remfin: Use tra2tba as new rabin strategy in remove_fin
Move implementation of tra2tba to remfin. * python/spot/impl.i: Remove tra2tba python bindings * spot/twaalgos/Makefile.am: Remove tra2tba * spot/twaalgos/remfin.cc: Update rabin_strategy * spot/twaalgos/tra2tba.cc: Delete the file * spot/twaalgos/tra2tba.hh: Delete the file * tests/core/remfin.test: Update tests * tests/python/tra2tba.py: Update tests
This commit is contained in:
parent
2019315213
commit
d45b60a4e5
7 changed files with 363 additions and 726 deletions
|
|
@ -38,9 +38,53 @@ namespace spot
|
|||
{
|
||||
namespace
|
||||
{
|
||||
// Check whether the SCC composed of all states STATES, and
|
||||
// visiting all acceptance marks in SETS contains non-accepting
|
||||
// cycles.
|
||||
enum class strategy_t : unsigned
|
||||
{
|
||||
trivial = 1,
|
||||
weak = 2,
|
||||
alternation = 4,
|
||||
street = 8,
|
||||
rabin = 16
|
||||
};
|
||||
|
||||
using strategy_flags = strong_enum_flags<strategy_t>;
|
||||
using strategy =
|
||||
std::function<twa_graph_ptr(const const_twa_graph_ptr& aut)>;
|
||||
|
||||
twa_graph_ptr
|
||||
remove_fin_impl(const const_twa_graph_ptr&, const strategy_flags);
|
||||
|
||||
using EdgeMask = std::vector<bool>;
|
||||
|
||||
template< typename Edges, typename Apply >
|
||||
void for_each_edge(const_twa_graph_ptr aut,
|
||||
const Edges& edges,
|
||||
const EdgeMask& mask,
|
||||
Apply apply)
|
||||
{
|
||||
for (const auto& e: edges)
|
||||
{
|
||||
unsigned edge_id = aut->edge_number(e);
|
||||
if (mask[edge_id])
|
||||
apply(edge_id);
|
||||
}
|
||||
}
|
||||
|
||||
template< typename Edges >
|
||||
acc_cond::mark_t scc_acc_marks(const_twa_graph_ptr aut,
|
||||
const Edges& edges,
|
||||
const EdgeMask& mask)
|
||||
{
|
||||
acc_cond::mark_t scc_mark = 0U;
|
||||
for_each_edge(aut, edges, mask, [&] (unsigned e)
|
||||
{
|
||||
const auto& ed = aut->edge_data(e);
|
||||
scc_mark |= ed.acc;
|
||||
});
|
||||
return scc_mark;
|
||||
}
|
||||
|
||||
// Check whether the SCC contains non-accepting cycles.
|
||||
//
|
||||
// A cycle is accepting (in a Rabin automaton) if there exists an
|
||||
// acceptance pair (Fᵢ, Iᵢ) such that some states from Iᵢ are
|
||||
|
|
@ -50,257 +94,244 @@ namespace spot
|
|||
// pairs (Fᵢ, Iᵢ), either no states from Iᵢ are visited or some
|
||||
// states from Fᵢ are visited. (This corresponds to an accepting
|
||||
// cycle with Streett acceptance.)
|
||||
static bool
|
||||
is_scc_ba_type(const const_twa_graph_ptr& aut,
|
||||
const std::vector<unsigned>& states,
|
||||
std::vector<bool>& final,
|
||||
acc_cond::mark_t inf_pairs,
|
||||
acc_cond::mark_t inf_alone,
|
||||
acc_cond::mark_t sets)
|
||||
//
|
||||
// final are those edges which are used in the resulting tba
|
||||
// acceptance condition.
|
||||
bool is_scc_tba_type(const_twa_graph_ptr aut,
|
||||
const scc_info& si,
|
||||
const unsigned scc,
|
||||
std::vector<bool> keep,
|
||||
const rs_pairs_view& aut_pairs,
|
||||
std::vector<bool>& final)
|
||||
{
|
||||
// Consider the SCC as one large cycle and check its
|
||||
// intersection with all Fᵢs and Iᵢs: This is the SETS
|
||||
// variable.
|
||||
//
|
||||
// Let f=[F₁,F₂,...] and i=[I₁,I₂,...] be bitvectors where bit
|
||||
// Fᵢ (resp. Iᵢ) indicates that Fᵢ (resp. Iᵢ) has been visited
|
||||
// in the SCC.
|
||||
acc_cond::mark_t f = (sets << 1U) & inf_pairs;
|
||||
acc_cond::mark_t i = sets & inf_pairs;
|
||||
// If we have i&!f = [0,0,...] that means that the cycle formed
|
||||
if (si.is_rejecting_scc(scc))
|
||||
return true;
|
||||
|
||||
auto scc_acc = scc_acc_marks(aut, si.inner_edges_of(scc), keep);
|
||||
auto scc_pairs = rs_pairs_view(aut_pairs.pairs(), scc_acc);
|
||||
// If there is one aut_fin_alone that is not in the SCC,
|
||||
// any cycle in the SCC is accepting.
|
||||
if (scc_pairs.fins_alone().proper_subset(aut_pairs.fins_alone()))
|
||||
{
|
||||
for_each_edge(aut, si.edges_of(scc), keep, [&](unsigned e)
|
||||
{
|
||||
final[e] = true;
|
||||
});
|
||||
return true;
|
||||
}
|
||||
|
||||
auto scc_infs_alone = scc_pairs.infs_alone();
|
||||
// Firstly consider whole SCC as one large cycle.
|
||||
// If there is no inf without matching fin then the cycle formed
|
||||
// by the entire SCC is not accepting. However that does not
|
||||
// necessarily imply that all cycles in the SCC are also
|
||||
// non-accepting. We may have a smaller cycle that is
|
||||
// accepting, but which becomes non-accepting when extended with
|
||||
// more states.
|
||||
i -= f;
|
||||
i |= inf_alone & sets;
|
||||
if (!i)
|
||||
if (!scc_infs_alone)
|
||||
{
|
||||
// Check whether the SCC is accepting. We do that by simply
|
||||
// converting that SCC into a TGBA and running our emptiness
|
||||
// check. This is not a really smart implementation and
|
||||
// could be improved.
|
||||
std::vector<bool> keep(aut->num_states(), false);
|
||||
auto& states = si.states_of(scc);
|
||||
std::vector<bool> keep_states(aut->num_states(), false);
|
||||
for (auto s: states)
|
||||
keep[s] = true;
|
||||
auto sccaut = mask_keep_accessible_states(aut, keep, states.front());
|
||||
// Force SBA to false. It does not affect the emptiness
|
||||
// check result, however it prevent recurring into this
|
||||
// procedure, because is_empty() will call
|
||||
// to_generalized_buchi() which will call remove_fin()...
|
||||
sccaut->prop_state_acc(false);
|
||||
keep_states[s] = true;
|
||||
auto sccaut = mask_keep_accessible_states(aut,
|
||||
keep_states,
|
||||
states.front());
|
||||
|
||||
// Prevent recurring into this function, by skipping the rabin straegy
|
||||
auto skip = strategy_t::rabin;
|
||||
// If SCCAUT is empty, the SCC is BA-type (and none
|
||||
// of its states are final). If SCCAUT is nonempty, the SCC
|
||||
// is not BA type.
|
||||
return sccaut->is_empty();
|
||||
// is not BA type
|
||||
return remove_fin_impl(sccaut, skip)->is_empty();
|
||||
}
|
||||
// The bits remaining sets in i corresponds to I₁s that have
|
||||
// been seen with seeing the matching F₁. In this SCC any state
|
||||
// in these I₁ is therefore final. Otherwise we do not know: it
|
||||
// is possible that there is a non-accepting cycle in the SCC
|
||||
// that do not visit Fᵢ.
|
||||
|
||||
// Remaining infs corresponds to I₁s that have been seen with seeing
|
||||
// the mathing F₁.cIn this SCC any edge in these I₁ is therefore
|
||||
// final. Otherwise we do not know: it is possible that there is
|
||||
// a non-accepting cycle in the SCC that do not visit Fᵢ.
|
||||
std::set<unsigned> unknown;
|
||||
for (auto s: states)
|
||||
if (aut->state_acc_sets(s) & i)
|
||||
final[s] = true;
|
||||
else
|
||||
unknown.insert(s);
|
||||
for_each_edge(aut, si.inner_edges_of(scc), keep, [&](unsigned e)
|
||||
{
|
||||
const auto& ed = aut->edge_data(e);
|
||||
if (ed.acc & scc_infs_alone)
|
||||
final[e] = true;
|
||||
else
|
||||
unknown.insert(e);
|
||||
});
|
||||
// Check whether it is possible to build non-accepting cycles
|
||||
// using only the "unknown" states.
|
||||
// using only the "unknown" edges.
|
||||
keep.assign(aut->edge_vector().size(), false);
|
||||
|
||||
// Erase edges that cannot form cycle, ie. that edge whose 'dst'
|
||||
// is not 'src' of any unknown edges.
|
||||
std::vector<unsigned> remove;
|
||||
do
|
||||
{
|
||||
remove.clear();
|
||||
std::set<unsigned> srcs;
|
||||
for (auto e: unknown)
|
||||
srcs.insert(aut->edge_storage(e).src);
|
||||
for (auto e: unknown)
|
||||
if (!srcs.count(aut->edge_storage(e).dst))
|
||||
remove.push_back(e);
|
||||
for (auto r: remove)
|
||||
unknown.erase(r);
|
||||
}
|
||||
while (!remove.empty());
|
||||
|
||||
// Check whether it is possible to build non-accepting cycles
|
||||
// using only the "unknown" edges.
|
||||
using filter_data_t = std::pair< const_twa_graph_ptr, std::vector<bool> >;
|
||||
|
||||
scc_info::edge_filter filter =
|
||||
[](const twa_graph::edge_storage_t& t, unsigned, void* data)
|
||||
-> scc_info::edge_filter_choice
|
||||
{
|
||||
const_twa_graph_ptr aut;
|
||||
std::vector<bool> keep;
|
||||
std::tie(aut, keep) = *static_cast<filter_data_t*>(data);
|
||||
|
||||
if (keep[aut->edge_number(t)])
|
||||
return scc_info::edge_filter_choice::keep;
|
||||
else
|
||||
return scc_info::edge_filter_choice::ignore;
|
||||
};
|
||||
|
||||
while (!unknown.empty())
|
||||
{
|
||||
std::vector<bool> keep(aut->num_states(), false);
|
||||
for (auto s: unknown)
|
||||
keep[s] = true;
|
||||
std::vector<bool> keep(aut->edge_vector().size(), false);
|
||||
for (auto e: unknown)
|
||||
keep[e] = true;
|
||||
|
||||
scc_info::edge_filter filter =
|
||||
[](const twa_graph::edge_storage_t&, unsigned dst,
|
||||
void* filter_data) -> scc_info::edge_filter_choice
|
||||
{
|
||||
auto& keepref = *reinterpret_cast<decltype(keep)*>(filter_data);
|
||||
if (keepref[dst])
|
||||
return scc_info::edge_filter_choice::keep;
|
||||
else
|
||||
return scc_info::edge_filter_choice::ignore;
|
||||
};
|
||||
auto filter_data = filter_data_t{aut, keep};
|
||||
auto init = aut->edge_storage(*unknown.begin()).src;
|
||||
scc_info si(aut, init, filter, &filter_data);
|
||||
|
||||
scc_info si(aut, *unknown.begin(), filter, &keep);
|
||||
unsigned scc_max = si.scc_count();
|
||||
for (unsigned scc = 0; scc < scc_max; ++scc)
|
||||
for (unsigned uscc = 0; uscc < si.scc_count(); ++uscc)
|
||||
{
|
||||
for (auto s: si.states_of(scc))
|
||||
unknown.erase(s);
|
||||
if (si.is_rejecting_scc(scc)) // this includes trivial SCCs
|
||||
for_each_edge(aut, si.edges_of(uscc), keep, [&](unsigned e)
|
||||
{
|
||||
unknown.erase(e);
|
||||
});
|
||||
if (si.is_rejecting_scc(uscc))
|
||||
continue;
|
||||
if (!is_scc_ba_type(aut, si.states_of(scc),
|
||||
final, inf_pairs, 0U, si.acc(scc)))
|
||||
if (!is_scc_tba_type(aut, si, uscc, keep, aut_pairs, final))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Specialized conversion from Rabin acceptance to Büchi acceptance.
|
||||
// Is able to detect SCCs that are Büchi-type (i.e., they can be
|
||||
// Specialized conversion from transition based Rabin acceptance to
|
||||
// transition based Büchi acceptance.
|
||||
// Is able to detect SCCs that are TBA-type (i.e., they can be
|
||||
// converted to Büchi acceptance without chaning their structure).
|
||||
// Currently only works with state-based acceptance.
|
||||
//
|
||||
// See "Deterministic ω-automata vis-a-vis Deterministic Büchi
|
||||
// Automata", S. Krishnan, A. Puri, and R. Brayton (ISAAC'94) for
|
||||
// some details about detecting Büchi-typeness.
|
||||
//
|
||||
// We essentially apply this method SCC-wise. The paper is
|
||||
// We essentially apply this method SCC-wise. The paper is
|
||||
// concerned about *deterministic* automata, but we apply the
|
||||
// algorithm on non-deterministic automata as well: in the worst
|
||||
// case it is possible that a Büchi-type SCC with some
|
||||
// non-deterministim has one accepting and one rejecting run for
|
||||
// case it is possible that a TBA-type SCC with some
|
||||
// non-deterministic has one accepting and one rejecting run for
|
||||
// the same word. In this case we may fail to detect the
|
||||
// Büchi-typeness of the SCC, but the resulting automaton should
|
||||
// TBA-typeness of the SCC, but the resulting automaton should
|
||||
// be correct nonetheless.
|
||||
static twa_graph_ptr
|
||||
ra_to_ba(const const_twa_graph_ptr& aut,
|
||||
acc_cond::mark_t inf_pairs,
|
||||
acc_cond::mark_t inf_alone,
|
||||
acc_cond::mark_t fin_alone)
|
||||
twa_graph_ptr
|
||||
tra_to_tba(const const_twa_graph_ptr& inaut)
|
||||
{
|
||||
assert((bool)aut->prop_state_acc());
|
||||
// cleanup acceptance for easy detection of alone fins and infs
|
||||
auto aut = cleanup_acceptance(inaut);
|
||||
|
||||
scc_info si(aut);
|
||||
// For state-based Rabin automata, we check each SCC for
|
||||
// BA-typeness. If an SCC is BA-type, its final states are stored
|
||||
// in BA_FINAL_STATES.
|
||||
std::vector<bool> scc_is_ba_type(si.scc_count(), false);
|
||||
bool ba_type = false;
|
||||
std::vector<bool> ba_final_states;
|
||||
std::vector<acc_cond::rs_pair> pairs;
|
||||
if (!aut->acc().is_rabin_like(pairs))
|
||||
return nullptr;
|
||||
|
||||
#ifdef DEBUG
|
||||
acc_cond::mark_t fin;
|
||||
acc_cond::mark_t inf;
|
||||
std::tie(inf, fin) = aut->get_acceptance().used_inf_fin_sets();
|
||||
assert(inf == (inf_pairs | inf_alone));
|
||||
assert(fin == ((inf_pairs >> 1U) | fin_alone));
|
||||
#endif
|
||||
ba_final_states.resize(aut->num_states(), false);
|
||||
ba_type = true; // until proven otherwise
|
||||
unsigned scc_max = si.scc_count();
|
||||
for (unsigned scc = 0; scc < scc_max; ++scc)
|
||||
{
|
||||
if (si.is_rejecting_scc(scc)) // this includes trivial SCCs
|
||||
{
|
||||
scc_is_ba_type[scc] = true;
|
||||
continue;
|
||||
}
|
||||
bool scc_ba_type = false;
|
||||
auto sets = si.acc(scc);
|
||||
// If there is one fin_alone that is not in the SCC,
|
||||
// any cycle in the SCC is accepting. Mark all states
|
||||
// as final.
|
||||
if ((sets & fin_alone) != fin_alone)
|
||||
{
|
||||
for (auto s: si.states_of(scc))
|
||||
ba_final_states[s] = true;
|
||||
scc_ba_type = true;
|
||||
}
|
||||
// In the general case, we need a dedicated check. Note
|
||||
// that the used fin_alone sets can be ignored, as they
|
||||
// cannot contribute to Büchi-typeness,
|
||||
else
|
||||
{
|
||||
scc_ba_type = is_scc_ba_type(aut, si.states_of(scc),
|
||||
ba_final_states,
|
||||
inf_pairs, inf_alone, si.acc(scc));
|
||||
}
|
||||
ba_type &= scc_ba_type;
|
||||
scc_is_ba_type[scc] = scc_ba_type;
|
||||
}
|
||||
auto aut_pairs = rs_pairs_view(pairs);
|
||||
auto code = aut->get_acceptance();
|
||||
if (code.is_t())
|
||||
return nullptr;
|
||||
|
||||
#ifdef TRACE
|
||||
trace << "SCC DBA-realizibility\n";
|
||||
for (unsigned scc = 0; scc < scc_max; ++scc)
|
||||
{
|
||||
trace << scc << ": " << scc_is_ba_type[scc] << " {";
|
||||
for (auto s: si.states_of(scc))
|
||||
trace << ' ' << s;
|
||||
trace << " }\n";
|
||||
}
|
||||
#endif
|
||||
// if is TBA type
|
||||
scc_info si{aut};
|
||||
std::vector<bool> scc_is_tba_type(si.scc_count(), false);
|
||||
std::vector<bool> final(aut->edge_vector().size(), false);
|
||||
std::vector<bool> keep(aut->edge_vector().size(), true);
|
||||
|
||||
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
|
||||
scc_is_tba_type[scc] = is_scc_tba_type(aut, si, scc, keep,
|
||||
aut_pairs, final);
|
||||
|
||||
unsigned nst = aut->num_states();
|
||||
auto res = make_twa_graph(aut->get_dict());
|
||||
res->copy_ap_of(aut);
|
||||
res->prop_copy(aut, { true, false, false, false, false, true });
|
||||
res->new_states(nst);
|
||||
res->prop_copy(aut, { false, false, false, false, false, true });
|
||||
res->new_states(aut->num_states());
|
||||
res->set_buchi();
|
||||
res->set_init_state(aut->get_init_state_number());
|
||||
trival deterministic = aut->prop_universal();
|
||||
trival complete = aut->prop_complete();
|
||||
|
||||
std::vector<unsigned> state_map(aut->num_states());
|
||||
for (unsigned n = 0; n < scc_max; ++n)
|
||||
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
|
||||
{
|
||||
auto states = si.states_of(n);
|
||||
auto states = si.states_of(scc);
|
||||
|
||||
if (scc_is_ba_type[n])
|
||||
if (scc_is_tba_type[scc])
|
||||
{
|
||||
// If the SCC is BA-type, we know exactly what state need to
|
||||
// be marked as accepting.
|
||||
for (auto s: states)
|
||||
for (const auto& e: si.edges_of(scc))
|
||||
{
|
||||
bool acc = ba_final_states[s];
|
||||
for (auto& t: aut->out(s))
|
||||
res->new_acc_edge(s, t.dst, t.cond, acc);
|
||||
bool acc = final[aut->edge_number(e)];
|
||||
res->new_acc_edge(e.src, e.dst, e.cond, acc);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
deterministic = false;
|
||||
complete = trival::maybe();
|
||||
|
||||
// The main copy is only accepting for inf_alone
|
||||
// and for all Inf sets that have no matching Fin
|
||||
// sets in this SCC.
|
||||
acc_cond::mark_t sccsets = si.acc(n);
|
||||
acc_cond::mark_t f = (sccsets << 1U) & inf_pairs;
|
||||
acc_cond::mark_t i = sccsets & (inf_pairs | inf_alone);
|
||||
i -= f;
|
||||
for (auto s: states)
|
||||
auto scc_pairs = rs_pairs_view(pairs, si.acc(scc));
|
||||
auto scc_infs_alone = scc_pairs.infs_alone();
|
||||
|
||||
for (const auto& e: si.edges_of(scc))
|
||||
{
|
||||
bool acc{aut->state_acc_sets(s) & i};
|
||||
for (auto& t: aut->out(s))
|
||||
res->new_acc_edge(s, t.dst, t.cond, acc);
|
||||
bool acc{e.acc & scc_infs_alone};
|
||||
res->new_acc_edge(e.src, e.dst, e.cond, acc);
|
||||
}
|
||||
|
||||
auto rem = sccsets & ((inf_pairs >> 1U) | fin_alone);
|
||||
assert(rem != 0U);
|
||||
auto sets = rem.sets();
|
||||
auto fins_alone = aut_pairs.fins_alone();
|
||||
|
||||
unsigned ss = states.size();
|
||||
|
||||
for (auto r: sets)
|
||||
for (auto r: scc_pairs.fins().sets())
|
||||
{
|
||||
unsigned base = res->new_states(ss);
|
||||
for (auto s: states)
|
||||
state_map[s] = base++;
|
||||
unsigned base = res->new_states(states.size());
|
||||
for (auto s: states)
|
||||
state_map[s] = base++;
|
||||
for (const auto& e: si.inner_edges_of(scc))
|
||||
{
|
||||
auto ns = state_map[s];
|
||||
acc_cond::mark_t acc = aut->state_acc_sets(s);
|
||||
if (acc.has(r))
|
||||
if (e.acc.has(r))
|
||||
continue;
|
||||
bool jacc{acc & inf_alone};
|
||||
bool cacc = fin_alone.has(r) || acc.has(r + 1);
|
||||
for (auto& t: aut->out(s))
|
||||
auto src = state_map[e.src];
|
||||
auto dst = state_map[e.dst];
|
||||
bool cacc = fins_alone.has(r)
|
||||
? true
|
||||
: ((scc_pairs.paired_with(r) & e.acc) != 0);
|
||||
res->new_acc_edge(src, dst, e.cond, cacc);
|
||||
// We need only one non-deterministic jump per
|
||||
// cycle. As an approximation, we only do
|
||||
// them on back-links.
|
||||
if (e.dst <= e.src)
|
||||
{
|
||||
if (si.scc_of(t.dst) != n)
|
||||
continue;
|
||||
auto nd = state_map[t.dst];
|
||||
res->new_acc_edge(ns, nd, t.cond, cacc);
|
||||
// We need only one non-deterministic jump per
|
||||
// cycle. As an approximation, we only do
|
||||
// them on back-links.
|
||||
if (t.dst <= s)
|
||||
res->new_acc_edge(s, nd, t.cond, jacc);
|
||||
deterministic = false;
|
||||
bool jacc = ((e.acc & scc_infs_alone) != 0);
|
||||
res->new_acc_edge(e.src, dst, e.cond, jacc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -309,9 +340,27 @@ namespace spot
|
|||
res->prop_complete(complete);
|
||||
res->prop_universal(deterministic);
|
||||
res->purge_dead_states();
|
||||
res->merge_edges();
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// Transforms automaton from transition based acceptance to state based
|
||||
// acceptance.
|
||||
void make_state_acc(twa_graph_ptr & aut)
|
||||
{
|
||||
unsigned nst = aut->num_states();
|
||||
for (unsigned s = 0; s < nst; ++s)
|
||||
{
|
||||
acc_cond::mark_t acc = 0U;
|
||||
for (auto& t: aut->out(s))
|
||||
acc |= t.acc;
|
||||
for (auto& t: aut->out(s))
|
||||
t.acc = acc;
|
||||
}
|
||||
aut->prop_state_acc(true);
|
||||
}
|
||||
|
||||
// If the DNF is
|
||||
// Fin(1)&Inf(2)&Inf(4) | Fin(2)&Fin(3)&Inf(1) |
|
||||
// Inf(1)&Inf(3) | Inf(1)&Inf(2) | Fin(4)
|
||||
|
|
@ -710,19 +759,6 @@ namespace spot
|
|||
return res;
|
||||
}
|
||||
|
||||
enum class strategy_t : unsigned
|
||||
{
|
||||
trivial = 1,
|
||||
weak = 2,
|
||||
alternation = 4,
|
||||
street = 8,
|
||||
rabin = 16,
|
||||
};
|
||||
|
||||
using strategy_flags = strong_enum_flags<strategy_t>;
|
||||
using strategy =
|
||||
std::function<twa_graph_ptr(const const_twa_graph_ptr& aut)>;
|
||||
|
||||
twa_graph_ptr remove_fin_impl(const const_twa_graph_ptr& aut,
|
||||
const strategy_flags skip = {})
|
||||
{
|
||||
|
|
@ -748,72 +784,11 @@ namespace spot
|
|||
twa_graph_ptr
|
||||
rabin_to_buchi_maybe(const const_twa_graph_ptr& aut)
|
||||
{
|
||||
if (!aut->prop_state_acc().is_true())
|
||||
return nullptr;
|
||||
|
||||
auto code = aut->get_acceptance();
|
||||
|
||||
if (code.is_t())
|
||||
return nullptr;
|
||||
|
||||
acc_cond::mark_t inf_pairs = 0U;
|
||||
acc_cond::mark_t inf_alone = 0U;
|
||||
acc_cond::mark_t fin_alone = 0U;
|
||||
|
||||
auto s = code.back().sub.size;
|
||||
|
||||
// Rabin 1
|
||||
if (code.back().sub.op == acc_cond::acc_op::And && s == 4)
|
||||
goto start_and;
|
||||
// Co-Büchi
|
||||
else if (code.back().sub.op == acc_cond::acc_op::Fin && s == 1)
|
||||
goto start_fin;
|
||||
// Rabin >1
|
||||
else if (code.back().sub.op != acc_cond::acc_op::Or)
|
||||
return nullptr;
|
||||
|
||||
while (s)
|
||||
{
|
||||
--s;
|
||||
if (code[s].sub.op == acc_cond::acc_op::And)
|
||||
{
|
||||
start_and:
|
||||
auto o1 = code[--s].sub.op;
|
||||
auto m1 = code[--s].mark;
|
||||
auto o2 = code[--s].sub.op;
|
||||
auto m2 = code[--s].mark;
|
||||
// We expect
|
||||
// Fin({n}) & Inf({n+1})
|
||||
if (o1 != acc_cond::acc_op::Fin ||
|
||||
o2 != acc_cond::acc_op::Inf ||
|
||||
m1.count() != 1 ||
|
||||
m2.count() != 1 ||
|
||||
m2 != (m1 << 1U))
|
||||
return nullptr;
|
||||
inf_pairs |= m2;
|
||||
}
|
||||
else if (code[s].sub.op == acc_cond::acc_op::Fin)
|
||||
{
|
||||
start_fin:
|
||||
fin_alone |= code[--s].mark;
|
||||
}
|
||||
else if (code[s].sub.op == acc_cond::acc_op::Inf)
|
||||
{
|
||||
auto m1 = code[--s].mark;
|
||||
if (m1.count() != 1)
|
||||
return nullptr;
|
||||
inf_alone |= m1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
trace << "inf_pairs: " << inf_pairs << '\n';
|
||||
trace << "inf_alone: " << inf_alone << '\n';
|
||||
trace << "fin_alone: " << fin_alone << '\n';
|
||||
return ra_to_ba(aut, inf_pairs, inf_alone, fin_alone);
|
||||
bool is_state_acc = aut->prop_state_acc().is_true();
|
||||
auto res = tra_to_tba(aut);
|
||||
if (res && is_state_acc)
|
||||
make_state_acc(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
twa_graph_ptr remove_fin(const const_twa_graph_ptr& aut)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue