
|
||||
// with sharing of identical sub-expressions we can easily rename
|
||||
// a subexpression (such as c&d above) only once. However this
|
||||
// scheme has two problems:
|
||||
//
|
||||
// 1. It will not detect inter-dependent Boolean subexpressions.
|
||||
// For instance it will mistakenly relabel "(a & b) U (a & !b)"
|
||||
// as "p0 U p1", hiding the dependency between a&b and a&!b.
|
||||
//
|
||||
// 2. Because of our n-ary operators, it will fail to
|
||||
// notice that (a & b) is a sub-expression of (a & b & c).
|
||||
//
|
||||
// The code below only addresses point 1 so that interdependent
|
||||
// subexpressions are not relabeled. Point 2 could be improved in
|
||||
// a future version of somebody feels inclined to do so.
|
||||
//
|
||||
// The way we compute the subexpressions that can be relabeled is
|
||||
// by transforming the formula syntax tree into an undirected
|
||||
// graph, and computing the cut points of this graph. The cut
|
||||
// points (or articulation points) are the nodes whose removal
|
||||
// would split the graph in two components. To ensure that a
|
||||
// Boolean operator is only considered as a cut point if it would
|
||||
// separate all of its children from the rest of the graph, we
|
||||
// connect all the children of Boolean operators.
|
||||
//
|
||||
// For instance (a & b) U (c & d) has two (Boolean) cut points
|
||||
// corresponding to the two AND operators:
|
||||
//
|
||||
// (a&b)U(c&d)
|
||||
// ╱ ╲
|
||||
// a&b c&d
|
||||
// ╱ ╲ ╱ ╲
|
||||
// a─────b c─────d
|
||||
//
|
||||
// (The root node is also a cut-point, but we only consider Boolean
|
||||
// cut-points for relabeling.)
|
||||
//
|
||||
// On the other hand, (a & b) U (b & !c) has only one Boolean
|
||||
// cut-point which corresponds to the NOT operator:
|
||||
//
|
||||
// (a&b)U(b&!c)
|
||||
// ╱ ╲
|
||||
// a&b b&c
|
||||
// ╱ ╲ ╱ ╲
|
||||
// a─────b────!c
|
||||
// │
|
||||
// c
|
||||
//
|
||||
// Note that if the children of a&b and b&c were not connected,
|
||||
// a&b and b&c would be considered as cut points because they
|
||||
// separate "a" or "!c" from the rest of the graph.
|
||||
//
|
||||
// The relabeling of a formula is therefore done in 3 passes:
|
||||
// 1. convert the formula's syntax tree into an undirected graph,
|
||||
// adding links between children of Boolean operators
|
||||
// 2. compute the (Boolean) cut points of that graph, using the
|
||||
// Hopcroft-Tarjan algorithm (see below for a reference)
|
||||
// 3. recursively scan the formula's tree until we reach
|
||||
// either a (Boolean) cut point or an atomic proposition, and
|
||||
// replace that node by a fresh atomic proposition.
|
||||
//
|
||||
// In the example above (a&b)U(b&!c), the last recursion
|
||||
// stop a, b, and !c, producing (p0&p1)U(p1&p2).
|
||||
namespace
|
||||
{
|
||||
typedef std::vector<formula> succ_vec;
|
||||
typedef std::map<formula, succ_vec> fgraph;
|
||||
|
||||
// Convert the formula's syntax tree into an undirected graph
|
||||
// labeled by subformulas.
|
||||
class formula_to_fgraph final
|
||||
{
|
||||
public:
|
||||
fgraph& g;
|
||||
std::stack<formula> s;
|
||||
|
||||
formula_to_fgraph(fgraph& g):
|
||||
g(g)
|
||||
{
|
||||
}
|
||||
|
||||
~formula_to_fgraph()
|
||||
{
|
||||
}
|
||||
|
||||
void
|
||||
visit(formula f)
|
||||
{
|
||||
{
|
||||
// Connect to parent
|
||||
auto in = g.emplace(f, succ_vec());
|
||||
if (!s.empty())
|
||||
{
|
||||
/// If we have a formula like (a & b & Xc), consider
|
||||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||||
/// Boolean operands as a single node.
|
||||
formula b = f.boolean_operands(&i);
|
||||
if (b)
|
||||
visit(b);
|
||||
formula top = s.top();
|
||||
in.first->second.push_back(top);
|
||||
g[top].push_back(f);
|
||||
if (!in.second)
|
||||
return;
|
||||
}
|
||||
for (; i < sz; ++i)
|
||||
visit(f[i]);
|
||||
if (sz > 1 && f.is_boolean())
|
||||
else
|
||||
{
|
||||
// For Boolean nodes, connect all children in a
|
||||
// loop. This way the node can only be a cut-point
|
||||
// if it separates all children from the reset of
|
||||
// the graph (not only one).
|
||||
formula pred = f[0];
|
||||
for (i = 1; i < sz; ++i)
|
||||
assert(in.second);
|
||||
}
|
||||
}
|
||||
s.push(f);
|
||||
|
||||
unsigned sz = f.size();
|
||||
unsigned i = 0;
|
||||
if (sz > 2 && !f.is_boolean())
|
||||
{
|
||||
/// If we have a formula like (a & b & Xc), consider
|
||||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||||
/// Boolean operands as a single node.
|
||||
formula b = f.boolean_operands(&i);
|
||||
if (b)
|
||||
visit(b);
|
||||
}
|
||||
for (; i < sz; ++i)
|
||||
visit(f[i]);
|
||||
if (sz > 1 && f.is_boolean())
|
||||
{
|
||||
// For Boolean nodes, connect all children in a
|
||||
// loop. This way the node can only be a cut-point
|
||||
// if it separates all children from the reset of
|
||||
// the graph (not only one).
|
||||
formula pred = f[0];
|
||||
for (i = 1; i < sz; ++i)
|
||||
{
|
||||
formula next = f[i];
|
||||
// Note that we only add an edge in one
|
||||
// direction, because we are building a cycle
|
||||
// between all children anyway.
|
||||
g[pred].push_back(next);
|
||||
pred = next;
|
||||
}
|
||||
g[pred].push_back(f[0]);
|
||||
}
|
||||
s.pop();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
typedef std::set<formula> fset;
|
||||
struct data_entry // for each node of the graph
|
||||
{
|
||||
unsigned num; // serial number, in pre-order
|
||||
unsigned low; // lowest number accessible via unstacked descendants
|
||||
data_entry(unsigned num = 0, unsigned low = 0)
|
||||
: num(num), low(low)
|
||||
{
|
||||
}
|
||||
};
|
||||
typedef std::unordered_map<formula, data_entry> fmap_t;
|
||||
struct stack_entry
|
||||
{
|
||||
formula grand_parent;
|
||||
formula parent; // current node
|
||||
succ_vec::const_iterator current_child;
|
||||
succ_vec::const_iterator last_child;
|
||||
};
|
||||
typedef std::stack<stack_entry> stack_t;
|
||||
|
||||
// Fill c with the Boolean cutpoints of g, starting from start.
|
||||
//
|
||||
// This is based no "Efficient Algorithms for Graph
|
||||
// Manipulation", J. Hopcroft & R. Tarjan, in Communications of
|
||||
// the ACM, 16 (6), June 1973.
|
||||
//
|
||||
// It differs from the original algorithm by returning only the
|
||||
// Boolean cutpoints, and not dealing with the initial state
|
||||
// properly (our initial state will always be considered as a
|
||||
// cut-point, but since we only return Boolean cut-points it's
|
||||
// OK: if the top-most formula is Boolean we want to replace it
|
||||
// as a whole).
|
||||
void cut_points(const fgraph& g, fset& c, formula start)
|
||||
{
|
||||
stack_t s;
|
||||
|
||||
unsigned num = 0;
|
||||
fmap_t data;
|
||||
data_entry d = { num, num };
|
||||
data[start] = d;
|
||||
++num;
|
||||
const succ_vec& children = g.find(start)->second;
|
||||
stack_entry e = { start, start, children.begin(), children.end() };
|
||||
s.push(e);
|
||||
|
||||
while (!s.empty())
|
||||
{
|
||||
stack_entry& e = s.top();
|
||||
if (e.current_child != e.last_child)
|
||||
{
|
||||
// Skip the edge if it is just the reverse of the one
|
||||
// we took.
|
||||
formula child = *e.current_child;
|
||||
if (child == e.grand_parent)
|
||||
{
|
||||
formula next = f[i];
|
||||
// Note that we only add an edge in one
|
||||
// direction, because we are building a cycle
|
||||
// between all children anyway.
|
||||
g[pred].push_back(next);
|
||||
pred = next;
|
||||
++e.current_child;
|
||||
continue;
|
||||
}
|
||||
g[pred].push_back(f[0]);
|
||||
}
|
||||
s.pop();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
typedef std::set<formula> fset;
|
||||
struct data_entry // for each node of the graph
|
||||
{
|
||||
unsigned num; // serial number, in pre-order
|
||||
unsigned low; // lowest number accessible via unstacked descendants
|
||||
data_entry(unsigned num = 0, unsigned low = 0)
|
||||
: num(num), low(low)
|
||||
{
|
||||
}
|
||||
};
|
||||
typedef std::unordered_map<formula, data_entry> fmap_t;
|
||||
struct stack_entry
|
||||
{
|
||||
formula grand_parent;
|
||||
formula parent; // current node
|
||||
succ_vec::const_iterator current_child;
|
||||
succ_vec::const_iterator last_child;
|
||||
};
|
||||
typedef std::stack<stack_entry> stack_t;
|
||||
|
||||
// Fill c with the Boolean cutpoints of g, starting from start.
|
||||
//
|
||||
// This is based no "Efficient Algorithms for Graph
|
||||
// Manipulation", J. Hopcroft & R. Tarjan, in Communications of
|
||||
// the ACM, 16 (6), June 1973.
|
||||
//
|
||||
// It differs from the original algorithm by returning only the
|
||||
// Boolean cutpoints, and not dealing with the initial state
|
||||
// properly (our initial state will always be considered as a
|
||||
// cut-point, but since we only return Boolean cut-points it's
|
||||
// OK: if the top-most formula is Boolean we want to replace it
|
||||
// as a whole).
|
||||
void cut_points(const fgraph& g, fset& c, formula start)
|
||||
{
|
||||
stack_t s;
|
||||
|
||||
unsigned num = 0;
|
||||
fmap_t data;
|
||||
data_entry d = { num, num };
|
||||
data[start] = d;
|
||||
++num;
|
||||
const succ_vec& children = g.find(start)->second;
|
||||
stack_entry e = { start, start, children.begin(), children.end() };
|
||||
s.push(e);
|
||||
|
||||
while (!s.empty())
|
||||
{
|
||||
stack_entry& e = s.top();
|
||||
if (e.current_child != e.last_child)
|
||||
{
|
||||
// Skip the edge if it is just the reverse of the one
|
||||
// we took.
|
||||
formula child = *e.current_child;
|
||||
if (child == e.grand_parent)
|
||||
{
|
||||
++e.current_child;
|
||||
continue;
|
||||
}
|
||||
auto i = data.emplace(std::piecewise_construct,
|
||||
std::forward_as_tuple(child),
|
||||
std::forward_as_tuple(num, num));
|
||||
if (i.second) // New destination.
|
||||
{
|
||||
++num;
|
||||
const succ_vec& children = g.find(child)->second;
|
||||
stack_entry newe = { e.parent, child,
|
||||
children.begin(), children.end() };
|
||||
s.push(newe);
|
||||
}
|
||||
else // Destination exists.
|
||||
{
|
||||
data_entry& dparent = data[e.parent];
|
||||
data_entry& dchild = i.first->second;
|
||||
// If this is a back-edge, update
|
||||
// the low field of the parent.
|
||||
if (dchild.num <= dparent.num)
|
||||
if (dparent.low > dchild.num)
|
||||
dparent.low = dchild.num;
|
||||
}
|
||||
++e.current_child;
|
||||
}
|
||||
else
|
||||
{
|
||||
formula grand_parent = e.grand_parent;
|
||||
formula parent = e.parent;
|
||||
s.pop();
|
||||
if (!s.empty())
|
||||
{
|
||||
data_entry& dparent = data[parent];
|
||||
data_entry& dgrand_parent = data[grand_parent];
|
||||
if (dparent.low >= dgrand_parent.num // cut-point
|
||||
&& grand_parent.is_boolean())
|
||||
c.insert(grand_parent);
|
||||
if (dparent.low < dgrand_parent.low)
|
||||
dgrand_parent.low = dparent.low;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class bse_relabeler final: public relabeler
|
||||
{
|
||||
public:
|
||||
fset& c;
|
||||
bse_relabeler(ap_generator* gen, fset& c,
|
||||
relabeling_map* m)
|
||||
: relabeler(gen, m), c(c)
|
||||
{
|
||||
}
|
||||
|
||||
using relabeler::visit;
|
||||
|
||||
formula
|
||||
visit(formula f)
|
||||
{
|
||||
if (f.is(op::ap) || (c.find(f) != c.end()))
|
||||
return rename(f);
|
||||
|
||||
unsigned sz = f.size();
|
||||
if (sz <= 2)
|
||||
return f.map([this](formula f)
|
||||
{
|
||||
return visit(f);
|
||||
});
|
||||
|
||||
unsigned i = 0;
|
||||
std::vector<formula> res;
|
||||
/// If we have a formula like (a & b & Xc), consider
|
||||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||||
/// Boolean operands as a single node.
|
||||
formula b = f.boolean_operands(&i);
|
||||
if (b)
|
||||
{
|
||||
res.reserve(sz - i + 1);
|
||||
res.push_back(visit(b));
|
||||
auto i = data.emplace(std::piecewise_construct,
|
||||
std::forward_as_tuple(child),
|
||||
std::forward_as_tuple(num, num));
|
||||
if (i.second) // New destination.
|
||||
{
|
||||
++num;
|
||||
const succ_vec& children = g.find(child)->second;
|
||||
stack_entry newe = { e.parent, child,
|
||||
children.begin(), children.end() };
|
||||
s.push(newe);
|
||||
}
|
||||
else // Destination exists.
|
||||
{
|
||||
data_entry& dparent = data[e.parent];
|
||||
data_entry& dchild = i.first->second;
|
||||
// If this is a back-edge, update
|
||||
// the low field of the parent.
|
||||
if (dchild.num <= dparent.num)
|
||||
if (dparent.low > dchild.num)
|
||||
dparent.low = dchild.num;
|
||||
}
|
||||
++e.current_child;
|
||||
}
|
||||
else
|
||||
{
|
||||
res.reserve(sz);
|
||||
formula grand_parent = e.grand_parent;
|
||||
formula parent = e.parent;
|
||||
s.pop();
|
||||
if (!s.empty())
|
||||
{
|
||||
data_entry& dparent = data[parent];
|
||||
data_entry& dgrand_parent = data[grand_parent];
|
||||
if (dparent.low >= dgrand_parent.num // cut-point
|
||||
&& grand_parent.is_boolean())
|
||||
c.insert(grand_parent);
|
||||
if (dparent.low < dgrand_parent.low)
|
||||
dgrand_parent.low = dparent.low;
|
||||
}
|
||||
}
|
||||
for (; i < sz; ++i)
|
||||
res.push_back(visit(f[i]));
|
||||
return formula::multop(f.kind(), res);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
formula
|
||||
relabel_bse(formula f, relabeling_style style, relabeling_map* m)
|
||||
class bse_relabeler final: public relabeler
|
||||
{
|
||||
fgraph g;
|
||||
|
||||
// Build the graph g from the formula f.
|
||||
public:
|
||||
fset& c;
|
||||
bse_relabeler(ap_generator* gen, fset& c,
|
||||
relabeling_map* m)
|
||||
: relabeler(gen, m), c(c)
|
||||
{
|
||||
formula_to_fgraph conv(g);
|
||||
conv.visit(f);
|
||||
}
|
||||
|
||||
// Compute its cut-points
|
||||
fset c;
|
||||
cut_points(g, c, f);
|
||||
using relabeler::visit;
|
||||
|
||||
// Relabel the formula recursively, stopping
|
||||
// at cut-points or atomic propositions.
|
||||
ap_generator* gen = nullptr;
|
||||
switch (style)
|
||||
{
|
||||
case Pnn:
|
||||
gen = new pnn_generator;
|
||||
break;
|
||||
case Abc:
|
||||
gen = new abc_generator;
|
||||
break;
|
||||
}
|
||||
bse_relabeler rel(gen, c, m);
|
||||
return rel.visit(f);
|
||||
formula
|
||||
visit(formula f)
|
||||
{
|
||||
if (f.is(op::ap) || (c.find(f) != c.end()))
|
||||
return rename(f);
|
||||
|
||||
unsigned sz = f.size();
|
||||
if (sz <= 2)
|
||||
return f.map([this](formula f)
|
||||
{
|
||||
return visit(f);
|
||||
});
|
||||
|
||||
unsigned i = 0;
|
||||
std::vector<formula> res;
|
||||
/// If we have a formula like (a & b & Xc), consider
|
||||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||||
/// Boolean operands as a single node.
|
||||
formula b = f.boolean_operands(&i);
|
||||
if (b)
|
||||
{
|
||||
res.reserve(sz - i + 1);
|
||||
res.push_back(visit(b));
|
||||
}
|
||||
else
|
||||
{
|
||||
res.reserve(sz);
|
||||
}
|
||||
for (; i < sz; ++i)
|
||||
res.push_back(visit(f[i]));
|
||||
return formula::multop(f.kind(), res);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
formula
|
||||
relabel_bse(formula f, relabeling_style style, relabeling_map* m)
|
||||
{
|
||||
fgraph g;
|
||||
|
||||
// Build the graph g from the formula f.
|
||||
{
|
||||
formula_to_fgraph conv(g);
|
||||
conv.visit(f);
|
||||
}
|
||||
|
||||
// Compute its cut-points
|
||||
fset c;
|
||||
cut_points(g, c, f);
|
||||
|
||||
// Relabel the formula recursively, stopping
|
||||
// at cut-points or atomic propositions.
|
||||
ap_generator* gen = nullptr;
|
||||
switch (style)
|
||||
{
|
||||
case Pnn:
|
||||
gen = new pnn_generator;
|
||||
break;
|
||||
case Abc:
|
||||
gen = new abc_generator;
|
||||
break;
|
||||
}
|
||||
bse_relabeler rel(gen, c, m);
|
||||
return rel.visit(f);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -25,30 +25,27 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
enum relabeling_style { Abc, Pnn };
|
||||
enum relabeling_style { Abc, Pnn };
|
||||
|
||||
typedef std::map<formula, formula> relabeling_map;
|
||||
typedef std::map<formula, formula> relabeling_map;
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Relabel the atomic propositions in a formula.
|
||||
///
|
||||
/// If \a m is non-null, it is filled with correspondence
|
||||
/// between the new names (keys) and the old names (values).
|
||||
SPOT_API
|
||||
formula relabel(formula f, relabeling_style style,
|
||||
relabeling_map* m = nullptr);
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Relabel the atomic propositions in a formula.
|
||||
///
|
||||
/// If \a m is non-null, it is filled with correspondence
|
||||
/// between the new names (keys) and the old names (values).
|
||||
SPOT_API
|
||||
formula relabel(formula f, relabeling_style style,
|
||||
relabeling_map* m = nullptr);
|
||||
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Relabel Boolean subexpressions in a formula using
|
||||
/// atomic propositions.
|
||||
///
|
||||
/// If \a m is non-null, it is filled with correspondence
|
||||
/// between the new names (keys) and the old names (values).
|
||||
SPOT_API
|
||||
formula relabel_bse(formula f, relabeling_style style,
|
||||
relabeling_map* m = nullptr);
|
||||
}
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Relabel Boolean subexpressions in a formula using
|
||||
/// atomic propositions.
|
||||
///
|
||||
/// If \a m is non-null, it is filled with correspondence
|
||||
/// between the new names (keys) and the old names (values).
|
||||
SPOT_API
|
||||
formula relabel_bse(formula f, relabeling_style style,
|
||||
relabeling_map* m = nullptr);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -23,80 +23,77 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
namespace
|
||||
{
|
||||
namespace
|
||||
{
|
||||
static formula
|
||||
remove_x_rec(formula f, atomic_prop_set& aps)
|
||||
{
|
||||
if (f.is_syntactic_stutter_invariant())
|
||||
return f;
|
||||
|
||||
auto rec = [&aps](formula f)
|
||||
{
|
||||
return remove_x_rec(f, aps);
|
||||
};
|
||||
|
||||
if (!f.is(op::X))
|
||||
return f.map(rec);
|
||||
|
||||
formula c = rec(f[0]);
|
||||
|
||||
std::vector<formula> vo;
|
||||
for (auto i: aps)
|
||||
{
|
||||
// First line
|
||||
std::vector<formula> va1;
|
||||
formula npi = formula::Not(i);
|
||||
va1.push_back(i);
|
||||
va1.push_back(formula::U(i, formula::And({npi, c})));
|
||||
|
||||
for (auto j: aps)
|
||||
if (j != i)
|
||||
{
|
||||
// make sure the arguments of OR are created in a
|
||||
// deterministic order
|
||||
auto tmp = formula::U(formula::Not(j), npi);
|
||||
va1.push_back(formula::Or({formula::U(j, npi), tmp}));
|
||||
}
|
||||
vo.push_back(formula::And(va1));
|
||||
// Second line
|
||||
std::vector<formula> va2;
|
||||
va2.push_back(npi);
|
||||
va2.push_back(formula::U(npi, formula::And({i, c})));
|
||||
for (auto j: aps)
|
||||
if (j != i)
|
||||
{
|
||||
// make sure the arguments of OR are created in a
|
||||
// deterministic order
|
||||
auto tmp = formula::U(formula::Not(j), i);
|
||||
va2.push_back(formula::Or({formula::U(j, i), tmp}));
|
||||
}
|
||||
vo.push_back(formula::And(va2));
|
||||
}
|
||||
// Third line
|
||||
std::vector<formula> va3;
|
||||
for (auto i: aps)
|
||||
{
|
||||
// make sure the arguments of OR are created in a
|
||||
// deterministic order
|
||||
auto tmp = formula::G(formula::Not(i));
|
||||
va3.push_back(formula::Or({formula::G(i), tmp}));
|
||||
}
|
||||
va3.push_back(c);
|
||||
vo.push_back(formula::And(va3));
|
||||
return formula::Or(vo);
|
||||
}
|
||||
}
|
||||
|
||||
formula remove_x(formula f)
|
||||
static formula
|
||||
remove_x_rec(formula f, atomic_prop_set& aps)
|
||||
{
|
||||
if (f.is_syntactic_stutter_invariant())
|
||||
return f;
|
||||
atomic_prop_set aps;
|
||||
atomic_prop_collect(f, &aps);
|
||||
return remove_x_rec(f, aps);
|
||||
|
||||
auto rec = [&aps](formula f)
|
||||
{
|
||||
return remove_x_rec(f, aps);
|
||||
};
|
||||
|
||||
if (!f.is(op::X))
|
||||
return f.map(rec);
|
||||
|
||||
formula c = rec(f[0]);
|
||||
|
||||
std::vector<formula> vo;
|
||||
for (auto i: aps)
|
||||
{
|
||||
// First line
|
||||
std::vector<formula> va1;
|
||||
formula npi = formula::Not(i);
|
||||
va1.push_back(i);
|
||||
va1.push_back(formula::U(i, formula::And({npi, c})));
|
||||
|
||||
for (auto j: aps)
|
||||
if (j != i)
|
||||
{
|
||||
// make sure the arguments of OR are created in a
|
||||
// deterministic order
|
||||
auto tmp = formula::U(formula::Not(j), npi);
|
||||
va1.push_back(formula::Or({formula::U(j, npi), tmp}));
|
||||
}
|
||||
vo.push_back(formula::And(va1));
|
||||
// Second line
|
||||
std::vector<formula> va2;
|
||||
va2.push_back(npi);
|
||||
va2.push_back(formula::U(npi, formula::And({i, c})));
|
||||
for (auto j: aps)
|
||||
if (j != i)
|
||||
{
|
||||
// make sure the arguments of OR are created in a
|
||||
// deterministic order
|
||||
auto tmp = formula::U(formula::Not(j), i);
|
||||
va2.push_back(formula::Or({formula::U(j, i), tmp}));
|
||||
}
|
||||
vo.push_back(formula::And(va2));
|
||||
}
|
||||
// Third line
|
||||
std::vector<formula> va3;
|
||||
for (auto i: aps)
|
||||
{
|
||||
// make sure the arguments of OR are created in a
|
||||
// deterministic order
|
||||
auto tmp = formula::G(formula::Not(i));
|
||||
va3.push_back(formula::Or({formula::G(i), tmp}));
|
||||
}
|
||||
va3.push_back(c);
|
||||
vo.push_back(formula::And(va3));
|
||||
return formula::Or(vo);
|
||||
}
|
||||
}
|
||||
|
||||
formula remove_x(formula f)
|
||||
{
|
||||
if (f.is_syntactic_stutter_invariant())
|
||||
return f;
|
||||
atomic_prop_set aps;
|
||||
atomic_prop_collect(f, &aps);
|
||||
return remove_x_rec(f, aps);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -23,27 +23,24 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
/// \brief Rewrite a stutter-insensitive formula \a f without
|
||||
/// using the X operator.
|
||||
///
|
||||
/// This function may also be applied to stutter-sensitive formulas,
|
||||
/// but in that case the resulting formula is not equivalent.
|
||||
///
|
||||
/** \verbatim
|
||||
@Article{ etessami.00.ipl,
|
||||
author = {Kousha Etessami},
|
||||
title = {A note on a question of {P}eled and {W}ilke regarding
|
||||
stutter-invariant {LTL}},
|
||||
journal = {Information Processing Letters},
|
||||
volume = {75},
|
||||
number = {6},
|
||||
year = {2000},
|
||||
pages = {261--263}
|
||||
}
|
||||
\endverbatim */
|
||||
SPOT_API
|
||||
formula remove_x(formula f);
|
||||
}
|
||||
/// \brief Rewrite a stutter-insensitive formula \a f without
|
||||
/// using the X operator.
|
||||
///
|
||||
/// This function may also be applied to stutter-sensitive formulas,
|
||||
/// but in that case the resulting formula is not equivalent.
|
||||
///
|
||||
/** \verbatim
|
||||
@Article{ etessami.00.ipl,
|
||||
author = {Kousha Etessami},
|
||||
title = {A note on a question of {P}eled and {W}ilke regarding
|
||||
stutter-invariant {LTL}},
|
||||
journal = {Information Processing Letters},
|
||||
volume = {75},
|
||||
number = {6},
|
||||
year = {2000},
|
||||
pages = {261--263}
|
||||
}
|
||||
\endverbatim */
|
||||
SPOT_API
|
||||
formula remove_x(formula f);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,24 +24,20 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
formula simplify_f_g(formula p)
|
||||
{
|
||||
formula simplify_f_g(formula p)
|
||||
{
|
||||
// 1 U p = Fp
|
||||
if (p.is(op::U) && p[0].is_tt())
|
||||
return formula::F(p[1]);
|
||||
// 0 R p = Gp
|
||||
if (p.is(op::R) && p[0].is_ff())
|
||||
return formula::G(p[1]);
|
||||
// p W 0 = Gp
|
||||
if (p.is(op::W) && p[1].is_ff())
|
||||
return formula::G(p[0]);
|
||||
// p M 1 = Fp
|
||||
if (p.is(op::M) && p[1].is_tt())
|
||||
return formula::F(p[0]);
|
||||
return p.map(simplify_f_g);
|
||||
}
|
||||
|
||||
// 1 U p = Fp
|
||||
if (p.is(op::U) && p[0].is_tt())
|
||||
return formula::F(p[1]);
|
||||
// 0 R p = Gp
|
||||
if (p.is(op::R) && p[0].is_ff())
|
||||
return formula::G(p[1]);
|
||||
// p W 0 = Gp
|
||||
if (p.is(op::W) && p[1].is_ff())
|
||||
return formula::G(p[0]);
|
||||
// p M 1 = Fp
|
||||
if (p.is(op::M) && p[1].is_tt())
|
||||
return formula::F(p[0]);
|
||||
return p.map(simplify_f_g);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -26,19 +26,16 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Replace <code>true U f</code> and <code>false R g</code> by
|
||||
/// <code>F f</code> and <code>G g</code>.
|
||||
///
|
||||
/// Perform the following rewriting (from left to right):
|
||||
///
|
||||
/// - true U a = F a
|
||||
/// - a M true = F a
|
||||
/// - false R a = G a
|
||||
/// - a W false = G a
|
||||
///
|
||||
SPOT_API formula simplify_f_g(formula f);
|
||||
}
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Replace <code>true U f</code> and <code>false R g</code> by
|
||||
/// <code>F f</code> and <code>G g</code>.
|
||||
///
|
||||
/// Perform the following rewriting (from left to right):
|
||||
///
|
||||
/// - true U a = F a
|
||||
/// - a M true = F a
|
||||
/// - false R a = G a
|
||||
/// - a W false = G a
|
||||
///
|
||||
SPOT_API formula simplify_f_g(formula f);
|
||||
}
|
||||
|
|
|
|||
6421
src/tl/simplify.cc
6421
src/tl/simplify.cc
File diff suppressed because it is too large
Load diff
|
|
@ -26,179 +26,176 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
class ltl_simplifier_options
|
||||
{
|
||||
class ltl_simplifier_options
|
||||
public:
|
||||
ltl_simplifier_options(bool basics = true,
|
||||
bool synt_impl = true,
|
||||
bool event_univ = true,
|
||||
bool containment_checks = false,
|
||||
bool containment_checks_stronger = false,
|
||||
bool nenoform_stop_on_boolean = false,
|
||||
bool reduce_size_strictly = false,
|
||||
bool boolean_to_isop = false,
|
||||
bool favor_event_univ = false)
|
||||
: reduce_basics(basics),
|
||||
synt_impl(synt_impl),
|
||||
event_univ(event_univ),
|
||||
containment_checks(containment_checks),
|
||||
containment_checks_stronger(containment_checks_stronger),
|
||||
nenoform_stop_on_boolean(nenoform_stop_on_boolean),
|
||||
reduce_size_strictly(reduce_size_strictly),
|
||||
boolean_to_isop(boolean_to_isop),
|
||||
favor_event_univ(favor_event_univ)
|
||||
{
|
||||
public:
|
||||
ltl_simplifier_options(bool basics = true,
|
||||
bool synt_impl = true,
|
||||
bool event_univ = true,
|
||||
bool containment_checks = false,
|
||||
bool containment_checks_stronger = false,
|
||||
bool nenoform_stop_on_boolean = false,
|
||||
bool reduce_size_strictly = false,
|
||||
bool boolean_to_isop = false,
|
||||
bool favor_event_univ = false)
|
||||
: reduce_basics(basics),
|
||||
synt_impl(synt_impl),
|
||||
event_univ(event_univ),
|
||||
containment_checks(containment_checks),
|
||||
containment_checks_stronger(containment_checks_stronger),
|
||||
nenoform_stop_on_boolean(nenoform_stop_on_boolean),
|
||||
reduce_size_strictly(reduce_size_strictly),
|
||||
boolean_to_isop(boolean_to_isop),
|
||||
favor_event_univ(favor_event_univ)
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
ltl_simplifier_options(int level) :
|
||||
ltl_simplifier_options(false, false, false)
|
||||
{
|
||||
switch (level)
|
||||
{
|
||||
case 3:
|
||||
containment_checks = true;
|
||||
containment_checks_stronger = true;
|
||||
// fall through
|
||||
case 2:
|
||||
synt_impl = true;
|
||||
// fall through
|
||||
case 1:
|
||||
reduce_basics = true;
|
||||
event_univ = true;
|
||||
// fall through
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bool reduce_basics;
|
||||
bool synt_impl;
|
||||
bool event_univ;
|
||||
bool containment_checks;
|
||||
bool containment_checks_stronger;
|
||||
// If true, Boolean subformulae will not be put into
|
||||
// negative normal form.
|
||||
bool nenoform_stop_on_boolean;
|
||||
// If true, some rules that produce slightly larger formulae
|
||||
// will be disabled. Those larger formulae are normally easier
|
||||
// to translate, so we recommend to set this to false.
|
||||
bool reduce_size_strictly;
|
||||
// If true, Boolean subformulae will be rewritten in ISOP form.
|
||||
bool boolean_to_isop;
|
||||
// Try to isolate subformulae that are eventual and universal.
|
||||
bool favor_event_univ;
|
||||
};
|
||||
|
||||
// fwd declaration to hide technical details.
|
||||
class ltl_simplifier_cache;
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Rewrite or simplify \a f in various ways.
|
||||
class SPOT_API ltl_simplifier
|
||||
ltl_simplifier_options(int level) :
|
||||
ltl_simplifier_options(false, false, false)
|
||||
{
|
||||
public:
|
||||
ltl_simplifier(const bdd_dict_ptr& dict = make_bdd_dict());
|
||||
ltl_simplifier(const ltl_simplifier_options& opt,
|
||||
bdd_dict_ptr dict = make_bdd_dict());
|
||||
~ltl_simplifier();
|
||||
switch (level)
|
||||
{
|
||||
case 3:
|
||||
containment_checks = true;
|
||||
containment_checks_stronger = true;
|
||||
// fall through
|
||||
case 2:
|
||||
synt_impl = true;
|
||||
// fall through
|
||||
case 1:
|
||||
reduce_basics = true;
|
||||
event_univ = true;
|
||||
// fall through
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/// Simplify the formula \a f (using options supplied to the
|
||||
/// constructor).
|
||||
formula simplify(formula f);
|
||||
bool reduce_basics;
|
||||
bool synt_impl;
|
||||
bool event_univ;
|
||||
bool containment_checks;
|
||||
bool containment_checks_stronger;
|
||||
// If true, Boolean subformulae will not be put into
|
||||
// negative normal form.
|
||||
bool nenoform_stop_on_boolean;
|
||||
// If true, some rules that produce slightly larger formulae
|
||||
// will be disabled. Those larger formulae are normally easier
|
||||
// to translate, so we recommend to set this to false.
|
||||
bool reduce_size_strictly;
|
||||
// If true, Boolean subformulae will be rewritten in ISOP form.
|
||||
bool boolean_to_isop;
|
||||
// Try to isolate subformulae that are eventual and universal.
|
||||
bool favor_event_univ;
|
||||
};
|
||||
|
||||
/// Build the negative normal form of formula \a f.
|
||||
/// All negations of the formula are pushed in front of the
|
||||
/// atomic propositions. Operators <=>, =>, xor are all removed
|
||||
/// (calling spot::ltl::unabbreviate_ltl is not needed).
|
||||
///
|
||||
/// \param f The formula to normalize.
|
||||
/// \param negated If \c true, return the negative normal form of
|
||||
/// \c !f
|
||||
formula
|
||||
// fwd declaration to hide technical details.
|
||||
class ltl_simplifier_cache;
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Rewrite or simplify \a f in various ways.
|
||||
class SPOT_API ltl_simplifier
|
||||
{
|
||||
public:
|
||||
ltl_simplifier(const bdd_dict_ptr& dict = make_bdd_dict());
|
||||
ltl_simplifier(const ltl_simplifier_options& opt,
|
||||
bdd_dict_ptr dict = make_bdd_dict());
|
||||
~ltl_simplifier();
|
||||
|
||||
/// Simplify the formula \a f (using options supplied to the
|
||||
/// constructor).
|
||||
formula simplify(formula f);
|
||||
|
||||
/// Build the negative normal form of formula \a f.
|
||||
/// All negations of the formula are pushed in front of the
|
||||
/// atomic propositions. Operators <=>, =>, xor are all removed
|
||||
/// (calling spot::unabbreviate_ltl is not needed).
|
||||
///
|
||||
/// \param f The formula to normalize.
|
||||
/// \param negated If \c true, return the negative normal form of
|
||||
/// \c !f
|
||||
formula
|
||||
negative_normal_form(formula f, bool negated = false);
|
||||
|
||||
/// \brief Syntactic implication.
|
||||
///
|
||||
/// Returns whether \a f syntactically implies \a g.
|
||||
///
|
||||
/// This is adapted from
|
||||
/** \verbatim
|
||||
@InProceedings{ somenzi.00.cav,
|
||||
author = {Fabio Somenzi and Roderick Bloem},
|
||||
title = {Efficient {B\"u}chi Automata for {LTL} Formulae},
|
||||
booktitle = {Proceedings of the 12th International Conference on
|
||||
Computer Aided Verification (CAV'00)},
|
||||
pages = {247--263},
|
||||
year = {2000},
|
||||
volume = {1855},
|
||||
series = {Lecture Notes in Computer Science},
|
||||
publisher = {Springer-Verlag}
|
||||
}
|
||||
\endverbatim */
|
||||
///
|
||||
bool syntactic_implication(formula f, formula g);
|
||||
/// \brief Syntactic implication with one negated argument.
|
||||
///
|
||||
/// If \a right is true, this method returns whether
|
||||
/// \a f implies !\a g. If \a right is false, this returns
|
||||
/// whether !\a f implies \a g.
|
||||
bool syntactic_implication_neg(formula f, formula g,
|
||||
bool right);
|
||||
/// \brief Syntactic implication.
|
||||
///
|
||||
/// Returns whether \a f syntactically implies \a g.
|
||||
///
|
||||
/// This is adapted from
|
||||
/** \verbatim
|
||||
@InProceedings{ somenzi.00.cav,
|
||||
author = {Fabio Somenzi and Roderick Bloem},
|
||||
title = {Efficient {B\"u}chi Automata for {LTL} Formulae},
|
||||
booktitle = {Proceedings of the 12th International Conference on
|
||||
Computer Aided Verification (CAV'00)},
|
||||
pages = {247--263},
|
||||
year = {2000},
|
||||
volume = {1855},
|
||||
series = {Lecture Notes in Computer Science},
|
||||
publisher = {Springer-Verlag}
|
||||
}
|
||||
\endverbatim */
|
||||
///
|
||||
bool syntactic_implication(formula f, formula g);
|
||||
/// \brief Syntactic implication with one negated argument.
|
||||
///
|
||||
/// If \a right is true, this method returns whether
|
||||
/// \a f implies !\a g. If \a right is false, this returns
|
||||
/// whether !\a f implies \a g.
|
||||
bool syntactic_implication_neg(formula f, formula g,
|
||||
bool right);
|
||||
|
||||
/// \brief check whether two formulae are equivalent.
|
||||
///
|
||||
/// This costly check performs up to four translations,
|
||||
/// two products, and two emptiness checks.
|
||||
bool are_equivalent(formula f, formula g);
|
||||
/// \brief check whether two formulae are equivalent.
|
||||
///
|
||||
/// This costly check performs up to four translations,
|
||||
/// two products, and two emptiness checks.
|
||||
bool are_equivalent(formula f, formula g);
|
||||
|
||||
|
||||
/// \brief Check whether \a f implies \a g.
|
||||
///
|
||||
/// This operation is costlier than syntactic_implication()
|
||||
/// because it requires two translation, one product and one
|
||||
/// emptiness check.
|
||||
bool implication(formula f, formula g);
|
||||
/// \brief Check whether \a f implies \a g.
|
||||
///
|
||||
/// This operation is costlier than syntactic_implication()
|
||||
/// because it requires two translation, one product and one
|
||||
/// emptiness check.
|
||||
bool implication(formula f, formula g);
|
||||
|
||||
/// \brief Convert a Boolean formula as a BDD.
|
||||
///
|
||||
/// If you plan to use this method, be sure to pass a bdd_dict
|
||||
/// to the constructor.
|
||||
bdd as_bdd(formula f);
|
||||
/// \brief Convert a Boolean formula as a BDD.
|
||||
///
|
||||
/// If you plan to use this method, be sure to pass a bdd_dict
|
||||
/// to the constructor.
|
||||
bdd as_bdd(formula f);
|
||||
|
||||
/// \brief Clear the as_bdd() cache.
|
||||
///
|
||||
/// Calling this function is recommended before running other
|
||||
/// algorithms that create BDD variables in a more natural
|
||||
/// order. For instance ltl_to_tgba_fm() will usually be more
|
||||
/// efficient if the BDD variables for atomic propositions have
|
||||
/// not been ordered before hand.
|
||||
///
|
||||
/// This also clears the language containment cache.
|
||||
void clear_as_bdd_cache();
|
||||
/// \brief Clear the as_bdd() cache.
|
||||
///
|
||||
/// Calling this function is recommended before running other
|
||||
/// algorithms that create BDD variables in a more natural
|
||||
/// order. For instance ltl_to_tgba_fm() will usually be more
|
||||
/// efficient if the BDD variables for atomic propositions have
|
||||
/// not been ordered before hand.
|
||||
///
|
||||
/// This also clears the language containment cache.
|
||||
void clear_as_bdd_cache();
|
||||
|
||||
/// Return the bdd_dict used.
|
||||
bdd_dict_ptr get_dict() const;
|
||||
/// Return the bdd_dict used.
|
||||
bdd_dict_ptr get_dict() const;
|
||||
|
||||
/// Cached version of spot::ltl::star_normal_form().
|
||||
formula star_normal_form(formula f);
|
||||
/// Cached version of spot::star_normal_form().
|
||||
formula star_normal_form(formula f);
|
||||
|
||||
/// \brief Rewrite a Boolean formula \a f into as an irredundant
|
||||
/// sum of product.
|
||||
///
|
||||
/// This uses a cache, so it is OK to call this with identical
|
||||
/// arguments.
|
||||
formula boolean_to_isop(formula f);
|
||||
/// \brief Rewrite a Boolean formula \a f into as an irredundant
|
||||
/// sum of product.
|
||||
///
|
||||
/// This uses a cache, so it is OK to call this with identical
|
||||
/// arguments.
|
||||
formula boolean_to_isop(formula f);
|
||||
|
||||
/// Dump statistics about the caches.
|
||||
void print_stats(std::ostream& os) const;
|
||||
/// Dump statistics about the caches.
|
||||
void print_stats(std::ostream& os) const;
|
||||
|
||||
private:
|
||||
ltl_simplifier_cache* cache_;
|
||||
// Copy disallowed.
|
||||
ltl_simplifier(const ltl_simplifier&) SPOT_DELETED;
|
||||
void operator=(const ltl_simplifier&) SPOT_DELETED;
|
||||
};
|
||||
}
|
||||
private:
|
||||
ltl_simplifier_cache* cache_;
|
||||
// Copy disallowed.
|
||||
ltl_simplifier(const ltl_simplifier&) SPOT_DELETED;
|
||||
void operator=(const ltl_simplifier&) SPOT_DELETED;
|
||||
};
|
||||
}
|
||||
|
|
|
|||
214
src/tl/snf.cc
214
src/tl/snf.cc
|
|
@ -21,129 +21,125 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
namespace
|
||||
{
|
||||
namespace
|
||||
// E° if bounded=false
|
||||
// E^□ if nounded=true
|
||||
template<bool bounded>
|
||||
class snf_visitor
|
||||
{
|
||||
// E° if bounded=false
|
||||
// E^□ if nounded=true
|
||||
template<bool bounded>
|
||||
class snf_visitor
|
||||
protected:
|
||||
formula result_;
|
||||
snf_cache* cache_;
|
||||
public:
|
||||
snf_visitor(snf_cache* c)
|
||||
: cache_(c)
|
||||
{
|
||||
protected:
|
||||
formula result_;
|
||||
snf_cache* cache_;
|
||||
public:
|
||||
snf_visitor(snf_cache* c)
|
||||
: cache_(c)
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
formula visit(formula f)
|
||||
{
|
||||
if (!f.accepts_eword())
|
||||
return f;
|
||||
formula visit(formula f)
|
||||
{
|
||||
if (!f.accepts_eword())
|
||||
return f;
|
||||
|
||||
snf_cache::const_iterator i = cache_->find(f);
|
||||
if (i != cache_->end())
|
||||
return i->second;
|
||||
snf_cache::const_iterator i = cache_->find(f);
|
||||
if (i != cache_->end())
|
||||
return i->second;
|
||||
|
||||
formula out;
|
||||
switch (f.kind())
|
||||
{
|
||||
case op::eword:
|
||||
out = formula::ff();
|
||||
break;
|
||||
case op::Star:
|
||||
if (!bounded)
|
||||
out = visit(f[0]); // Strip the star.
|
||||
else
|
||||
out = formula::Star(visit(f[0]),
|
||||
std::max(unsigned(f.min()), 1U), f.max());
|
||||
break;
|
||||
case op::Concat:
|
||||
if (bounded)
|
||||
{
|
||||
out = f;
|
||||
break;
|
||||
}
|
||||
// Fall through
|
||||
case op::OrRat:
|
||||
case op::AndNLM:
|
||||
// Let F designate expressions that accept [*0],
|
||||
// and G designate expressions that do not.
|
||||
|
||||
// (G₁;G₂;G₃)° = G₁;G₂;G₃
|
||||
// (G₁;F₂;G₃)° = (G₁°);F₂;(G₃°) = G₁;F₂;G₃
|
||||
// because there is nothing to do recursively on a G.
|
||||
//
|
||||
// AndNLM can be dealt with similarly.
|
||||
//
|
||||
// The above cases are already handled by the
|
||||
// accepts_eword() tests at the top of this method. So
|
||||
// we reach this switch, we only have to deal with...
|
||||
//
|
||||
// (F₁;F₂;F₃)° = (F₁°)|(F₂°)|(F₃°)
|
||||
// (F₁&F₂&F₃)° = (F₁°)|(F₂°)|(F₃°)
|
||||
// (F₁|G₂|F₃)° = (F₁°)|(G₂°)|(F₃°)
|
||||
formula out;
|
||||
switch (f.kind())
|
||||
{
|
||||
case op::eword:
|
||||
out = formula::ff();
|
||||
break;
|
||||
case op::Star:
|
||||
if (!bounded)
|
||||
out = visit(f[0]); // Strip the star.
|
||||
else
|
||||
out = formula::Star(visit(f[0]),
|
||||
std::max(unsigned(f.min()), 1U), f.max());
|
||||
break;
|
||||
case op::Concat:
|
||||
if (bounded)
|
||||
{
|
||||
unsigned s = f.size();
|
||||
std::vector<formula> v;
|
||||
v.reserve(s);
|
||||
for (unsigned pos = 0; pos < s; ++pos)
|
||||
v.emplace_back(visit(f[pos]));
|
||||
out = formula::OrRat(v);
|
||||
out = f;
|
||||
break;
|
||||
}
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
case op::Fusion:
|
||||
case op::Or:
|
||||
case op::And:
|
||||
SPOT_UNREACHABLE();
|
||||
case op::AndRat: // Can AndRat be handled better?
|
||||
case op::FStar: // Can FStar be handled better?
|
||||
out = f;
|
||||
// Fall through
|
||||
case op::OrRat:
|
||||
case op::AndNLM:
|
||||
// Let F designate expressions that accept [*0],
|
||||
// and G designate expressions that do not.
|
||||
|
||||
// (G₁;G₂;G₃)° = G₁;G₂;G₃
|
||||
// (G₁;F₂;G₃)° = (G₁°);F₂;(G₃°) = G₁;F₂;G₃
|
||||
// because there is nothing to do recursively on a G.
|
||||
//
|
||||
// AndNLM can be dealt with similarly.
|
||||
//
|
||||
// The above cases are already handled by the
|
||||
// accepts_eword() tests at the top of this method. So
|
||||
// we reach this switch, we only have to deal with...
|
||||
//
|
||||
// (F₁;F₂;F₃)° = (F₁°)|(F₂°)|(F₃°)
|
||||
// (F₁&F₂&F₃)° = (F₁°)|(F₂°)|(F₃°)
|
||||
// (F₁|G₂|F₃)° = (F₁°)|(G₂°)|(F₃°)
|
||||
{
|
||||
unsigned s = f.size();
|
||||
std::vector<formula> v;
|
||||
v.reserve(s);
|
||||
for (unsigned pos = 0; pos < s; ++pos)
|
||||
v.emplace_back(visit(f[pos]));
|
||||
out = formula::OrRat(v);
|
||||
break;
|
||||
}
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::F:
|
||||
case op::G:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::Xor:
|
||||
case op::Implies:
|
||||
case op::Equiv:
|
||||
case op::U:
|
||||
case op::R:
|
||||
case op::W:
|
||||
case op::M:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
case op::Fusion:
|
||||
case op::Or:
|
||||
case op::And:
|
||||
SPOT_UNREACHABLE();
|
||||
case op::AndRat: // Can AndRat be handled better?
|
||||
case op::FStar: // Can FStar be handled better?
|
||||
out = f;
|
||||
break;
|
||||
}
|
||||
|
||||
return (*cache_)[f] = out;
|
||||
}
|
||||
};
|
||||
}
|
||||
return (*cache_)[f] = out;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
formula
|
||||
star_normal_form(formula sere, snf_cache* cache)
|
||||
{
|
||||
snf_visitor<false> v(cache);
|
||||
return v.visit(sere);
|
||||
}
|
||||
|
||||
formula
|
||||
star_normal_form_bounded(formula sere, snf_cache* cache)
|
||||
{
|
||||
snf_visitor<true> v(cache);
|
||||
return v.visit(sere);
|
||||
}
|
||||
formula
|
||||
star_normal_form(formula sere, snf_cache* cache)
|
||||
{
|
||||
snf_visitor<false> v(cache);
|
||||
return v.visit(sere);
|
||||
}
|
||||
|
||||
formula
|
||||
star_normal_form_bounded(formula sere, snf_cache* cache)
|
||||
{
|
||||
snf_visitor<true> v(cache);
|
||||
return v.visit(sere);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,35 +24,31 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
typedef std::unordered_map<formula, formula> snf_cache;
|
||||
|
||||
typedef std::unordered_map<formula, formula> snf_cache;
|
||||
/// Helper to rewrite a sere in Star Normal Form.
|
||||
///
|
||||
/// This should only be called on children of a Star operator. It
|
||||
/// corresponds to the E° operation defined in the following
|
||||
/// paper.
|
||||
///
|
||||
/** \verbatim
|
||||
@Article{ bruggeman.96.tcs,
|
||||
author = {Anne Br{\"u}ggemann-Klein},
|
||||
title = {Regular Expressions into Finite Automata},
|
||||
journal = {Theoretical Computer Science},
|
||||
year = {1996},
|
||||
volume = {120},
|
||||
pages = {87--98}
|
||||
}
|
||||
\endverbatim */
|
||||
///
|
||||
/// \param sere the SERE to rewrite
|
||||
/// \param cache an optional cache
|
||||
SPOT_API formula
|
||||
star_normal_form(formula sere, snf_cache* cache = nullptr);
|
||||
|
||||
/// Helper to rewrite a sere in Star Normal Form.
|
||||
///
|
||||
/// This should only be called on children of a Star operator. It
|
||||
/// corresponds to the E° operation defined in the following
|
||||
/// paper.
|
||||
///
|
||||
/** \verbatim
|
||||
@Article{ bruggeman.96.tcs,
|
||||
author = {Anne Br{\"u}ggemann-Klein},
|
||||
title = {Regular Expressions into Finite Automata},
|
||||
journal = {Theoretical Computer Science},
|
||||
year = {1996},
|
||||
volume = {120},
|
||||
pages = {87--98}
|
||||
}
|
||||
\endverbatim */
|
||||
///
|
||||
/// \param sere the SERE to rewrite
|
||||
/// \param cache an optional cache
|
||||
SPOT_API formula
|
||||
star_normal_form(formula sere, snf_cache* cache = nullptr);
|
||||
|
||||
/// A variant of star_normal_form() for r[*0..j] where j < ω.
|
||||
SPOT_API formula
|
||||
star_normal_form_bounded(formula sere, snf_cache* cache = nullptr);
|
||||
}
|
||||
/// A variant of star_normal_form() for r[*0..j] where j < ω.
|
||||
SPOT_API formula
|
||||
star_normal_form_bounded(formula sere, snf_cache* cache = nullptr);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,232 +22,229 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
unabbreviator::unabbreviator(const char* opt)
|
||||
{
|
||||
unabbreviator::unabbreviator(const char* opt)
|
||||
{
|
||||
while (*opt)
|
||||
switch (char c = *opt++)
|
||||
while (*opt)
|
||||
switch (char c = *opt++)
|
||||
{
|
||||
case 'e':
|
||||
re_e_ = true;
|
||||
re_some_bool_ = true;
|
||||
break;
|
||||
case 'F':
|
||||
re_f_ = true;
|
||||
re_some_f_g_ = true;
|
||||
break;
|
||||
case 'G':
|
||||
re_g_ = true;
|
||||
re_some_f_g_ = true;
|
||||
break;
|
||||
case 'i':
|
||||
re_i_ = true;
|
||||
re_some_bool_ = true;
|
||||
break;
|
||||
case 'M':
|
||||
re_m_ = true;
|
||||
re_some_other_ = true;
|
||||
break;
|
||||
case 'R':
|
||||
re_r_ = true;
|
||||
re_some_other_ = true;
|
||||
break;
|
||||
case 'W':
|
||||
re_w_ = true;
|
||||
re_some_other_ = true;
|
||||
break;
|
||||
case '^':
|
||||
re_xor_ = true;
|
||||
re_some_bool_ = true;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error
|
||||
(std::string("unknown unabbreviation option: ")
|
||||
+ c);
|
||||
}
|
||||
}
|
||||
|
||||
formula unabbreviator::run(formula in)
|
||||
{
|
||||
auto entry = cache_.emplace(in, nullptr);
|
||||
if (!entry.second)
|
||||
return entry.first->second;
|
||||
|
||||
// Skip recursion whenever possible
|
||||
bool no_boolean_rewrite = !re_some_bool_ || in.is_sugar_free_boolean();
|
||||
bool no_f_g_rewrite = !re_some_f_g_ || in.is_sugar_free_ltl();
|
||||
if (no_boolean_rewrite
|
||||
&& (in.is_boolean() || (no_f_g_rewrite && !re_some_other_)))
|
||||
return entry.first->second = in;
|
||||
|
||||
auto rec = [this](formula f)
|
||||
{
|
||||
return this->run(f);
|
||||
};
|
||||
|
||||
formula out = in;
|
||||
if (in.size() > 0)
|
||||
out = in.map(rec);
|
||||
|
||||
switch (out.kind())
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
case op::U:
|
||||
case op::Or:
|
||||
case op::OrRat:
|
||||
case op::And:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
break;
|
||||
case op::F:
|
||||
// F f = true U f
|
||||
if (!re_f_)
|
||||
break;
|
||||
out = formula::U(formula::tt(), out[0]);
|
||||
break;
|
||||
case op::G:
|
||||
// G f = false R f
|
||||
// G f = f W false
|
||||
// G f = !F!f
|
||||
// G f = !(true U !f)
|
||||
if (!re_g_)
|
||||
break;
|
||||
if (!re_r_)
|
||||
{
|
||||
case 'e':
|
||||
re_e_ = true;
|
||||
re_some_bool_ = true;
|
||||
out = formula::R(formula::ff(), out[0]);
|
||||
break;
|
||||
}
|
||||
if (!re_w_)
|
||||
{
|
||||
out = formula::W(out[0], formula::ff());
|
||||
break;
|
||||
case 'F':
|
||||
re_f_ = true;
|
||||
re_some_f_g_ = true;
|
||||
break;
|
||||
case 'G':
|
||||
re_g_ = true;
|
||||
re_some_f_g_ = true;
|
||||
break;
|
||||
case 'i':
|
||||
re_i_ = true;
|
||||
re_some_bool_ = true;
|
||||
break;
|
||||
case 'M':
|
||||
re_m_ = true;
|
||||
re_some_other_ = true;
|
||||
break;
|
||||
case 'R':
|
||||
re_r_ = true;
|
||||
re_some_other_ = true;
|
||||
break;
|
||||
case 'W':
|
||||
re_w_ = true;
|
||||
re_some_other_ = true;
|
||||
break;
|
||||
case '^':
|
||||
re_xor_ = true;
|
||||
re_some_bool_ = true;
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error
|
||||
(std::string("unknown unabbreviation option: ")
|
||||
+ c);
|
||||
}
|
||||
}
|
||||
|
||||
formula unabbreviator::run(formula in)
|
||||
{
|
||||
auto entry = cache_.emplace(in, nullptr);
|
||||
if (!entry.second)
|
||||
return entry.first->second;
|
||||
|
||||
// Skip recursion whenever possible
|
||||
bool no_boolean_rewrite = !re_some_bool_ || in.is_sugar_free_boolean();
|
||||
bool no_f_g_rewrite = !re_some_f_g_ || in.is_sugar_free_ltl();
|
||||
if (no_boolean_rewrite
|
||||
&& (in.is_boolean() || (no_f_g_rewrite && !re_some_other_)))
|
||||
return entry.first->second = in;
|
||||
|
||||
auto rec = [this](formula f)
|
||||
{
|
||||
return this->run(f);
|
||||
};
|
||||
|
||||
formula out = in;
|
||||
if (in.size() > 0)
|
||||
out = in.map(rec);
|
||||
|
||||
switch (out.kind())
|
||||
auto nc = formula::Not(out[0]);
|
||||
if (!re_f_)
|
||||
{
|
||||
out = formula::Not(formula::F(nc));
|
||||
break;
|
||||
}
|
||||
out = formula::Not(formula::U(formula::tt(), nc));
|
||||
break;
|
||||
}
|
||||
case op::Xor:
|
||||
// f1 ^ f2 == !(f1 <-> f2)
|
||||
// f1 ^ f2 == (f1 & !f2) | (f2 & !f1)
|
||||
if (!re_xor_)
|
||||
break;
|
||||
{
|
||||
case op::ff:
|
||||
case op::tt:
|
||||
case op::eword:
|
||||
case op::ap:
|
||||
case op::Not:
|
||||
case op::X:
|
||||
case op::Closure:
|
||||
case op::NegClosure:
|
||||
case op::NegClosureMarked:
|
||||
case op::EConcat:
|
||||
case op::EConcatMarked:
|
||||
case op::UConcat:
|
||||
case op::U:
|
||||
case op::Or:
|
||||
case op::OrRat:
|
||||
case op::And:
|
||||
case op::AndRat:
|
||||
case op::AndNLM:
|
||||
case op::Concat:
|
||||
case op::Fusion:
|
||||
case op::Star:
|
||||
case op::FStar:
|
||||
break;
|
||||
case op::F:
|
||||
// F f = true U f
|
||||
if (!re_f_)
|
||||
break;
|
||||
out = formula::U(formula::tt(), out[0]);
|
||||
break;
|
||||
case op::G:
|
||||
// G f = false R f
|
||||
// G f = f W false
|
||||
// G f = !F!f
|
||||
// G f = !(true U !f)
|
||||
if (!re_g_)
|
||||
break;
|
||||
if (!re_r_)
|
||||
{
|
||||
out = formula::R(formula::ff(), out[0]);
|
||||
break;
|
||||
}
|
||||
if (!re_w_)
|
||||
{
|
||||
out = formula::W(out[0], formula::ff());
|
||||
break;
|
||||
}
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
if (!re_e_)
|
||||
{
|
||||
auto nc = formula::Not(out[0]);
|
||||
if (!re_f_)
|
||||
{
|
||||
out = formula::Not(formula::F(nc));
|
||||
break;
|
||||
}
|
||||
out = formula::Not(formula::U(formula::tt(), nc));
|
||||
break;
|
||||
out = formula::Not(formula::Equiv(f1, f2));
|
||||
}
|
||||
case op::Xor:
|
||||
// f1 ^ f2 == !(f1 <-> f2)
|
||||
// f1 ^ f2 == (f1 & !f2) | (f2 & !f1)
|
||||
if (!re_xor_)
|
||||
break;
|
||||
else
|
||||
{
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
if (!re_e_)
|
||||
{
|
||||
out = formula::Not(formula::Equiv(f1, f2));
|
||||
}
|
||||
else
|
||||
{
|
||||
auto a = formula::And({f1, formula::Not(f2)});
|
||||
auto b = formula::And({f2, formula::Not(f1)});
|
||||
out = formula::Or({a, b});
|
||||
}
|
||||
}
|
||||
break;
|
||||
case op::Implies:
|
||||
// f1 => f2 == !f1 | f2
|
||||
if (!re_i_)
|
||||
break;
|
||||
out = formula::Or({formula::Not(out[0]), out[1]});
|
||||
break;
|
||||
case op::Equiv:
|
||||
// f1 <=> f2 == (f1 & f2) | (!f1 & !f2)
|
||||
if (!re_e_)
|
||||
break;
|
||||
{
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
auto nf1 = formula::Not(f1);
|
||||
auto nf2 = formula::Not(f2);
|
||||
auto term1 = formula::And({f1, f2});
|
||||
auto term2 = formula::And({nf1, nf2});
|
||||
out = formula::Or({term1, term2});
|
||||
break;
|
||||
}
|
||||
case op::R:
|
||||
// f1 R f2 = f2 W (f1 & f2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | Gf2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | !F!f2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | !(1 U !f2))
|
||||
if (!re_r_)
|
||||
break;
|
||||
{
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
auto f12 = formula::And({f1, f2});
|
||||
if (!re_w_)
|
||||
{
|
||||
out = formula::W(f2, f12);
|
||||
break;
|
||||
}
|
||||
auto gf2 = formula::G(f2);
|
||||
if (re_g_)
|
||||
gf2 = run(gf2);
|
||||
out = formula::U(f2, formula::Or({f12, out}));
|
||||
break;
|
||||
}
|
||||
case op::W:
|
||||
// f1 W f2 = f2 R (f2 | f1)
|
||||
// f1 W f2 = f1 U (f2 | G f1)
|
||||
// f1 W f2 = f1 U (f2 | !F !f1)
|
||||
// f1 W f2 = f1 U (f2 | !(1 U !f1))
|
||||
if (!re_w_)
|
||||
break;
|
||||
{
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
if (!re_r_)
|
||||
{
|
||||
out = formula::R(f2, formula::Or({f2, f1}));
|
||||
break;
|
||||
}
|
||||
auto gf1 = formula::G(f1);
|
||||
if (re_g_)
|
||||
gf1 = rec(gf1);
|
||||
out = formula::U(f1, formula::Or({f2, out}));
|
||||
break;
|
||||
}
|
||||
case op::M:
|
||||
// f1 M f2 = f2 U (g2 & f1)
|
||||
if (!re_m_)
|
||||
break;
|
||||
{
|
||||
auto f2 = out[1];
|
||||
out = formula::U(f2, formula::And({f2, out[0]}));
|
||||
break;
|
||||
auto a = formula::And({f1, formula::Not(f2)});
|
||||
auto b = formula::And({f2, formula::Not(f1)});
|
||||
out = formula::Or({a, b});
|
||||
}
|
||||
}
|
||||
return entry.first->second = out;
|
||||
}
|
||||
break;
|
||||
case op::Implies:
|
||||
// f1 => f2 == !f1 | f2
|
||||
if (!re_i_)
|
||||
break;
|
||||
out = formula::Or({formula::Not(out[0]), out[1]});
|
||||
break;
|
||||
case op::Equiv:
|
||||
// f1 <=> f2 == (f1 & f2) | (!f1 & !f2)
|
||||
if (!re_e_)
|
||||
break;
|
||||
{
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
auto nf1 = formula::Not(f1);
|
||||
auto nf2 = formula::Not(f2);
|
||||
auto term1 = formula::And({f1, f2});
|
||||
auto term2 = formula::And({nf1, nf2});
|
||||
out = formula::Or({term1, term2});
|
||||
break;
|
||||
}
|
||||
case op::R:
|
||||
// f1 R f2 = f2 W (f1 & f2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | Gf2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | !F!f2)
|
||||
// f1 R f2 = f2 U ((f1 & f2) | !(1 U !f2))
|
||||
if (!re_r_)
|
||||
break;
|
||||
{
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
auto f12 = formula::And({f1, f2});
|
||||
if (!re_w_)
|
||||
{
|
||||
out = formula::W(f2, f12);
|
||||
break;
|
||||
}
|
||||
auto gf2 = formula::G(f2);
|
||||
if (re_g_)
|
||||
gf2 = run(gf2);
|
||||
out = formula::U(f2, formula::Or({f12, out}));
|
||||
break;
|
||||
}
|
||||
case op::W:
|
||||
// f1 W f2 = f2 R (f2 | f1)
|
||||
// f1 W f2 = f1 U (f2 | G f1)
|
||||
// f1 W f2 = f1 U (f2 | !F !f1)
|
||||
// f1 W f2 = f1 U (f2 | !(1 U !f1))
|
||||
if (!re_w_)
|
||||
break;
|
||||
{
|
||||
auto f1 = out[0];
|
||||
auto f2 = out[1];
|
||||
if (!re_r_)
|
||||
{
|
||||
out = formula::R(f2, formula::Or({f2, f1}));
|
||||
break;
|
||||
}
|
||||
auto gf1 = formula::G(f1);
|
||||
if (re_g_)
|
||||
gf1 = rec(gf1);
|
||||
out = formula::U(f1, formula::Or({f2, out}));
|
||||
break;
|
||||
}
|
||||
case op::M:
|
||||
// f1 M f2 = f2 U (g2 & f1)
|
||||
if (!re_m_)
|
||||
break;
|
||||
{
|
||||
auto f2 = out[1];
|
||||
out = formula::U(f2, formula::And({f2, out[0]}));
|
||||
break;
|
||||
}
|
||||
}
|
||||
return entry.first->second = out;
|
||||
}
|
||||
|
||||
formula unabbreviate(formula in, const char* opt)
|
||||
{
|
||||
unabbreviator un(opt);
|
||||
return un.run(in);
|
||||
}
|
||||
formula unabbreviate(formula in, const char* opt)
|
||||
{
|
||||
unabbreviator un(opt);
|
||||
return un.run(in);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,49 +24,45 @@
|
|||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
constexpr const char* default_unabbrev_string = "eFGiMW^";
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Clone and rewrite a formula to remove specified operators
|
||||
/// logical operators.
|
||||
class SPOT_API unabbreviator final
|
||||
{
|
||||
constexpr const char* default_unabbrev_string = "eFGiMW^";
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Clone and rewrite a formula to remove specified operators
|
||||
/// logical operators.
|
||||
class SPOT_API unabbreviator final
|
||||
{
|
||||
private:
|
||||
// What to rewrite?
|
||||
bool re_e_ = false;
|
||||
bool re_f_ = false;
|
||||
bool re_g_ = false;
|
||||
bool re_i_ = false;
|
||||
bool re_m_ = false;
|
||||
bool re_r_ = false;
|
||||
bool re_w_ = false;
|
||||
bool re_xor_ = false;
|
||||
bool re_some_bool_ = false; // rewrite xor, i, or e
|
||||
bool re_some_f_g_ = false; // rewrite F or G
|
||||
bool re_some_other_ = false; // rewrite W, M, or R
|
||||
// Cache of rewritten subformulas
|
||||
std::unordered_map<formula, formula> cache_;
|
||||
public:
|
||||
/// \brief Constructor
|
||||
///
|
||||
/// The set of operators to remove should be passed as a string
|
||||
/// which in which each letter denote an operator (using LBT's
|
||||
/// convention).
|
||||
unabbreviator(const char* opt = default_unabbrev_string);
|
||||
formula run(formula in);
|
||||
};
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Clone and rewrite a formula to remove specified operators
|
||||
/// logical operators.
|
||||
private:
|
||||
// What to rewrite?
|
||||
bool re_e_ = false;
|
||||
bool re_f_ = false;
|
||||
bool re_g_ = false;
|
||||
bool re_i_ = false;
|
||||
bool re_m_ = false;
|
||||
bool re_r_ = false;
|
||||
bool re_w_ = false;
|
||||
bool re_xor_ = false;
|
||||
bool re_some_bool_ = false; // rewrite xor, i, or e
|
||||
bool re_some_f_g_ = false; // rewrite F or G
|
||||
bool re_some_other_ = false; // rewrite W, M, or R
|
||||
// Cache of rewritten subformulas
|
||||
std::unordered_map<formula, formula> cache_;
|
||||
public:
|
||||
/// \brief Constructor
|
||||
///
|
||||
/// The set of operators to remove should be passed as a string
|
||||
/// which in which each letter denote an operator (using LBT's
|
||||
/// convention).
|
||||
SPOT_API formula
|
||||
unabbreviate(formula in, const char* opt= default_unabbrev_string);
|
||||
}
|
||||
unabbreviator(const char* opt = default_unabbrev_string);
|
||||
formula run(formula in);
|
||||
};
|
||||
|
||||
/// \ingroup ltl_rewriting
|
||||
/// \brief Clone and rewrite a formula to remove specified operators
|
||||
/// logical operators.
|
||||
///
|
||||
/// The set of operators to remove should be passed as a string
|
||||
/// which in which each letter denote an operator (using LBT's
|
||||
/// convention).
|
||||
SPOT_API formula
|
||||
unabbreviate(formula in, const char* opt= default_unabbrev_string);
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue