remfin: Use tra2tba as new rabin strategy in remove_fin

Move implementation of tra2tba to remfin.

* python/spot/impl.i: Remove tra2tba python bindings
* spot/twaalgos/Makefile.am: Remove tra2tba
* spot/twaalgos/remfin.cc: Update rabin_strategy
* spot/twaalgos/tra2tba.cc: Delete the file
* spot/twaalgos/tra2tba.hh: Delete the file
* tests/core/remfin.test: Update tests
* tests/python/tra2tba.py: Update tests
This commit is contained in:
xlauko 2017-06-29 22:11:17 +02:00 committed by Alexandre Duret-Lutz
parent 2019315213
commit d45b60a4e5
7 changed files with 363 additions and 726 deletions

View file

@ -151,7 +151,6 @@
#include <spot/twaalgos/postproc.hh>
#include <spot/twaalgos/product.hh>
#include <spot/twaalgos/stutter.hh>
#include <spot/twaalgos/tra2tba.hh>
#include <spot/twaalgos/translate.hh>
#include <spot/twaalgos/hoa.hh>
#include <spot/twaalgos/dtwasat.hh>
@ -582,7 +581,6 @@ def state_is_accepting(self, src) -> "bool":
%include <spot/twaalgos/split.hh>
%include <spot/twaalgos/sum.hh>
%include <spot/twaalgos/stutter.hh>
%include <spot/twaalgos/tra2tba.hh>
%include <spot/twaalgos/translate.hh>
%include <spot/twaalgos/hoa.hh>
%include <spot/twaalgos/dtwasat.hh>

View file

@ -84,7 +84,6 @@ twaalgos_HEADERS = \
tau03.hh \
tau03opt.hh \
totgba.hh \
tra2tba.hh \
translate.hh \
word.hh
@ -146,7 +145,6 @@ libtwaalgos_la_SOURCES = \
tau03.cc \
tau03opt.cc \
totgba.cc \
tra2tba.cc \
translate.cc \
word.cc

View file

@ -38,9 +38,53 @@ namespace spot
{
namespace
{
// Check whether the SCC composed of all states STATES, and
// visiting all acceptance marks in SETS contains non-accepting
// cycles.
enum class strategy_t : unsigned
{
trivial = 1,
weak = 2,
alternation = 4,
street = 8,
rabin = 16
};
using strategy_flags = strong_enum_flags<strategy_t>;
using strategy =
std::function<twa_graph_ptr(const const_twa_graph_ptr& aut)>;
twa_graph_ptr
remove_fin_impl(const const_twa_graph_ptr&, const strategy_flags);
using EdgeMask = std::vector<bool>;
template< typename Edges, typename Apply >
void for_each_edge(const_twa_graph_ptr aut,
const Edges& edges,
const EdgeMask& mask,
Apply apply)
{
for (const auto& e: edges)
{
unsigned edge_id = aut->edge_number(e);
if (mask[edge_id])
apply(edge_id);
}
}
template< typename Edges >
acc_cond::mark_t scc_acc_marks(const_twa_graph_ptr aut,
const Edges& edges,
const EdgeMask& mask)
{
acc_cond::mark_t scc_mark = 0U;
for_each_edge(aut, edges, mask, [&] (unsigned e)
{
const auto& ed = aut->edge_data(e);
scc_mark |= ed.acc;
});
return scc_mark;
}
// Check whether the SCC contains non-accepting cycles.
//
// A cycle is accepting (in a Rabin automaton) if there exists an
// acceptance pair (Fᵢ, Iᵢ) such that some states from Iᵢ are
@ -50,101 +94,143 @@ namespace spot
// pairs (Fᵢ, Iᵢ), either no states from Iᵢ are visited or some
// states from Fᵢ are visited. (This corresponds to an accepting
// cycle with Streett acceptance.)
static bool
is_scc_ba_type(const const_twa_graph_ptr& aut,
const std::vector<unsigned>& states,
std::vector<bool>& final,
acc_cond::mark_t inf_pairs,
acc_cond::mark_t inf_alone,
acc_cond::mark_t sets)
{
// Consider the SCC as one large cycle and check its
// intersection with all Fᵢs and Iᵢs: This is the SETS
// variable.
//
// Let f=[F₁,F₂,...] and i=[I₁,I₂,...] be bitvectors where bit
// Fᵢ (resp. Iᵢ) indicates that Fᵢ (resp. Iᵢ) has been visited
// in the SCC.
acc_cond::mark_t f = (sets << 1U) & inf_pairs;
acc_cond::mark_t i = sets & inf_pairs;
// If we have i&!f = [0,0,...] that means that the cycle formed
// final are those edges which are used in the resulting tba
// acceptance condition.
bool is_scc_tba_type(const_twa_graph_ptr aut,
const scc_info& si,
const unsigned scc,
std::vector<bool> keep,
const rs_pairs_view& aut_pairs,
std::vector<bool>& final)
{
if (si.is_rejecting_scc(scc))
return true;
auto scc_acc = scc_acc_marks(aut, si.inner_edges_of(scc), keep);
auto scc_pairs = rs_pairs_view(aut_pairs.pairs(), scc_acc);
// If there is one aut_fin_alone that is not in the SCC,
// any cycle in the SCC is accepting.
if (scc_pairs.fins_alone().proper_subset(aut_pairs.fins_alone()))
{
for_each_edge(aut, si.edges_of(scc), keep, [&](unsigned e)
{
final[e] = true;
});
return true;
}
auto scc_infs_alone = scc_pairs.infs_alone();
// Firstly consider whole SCC as one large cycle.
// If there is no inf without matching fin then the cycle formed
// by the entire SCC is not accepting. However that does not
// necessarily imply that all cycles in the SCC are also
// non-accepting. We may have a smaller cycle that is
// accepting, but which becomes non-accepting when extended with
// more states.
i -= f;
i |= inf_alone & sets;
if (!i)
if (!scc_infs_alone)
{
// Check whether the SCC is accepting. We do that by simply
// converting that SCC into a TGBA and running our emptiness
// check. This is not a really smart implementation and
// could be improved.
std::vector<bool> keep(aut->num_states(), false);
auto& states = si.states_of(scc);
std::vector<bool> keep_states(aut->num_states(), false);
for (auto s: states)
keep[s] = true;
auto sccaut = mask_keep_accessible_states(aut, keep, states.front());
// Force SBA to false. It does not affect the emptiness
// check result, however it prevent recurring into this
// procedure, because is_empty() will call
// to_generalized_buchi() which will call remove_fin()...
sccaut->prop_state_acc(false);
keep_states[s] = true;
auto sccaut = mask_keep_accessible_states(aut,
keep_states,
states.front());
// Prevent recurring into this function, by skipping the rabin straegy
auto skip = strategy_t::rabin;
// If SCCAUT is empty, the SCC is BA-type (and none
// of its states are final). If SCCAUT is nonempty, the SCC
// is not BA type.
return sccaut->is_empty();
// is not BA type
return remove_fin_impl(sccaut, skip)->is_empty();
}
// The bits remaining sets in i corresponds to I₁s that have
// been seen with seeing the matching F₁. In this SCC any state
// in these I₁ is therefore final. Otherwise we do not know: it
// is possible that there is a non-accepting cycle in the SCC
// that do not visit Fᵢ.
// Remaining infs corresponds to I₁s that have been seen with seeing
// the mathing F₁.cIn this SCC any edge in these I₁ is therefore
// final. Otherwise we do not know: it is possible that there is
// a non-accepting cycle in the SCC that do not visit Fᵢ.
std::set<unsigned> unknown;
for (auto s: states)
if (aut->state_acc_sets(s) & i)
final[s] = true;
else
unknown.insert(s);
// Check whether it is possible to build non-accepting cycles
// using only the "unknown" states.
while (!unknown.empty())
for_each_edge(aut, si.inner_edges_of(scc), keep, [&](unsigned e)
{
std::vector<bool> keep(aut->num_states(), false);
for (auto s: unknown)
keep[s] = true;
const auto& ed = aut->edge_data(e);
if (ed.acc & scc_infs_alone)
final[e] = true;
else
unknown.insert(e);
});
// Check whether it is possible to build non-accepting cycles
// using only the "unknown" edges.
keep.assign(aut->edge_vector().size(), false);
// Erase edges that cannot form cycle, ie. that edge whose 'dst'
// is not 'src' of any unknown edges.
std::vector<unsigned> remove;
do
{
remove.clear();
std::set<unsigned> srcs;
for (auto e: unknown)
srcs.insert(aut->edge_storage(e).src);
for (auto e: unknown)
if (!srcs.count(aut->edge_storage(e).dst))
remove.push_back(e);
for (auto r: remove)
unknown.erase(r);
}
while (!remove.empty());
// Check whether it is possible to build non-accepting cycles
// using only the "unknown" edges.
using filter_data_t = std::pair< const_twa_graph_ptr, std::vector<bool> >;
scc_info::edge_filter filter =
[](const twa_graph::edge_storage_t&, unsigned dst,
void* filter_data) -> scc_info::edge_filter_choice
[](const twa_graph::edge_storage_t& t, unsigned, void* data)
-> scc_info::edge_filter_choice
{
auto& keepref = *reinterpret_cast<decltype(keep)*>(filter_data);
if (keepref[dst])
const_twa_graph_ptr aut;
std::vector<bool> keep;
std::tie(aut, keep) = *static_cast<filter_data_t*>(data);
if (keep[aut->edge_number(t)])
return scc_info::edge_filter_choice::keep;
else
return scc_info::edge_filter_choice::ignore;
};
scc_info si(aut, *unknown.begin(), filter, &keep);
unsigned scc_max = si.scc_count();
for (unsigned scc = 0; scc < scc_max; ++scc)
while (!unknown.empty())
{
for (auto s: si.states_of(scc))
unknown.erase(s);
if (si.is_rejecting_scc(scc)) // this includes trivial SCCs
std::vector<bool> keep(aut->edge_vector().size(), false);
for (auto e: unknown)
keep[e] = true;
auto filter_data = filter_data_t{aut, keep};
auto init = aut->edge_storage(*unknown.begin()).src;
scc_info si(aut, init, filter, &filter_data);
for (unsigned uscc = 0; uscc < si.scc_count(); ++uscc)
{
for_each_edge(aut, si.edges_of(uscc), keep, [&](unsigned e)
{
unknown.erase(e);
});
if (si.is_rejecting_scc(uscc))
continue;
if (!is_scc_ba_type(aut, si.states_of(scc),
final, inf_pairs, 0U, si.acc(scc)))
if (!is_scc_tba_type(aut, si, uscc, keep, aut_pairs, final))
return false;
}
}
return true;
}
// Specialized conversion from Rabin acceptance to Büchi acceptance.
// Is able to detect SCCs that are Büchi-type (i.e., they can be
// Specialized conversion from transition based Rabin acceptance to
// transition based Büchi acceptance.
// Is able to detect SCCs that are TBA-type (i.e., they can be
// converted to Büchi acceptance without chaning their structure).
// Currently only works with state-based acceptance.
//
// See "Deterministic ω-automata vis-a-vis Deterministic Büchi
// Automata", S. Krishnan, A. Puri, and R. Brayton (ISAAC'94) for
@ -153,154 +239,99 @@ namespace spot
// We essentially apply this method SCC-wise. The paper is
// concerned about *deterministic* automata, but we apply the
// algorithm on non-deterministic automata as well: in the worst
// case it is possible that a Büchi-type SCC with some
// non-deterministim has one accepting and one rejecting run for
// case it is possible that a TBA-type SCC with some
// non-deterministic has one accepting and one rejecting run for
// the same word. In this case we may fail to detect the
// Büchi-typeness of the SCC, but the resulting automaton should
// TBA-typeness of the SCC, but the resulting automaton should
// be correct nonetheless.
static twa_graph_ptr
ra_to_ba(const const_twa_graph_ptr& aut,
acc_cond::mark_t inf_pairs,
acc_cond::mark_t inf_alone,
acc_cond::mark_t fin_alone)
twa_graph_ptr
tra_to_tba(const const_twa_graph_ptr& inaut)
{
assert((bool)aut->prop_state_acc());
// cleanup acceptance for easy detection of alone fins and infs
auto aut = cleanup_acceptance(inaut);
scc_info si(aut);
// For state-based Rabin automata, we check each SCC for
// BA-typeness. If an SCC is BA-type, its final states are stored
// in BA_FINAL_STATES.
std::vector<bool> scc_is_ba_type(si.scc_count(), false);
bool ba_type = false;
std::vector<bool> ba_final_states;
std::vector<acc_cond::rs_pair> pairs;
if (!aut->acc().is_rabin_like(pairs))
return nullptr;
#ifdef DEBUG
acc_cond::mark_t fin;
acc_cond::mark_t inf;
std::tie(inf, fin) = aut->get_acceptance().used_inf_fin_sets();
assert(inf == (inf_pairs | inf_alone));
assert(fin == ((inf_pairs >> 1U) | fin_alone));
#endif
ba_final_states.resize(aut->num_states(), false);
ba_type = true; // until proven otherwise
unsigned scc_max = si.scc_count();
for (unsigned scc = 0; scc < scc_max; ++scc)
{
if (si.is_rejecting_scc(scc)) // this includes trivial SCCs
{
scc_is_ba_type[scc] = true;
continue;
}
bool scc_ba_type = false;
auto sets = si.acc(scc);
// If there is one fin_alone that is not in the SCC,
// any cycle in the SCC is accepting. Mark all states
// as final.
if ((sets & fin_alone) != fin_alone)
{
for (auto s: si.states_of(scc))
ba_final_states[s] = true;
scc_ba_type = true;
}
// In the general case, we need a dedicated check. Note
// that the used fin_alone sets can be ignored, as they
// cannot contribute to Büchi-typeness,
else
{
scc_ba_type = is_scc_ba_type(aut, si.states_of(scc),
ba_final_states,
inf_pairs, inf_alone, si.acc(scc));
}
ba_type &= scc_ba_type;
scc_is_ba_type[scc] = scc_ba_type;
}
auto aut_pairs = rs_pairs_view(pairs);
auto code = aut->get_acceptance();
if (code.is_t())
return nullptr;
#ifdef TRACE
trace << "SCC DBA-realizibility\n";
for (unsigned scc = 0; scc < scc_max; ++scc)
{
trace << scc << ": " << scc_is_ba_type[scc] << " {";
for (auto s: si.states_of(scc))
trace << ' ' << s;
trace << " }\n";
}
#endif
// if is TBA type
scc_info si{aut};
std::vector<bool> scc_is_tba_type(si.scc_count(), false);
std::vector<bool> final(aut->edge_vector().size(), false);
std::vector<bool> keep(aut->edge_vector().size(), true);
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
scc_is_tba_type[scc] = is_scc_tba_type(aut, si, scc, keep,
aut_pairs, final);
unsigned nst = aut->num_states();
auto res = make_twa_graph(aut->get_dict());
res->copy_ap_of(aut);
res->prop_copy(aut, { true, false, false, false, false, true });
res->new_states(nst);
res->prop_copy(aut, { false, false, false, false, false, true });
res->new_states(aut->num_states());
res->set_buchi();
res->set_init_state(aut->get_init_state_number());
trival deterministic = aut->prop_universal();
trival complete = aut->prop_complete();
std::vector<unsigned> state_map(aut->num_states());
for (unsigned n = 0; n < scc_max; ++n)
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
{
auto states = si.states_of(n);
auto states = si.states_of(scc);
if (scc_is_ba_type[n])
if (scc_is_tba_type[scc])
{
// If the SCC is BA-type, we know exactly what state need to
// be marked as accepting.
for (auto s: states)
for (const auto& e: si.edges_of(scc))
{
bool acc = ba_final_states[s];
for (auto& t: aut->out(s))
res->new_acc_edge(s, t.dst, t.cond, acc);
bool acc = final[aut->edge_number(e)];
res->new_acc_edge(e.src, e.dst, e.cond, acc);
}
}
else
{
deterministic = false;
complete = trival::maybe();
// The main copy is only accepting for inf_alone
// and for all Inf sets that have no matching Fin
// sets in this SCC.
acc_cond::mark_t sccsets = si.acc(n);
acc_cond::mark_t f = (sccsets << 1U) & inf_pairs;
acc_cond::mark_t i = sccsets & (inf_pairs | inf_alone);
i -= f;
for (auto s: states)
auto scc_pairs = rs_pairs_view(pairs, si.acc(scc));
auto scc_infs_alone = scc_pairs.infs_alone();
for (const auto& e: si.edges_of(scc))
{
bool acc{aut->state_acc_sets(s) & i};
for (auto& t: aut->out(s))
res->new_acc_edge(s, t.dst, t.cond, acc);
bool acc{e.acc & scc_infs_alone};
res->new_acc_edge(e.src, e.dst, e.cond, acc);
}
auto rem = sccsets & ((inf_pairs >> 1U) | fin_alone);
assert(rem != 0U);
auto sets = rem.sets();
auto fins_alone = aut_pairs.fins_alone();
unsigned ss = states.size();
for (auto r: sets)
for (auto r: scc_pairs.fins().sets())
{
unsigned base = res->new_states(ss);
unsigned base = res->new_states(states.size());
for (auto s: states)
state_map[s] = base++;
for (auto s: states)
for (const auto& e: si.inner_edges_of(scc))
{
auto ns = state_map[s];
acc_cond::mark_t acc = aut->state_acc_sets(s);
if (acc.has(r))
if (e.acc.has(r))
continue;
bool jacc{acc & inf_alone};
bool cacc = fin_alone.has(r) || acc.has(r + 1);
for (auto& t: aut->out(s))
{
if (si.scc_of(t.dst) != n)
continue;
auto nd = state_map[t.dst];
res->new_acc_edge(ns, nd, t.cond, cacc);
auto src = state_map[e.src];
auto dst = state_map[e.dst];
bool cacc = fins_alone.has(r)
? true
: ((scc_pairs.paired_with(r) & e.acc) != 0);
res->new_acc_edge(src, dst, e.cond, cacc);
// We need only one non-deterministic jump per
// cycle. As an approximation, we only do
// them on back-links.
if (t.dst <= s)
res->new_acc_edge(s, nd, t.cond, jacc);
if (e.dst <= e.src)
{
deterministic = false;
bool jacc = ((e.acc & scc_infs_alone) != 0);
res->new_acc_edge(e.src, dst, e.cond, jacc);
}
}
}
@ -309,9 +340,27 @@ namespace spot
res->prop_complete(complete);
res->prop_universal(deterministic);
res->purge_dead_states();
res->merge_edges();
return res;
}
// Transforms automaton from transition based acceptance to state based
// acceptance.
void make_state_acc(twa_graph_ptr & aut)
{
unsigned nst = aut->num_states();
for (unsigned s = 0; s < nst; ++s)
{
acc_cond::mark_t acc = 0U;
for (auto& t: aut->out(s))
acc |= t.acc;
for (auto& t: aut->out(s))
t.acc = acc;
}
aut->prop_state_acc(true);
}
// If the DNF is
// Fin(1)&Inf(2)&Inf(4) | Fin(2)&Fin(3)&Inf(1) |
// Inf(1)&Inf(3) | Inf(1)&Inf(2) | Fin(4)
@ -710,19 +759,6 @@ namespace spot
return res;
}
enum class strategy_t : unsigned
{
trivial = 1,
weak = 2,
alternation = 4,
street = 8,
rabin = 16,
};
using strategy_flags = strong_enum_flags<strategy_t>;
using strategy =
std::function<twa_graph_ptr(const const_twa_graph_ptr& aut)>;
twa_graph_ptr remove_fin_impl(const const_twa_graph_ptr& aut,
const strategy_flags skip = {})
{
@ -748,72 +784,11 @@ namespace spot
twa_graph_ptr
rabin_to_buchi_maybe(const const_twa_graph_ptr& aut)
{
if (!aut->prop_state_acc().is_true())
return nullptr;
auto code = aut->get_acceptance();
if (code.is_t())
return nullptr;
acc_cond::mark_t inf_pairs = 0U;
acc_cond::mark_t inf_alone = 0U;
acc_cond::mark_t fin_alone = 0U;
auto s = code.back().sub.size;
// Rabin 1
if (code.back().sub.op == acc_cond::acc_op::And && s == 4)
goto start_and;
// Co-Büchi
else if (code.back().sub.op == acc_cond::acc_op::Fin && s == 1)
goto start_fin;
// Rabin >1
else if (code.back().sub.op != acc_cond::acc_op::Or)
return nullptr;
while (s)
{
--s;
if (code[s].sub.op == acc_cond::acc_op::And)
{
start_and:
auto o1 = code[--s].sub.op;
auto m1 = code[--s].mark;
auto o2 = code[--s].sub.op;
auto m2 = code[--s].mark;
// We expect
// Fin({n}) & Inf({n+1})
if (o1 != acc_cond::acc_op::Fin ||
o2 != acc_cond::acc_op::Inf ||
m1.count() != 1 ||
m2.count() != 1 ||
m2 != (m1 << 1U))
return nullptr;
inf_pairs |= m2;
}
else if (code[s].sub.op == acc_cond::acc_op::Fin)
{
start_fin:
fin_alone |= code[--s].mark;
}
else if (code[s].sub.op == acc_cond::acc_op::Inf)
{
auto m1 = code[--s].mark;
if (m1.count() != 1)
return nullptr;
inf_alone |= m1;
}
else
{
return nullptr;
}
}
trace << "inf_pairs: " << inf_pairs << '\n';
trace << "inf_alone: " << inf_alone << '\n';
trace << "fin_alone: " << fin_alone << '\n';
return ra_to_ba(aut, inf_pairs, inf_alone, fin_alone);
bool is_state_acc = aut->prop_state_acc().is_true();
auto res = tra_to_tba(aut);
if (res && is_state_acc)
make_state_acc(res);
return res;
}
twa_graph_ptr remove_fin(const const_twa_graph_ptr& aut)

View file

@ -1,318 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2017 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <spot/twa/acc.hh>
#include <spot/twaalgos/tra2tba.hh>
#include <spot/twaalgos/sccinfo.hh>
#include <spot/twaalgos/mask.hh>
#include <spot/twa/bddprint.hh>
#include <spot/twa/formula2bdd.hh>
namespace spot
{
namespace
{
std::vector<unsigned> scc_edges(const const_twa_graph_ptr& aut,
const scc_info& si,
const unsigned scc)
{
std::vector<unsigned> edges;
for (unsigned s : si.states_of(scc))
for (const auto& t: aut->succ(aut->state_from_number(s)))
edges.push_back(aut->edge_number(t));
return edges;
}
//
std::vector<unsigned> scc_inner_edges(const const_twa_graph_ptr& aut,
const scc_info& si,
const unsigned scc)
{
auto edges = scc_edges(aut, si, scc);
edges.erase(std::remove_if(edges.begin(), edges.end(),
[&](unsigned e)
{
return si.scc_of(aut->edge_storage(e).dst) != scc;
}),
edges.end());
return edges;
}
twa_graph_ptr mask_keep_edges(const const_twa_graph_ptr& aut,
std::vector<bool>& to_keep,
unsigned int init)
{
if (to_keep.size() < aut->edge_vector().size())
to_keep.resize(aut->edge_vector().size(), false);
auto res = make_twa_graph(aut->get_dict());
res->copy_ap_of(aut);
res->prop_copy(aut, { false, true, false, true, false, false });
res->copy_acceptance_of(aut);
size_t states = aut->num_states();
std::vector<std::vector<bool>> edges;
edges.resize(states);
for (size_t i = 0; i < states; ++i)
edges[i].resize(states, false);
for (size_t i = 0; i < aut->edge_vector().size(); ++i)
{
if (to_keep[i])
{
const auto& es = aut->edge_storage(i);
edges[es.src][es.dst] = true;
}
}
transform_copy(aut, res,
[&](unsigned src, bdd& cond, acc_cond::mark_t&,
unsigned dst)
{
if (!edges[src][dst])
cond = bddfalse;
},
init);
return res;
}
// Check whether the SCC contains non-accepting cycles.
//
// A cycle is accepting (in a Rabin automaton) if there exists an
// acceptance pair (Fᵢ, Iᵢ) such that some states from Iᵢ are
// visited while no states from Fᵢ are visited.
//
// Consequently, a cycle is non-accepting if for all acceptance
// pairs (Fᵢ, Iᵢ), either no states from Iᵢ are visited or some
// states from Fᵢ are visited. (This corresponds to an accepting
// cycle with Streett acceptance.)
//
// final are those edges which are used in the resulting tba
// acceptance condition.
bool is_scc_tba_type(const const_twa_graph_ptr& aut,
const scc_info& si,
const unsigned scc,
const acc_cond::mark_t fin_alone,
std::vector<bool>& final)
{
if (si.is_rejecting_scc(scc))
return true;
auto acc_pairs = aut->get_acceptance().used_inf_fin_sets();
auto infs = si.acc(scc) & acc_pairs.first;
auto fins = si.acc(scc) & acc_pairs.second;
auto infs_with_fins = (si.acc(scc) << 1U) & acc_pairs.first;
infs -= infs_with_fins;
// If there is one fin_alone that is not in the SCC,
// any cycle in the SCC is accepting.
if ((fins & fin_alone) != fin_alone)
{
for (auto e: scc_edges(aut, si, scc))
final[e] = true;
return true;
}
auto& states = si.states_of(scc);
// Firstly consider whole SCC as one large cycle.
// If there is no inf without matching fin then the cycle formed
// by the entire SCC is not accepting. However that does not
// necessarily imply that all cycles in the SCC are also
// non-accepting. We may have a smaller cycle that is
// accepting, but which becomes non-accepting when extended with
// more states.
if (!infs)
{
// Check whether the SCC is accepting. We do that by simply
// converting that SCC into a TGBA and running our emptiness
// check. This is not a really smart implementation and
// could be improved.
std::vector<bool> keep(aut->num_states(), false);
for (auto s: states)
keep[s] = true;
auto sccaut = mask_keep_accessible_states(aut,
keep,
states.front());
sccaut->prop_state_acc(false);
return sccaut->is_empty();
}
// Remaining infs corresponds to I₁s that have been seen with seeing
// the mathing F₁. In this SCC any edge in these I₁ is therefore
// final. Otherwise we do not know: it is possible that there is
// a non-accepting cycle in the SCC that do not visit Fᵢ.
std::set<unsigned> unknown;
for (auto e: scc_inner_edges(aut, si, scc))
if (aut->edge_data(e).acc & infs)
final[e] = true;
else
unknown.insert(e);
// Check whether it is possible to build non-accepting cycles
// using only the "unknown" edges.
std::vector<bool> keep(aut->edge_vector().size(), false);
for (auto e: unknown)
keep[e] = true;
while (!unknown.empty())
{
unsigned init = aut->edge_storage(*unknown.begin()).src;
scc_info si(mask_keep_edges(aut, keep, init));
unsigned scc_max = si.scc_count();
for (unsigned uscc = 0; uscc < scc_max; ++uscc)
{
for (auto e: scc_edges(aut, si, uscc))
{
unknown.erase(e);
keep[e] = false;
}
if (si.is_rejecting_scc(uscc))
continue;
if (!is_scc_tba_type(aut, si, uscc, fin_alone, final))
return false;
}
}
return true;
}
}
// Specialized conversion from transition based Rabin acceptance to
// transition based Büchi acceptance.
// Is able to detect SCCs that are TBA-type (i.e., they can be
// converted to Büchi acceptance without chaning their structure).
//
// See "Deterministic ω-automata vis-a-vis Deterministic Büchi
// Automata", S. Krishnan, A. Puri, and R. Brayton (ISAAC'94) for
// some details about detecting Büchi-typeness.
//
// We essentially apply this method SCC-wise. The paper is
// concerned about *deterministic* automata, but we apply the
// algorithm on non-deterministic automata as well: in the worst
// case it is possible that a TBA-type SCC with some
// non-deterministic has one accepting and one rejecting run for
// the same word. In this case we may fail to detect the
// TBA-typeness of the SCC, but the resulting automaton should
// be correct nonetheless.
twa_graph_ptr
tra_to_tba(const const_twa_graph_ptr& aut)
{
if (aut->prop_state_acc().is_true())
return nullptr;
std::vector<acc_cond::rs_pair> pairs;
if (!aut->acc().is_rabin_like(pairs))
return nullptr;
auto code = aut->get_acceptance();
if (code.is_t())
return nullptr;
// if is TBA type
scc_info si{aut};
std::vector<bool> scc_is_tba_type(si.scc_count(), false);
std::vector<bool> final(aut->edge_vector().size(), false);
acc_cond::mark_t inf_alone = 0U;
acc_cond::mark_t fin_alone = 0U;
for (const auto& p: pairs)
if (!p.fin)
inf_alone &= p.inf;
else if (!p.inf)
fin_alone &= p.fin;
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
{
scc_is_tba_type[scc] = is_scc_tba_type(aut, si, scc, fin_alone, final);
}
// compute final edges
auto res = make_twa_graph(aut->get_dict());
res->copy_ap_of(aut);
res->prop_copy(aut, { false, false, false, false, false, true });
res->new_states(aut->num_states());
res->set_buchi();
res->set_init_state(aut->get_init_state_number());
trival deterministic = aut->prop_universal();
trival complete = aut->prop_complete();
std::vector<unsigned> state_map(aut->num_states());
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
{
auto states = si.states_of(scc);
if (scc_is_tba_type[scc])
{
for (unsigned e: scc_edges(aut, si, scc))
{
const auto& ed = aut->edge_data(e);
const auto& es = aut->edge_storage(e);
bool acc = final[e];
res->new_acc_edge(es.src, es.dst, ed.cond, acc);
}
}
else
{
deterministic = false;
complete = trival::maybe();
auto acc_pairs = aut->get_acceptance().used_inf_fin_sets();
auto infs = si.acc(scc) & acc_pairs.first;
auto infs_with_fins = (si.acc(scc) << 1U) & acc_pairs.first;
infs -= infs_with_fins;
for (auto e: scc_edges(aut, si, scc))
{
const auto& ed = aut->edge_data(e);
const auto& es = aut->edge_storage(e);
bool acc{ ed.acc & infs };
res->new_acc_edge(es.src, es.dst, ed.cond, acc);
}
auto rem = si.acc(scc) & acc_pairs.second;
assert(rem != 0U);
for (auto r: rem.sets())
{
unsigned base = res->new_states(states.size());
for (auto s: states)
state_map[s] = base++;
for (auto e: scc_inner_edges(aut, si, scc))
{
const auto& ed = aut->edge_data(e);
const auto& es = aut->edge_storage(e);
if (ed.acc.has(r))
continue;
auto src = state_map[es.src];
auto dst = state_map[es.dst];
res->new_acc_edge(src, dst, ed.cond, ed.acc.has(r + 1));
// We need only one non-deterministic jump per
// cycle. As an approximation, we only do
// them on back-links.
bool jacc{ed.acc & inf_alone};
if (es.dst <= es.src)
res->new_acc_edge(es.src, dst, ed.cond, jacc);
}
}
}
}
res->prop_complete(complete);
res->prop_universal(deterministic);
res->purge_dead_states();
res->merge_edges();
return res;
}
}

View file

@ -1,37 +0,0 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2017 Laboratoire de Recherche et Développement
// de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/twa/twagraph.hh>
namespace spot
{
/// \brief Convert a transition-based Rabin automaton to Büchi automaton,
/// preserving determinism when possible.
///
/// Return nullptr if the input is not a Rabin automaton, or is not
/// transition-based.
///
/// This modifies the algorithm from "Deterministic
/// ω-automata vis-a-vis Deterministic Büchi Automata", S. Krishnan,
/// A. Puri, and R. Brayton (ISAAC'94), but SCC-wise.
SPOT_API twa_graph_ptr
tra_to_tba(const const_twa_graph_ptr& aut);
}

View file

@ -353,8 +353,7 @@ State: 0
[!0] 0
[0] 1
State: 1 {0}
[!0] 1
[0] 1
[t] 1
--END--
HOA: v1
States: 10
@ -402,80 +401,72 @@ Acceptance: 1 Inf(0)
properties: trans-labels explicit-labels state-acc
--BODY--
State: 0 {0}
[!0&!1] 12
[0&!1] 11
[!0&1] 1
[0&1] 0
[!0&1] 1
[0&!1] 11
[!0&!1] 12
State: 1 {0}
[!0&!1] 12
[0&!1] 11
[!0&1] 1
[0&1] 0
State: 2 {0}
[!0&!1] 10
[!0&1] 1
[0&!1] 11
[!0&!1] 12
State: 2 {0}
[!0&1] 2
[0&1] 9
[!0&!1] 10
[0&!1] 11
State: 3 {0}
[!0&!1] 12
[0&!1] 11
[!0&1] 1
[0&1] 3
[0&!1] 11
[!0&!1] 12
State: 4 {0}
[!0&!1] 12
[0&!1] 12
[!0&1] 4
[0&1] 7
[!1] 12
State: 5 {0}
[!0&!1] 10
[0&!1] 12
[!0&1] 5
[0&1] 8
[!0&!1] 10
[0&!1] 12
State: 6 {0}
[!0&!1] 12
[0&!1] 11
[!0&1] 4
[0&1] 6
State: 7 {0}
[0&!1] 11
[!0&!1] 12
[0&!1] 12
State: 7 {0}
[!0&1] 4
[0&1] 7
[!1] 12
State: 8
[!0&!1] 12
[0&!1] 12
[!0&1] 8
[0&1] 8
[!0&1] 14
[0&1] 14
[1] 8
[!1] 12
[1] 14
State: 9
[!0&!1] 12
[0&!1] 11
[!0&1] 1
[0&1] 3
[0&!1] 11
[!0&!1] 12
State: 10 {0}
[!0&!1] 10
[0&!1] 12
[!0&1] 5
[0&1] 8
State: 11 {0}
[!0&!1] 12
[0&!1] 11
[!0&1] 8
[0&1] 6
State: 12
[!0&!1] 12
[0&!1] 12
[!0&1] 8
[0&1] 8
State: 13
[!0&!1] 10
[0&!1] 12
State: 11 {0}
[0&1] 6
[!0&1] 8
[0&!1] 11
[!0&!1] 12
State: 12
[1] 8
[!1] 12
State: 13
[!0&1] 2
[0&1] 3
[!0&!1] 10
[0&!1] 11
State: 14 {0}
[!0&1] 14
[0&1] 14
[1] 14
--END--
HOA: v1
States: 4
@ -511,35 +502,21 @@ properties: trans-labels explicit-labels state-acc complete
properties: deterministic
--BODY--
State: 0
[!0&!1] 0
[0&!1] 0
[!0&1] 0
[0&1] 0
[t] 0
State: 1
[!0&!1] 0
[0&!1] 2
[!0&1] 0
[0&1] 2
[!0] 0
[0] 2
State: 2 {0}
[!0&!1] 2
[0&!1] 2
[!0&1] 2
[0&1] 2
[t] 2
State: 3 {0}
[!0&!1] 3
[0&!1] 2
[!0&1] 1
[0&1] 2
[0] 2
[!0&!1] 3
State: 4
[!0&!1] 3
[0&!1] 3
[!0&1] 1
[0&1] 1
[1] 1
[!1] 3
State: 5
[!0&!1] 4
[0&!1] 4
[!0&1] 4
[0&1] 4
[t] 4
--END--
HOA: v1
States: 5
@ -550,24 +527,18 @@ Acceptance: 1 Inf(0)
properties: trans-labels explicit-labels state-acc
--BODY--
State: 0
[!0&!1] 2
[0&!1] 0
[!0&1] 2
[!0] 2
[0&1] 3
State: 1
[!0&!1] 2
[0&!1] 1
[!0&1] 2
[0&1] 2
[!0 | 1] 2
State: 2 {0}
[!0&!1] 2
[0&!1] 0
[!0&1] 2
[0&1] 2
[!0 | 1] 2
State: 3
[!0&!1] 2
[0&!1] 0
[!0&1] 2
[!0] 2
[0&1] 3
[0&1] 4
State: 4 {0}
@ -578,7 +549,8 @@ States: 37
Start: 0
AP: 2 "a" "b"
acc-name: generalized-Buchi 12
Acceptance: 12 $acctwelve
Acceptance: 12 Inf(0)&Inf(1)&Inf(2)&Inf(3)&Inf(4)&Inf(5)&Inf(6)\
&Inf(7)&Inf(8)&Inf(9)&Inf(10)&Inf(11)
properties: trans-labels explicit-labels state-acc complete
--BODY--
State: 0
@ -737,11 +709,11 @@ properties: trans-labels explicit-labels state-acc complete
properties: deterministic
--BODY--
State: 0
[0] 1
[!0] 0
[0] 1
State: 1 {0}
[0] 1
[!0] 0
[0] 1
--END--
EOF

View file

@ -31,7 +31,7 @@ State: 1
[0] 1
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 2.
@ -51,7 +51,6 @@ State: 2
[!0] 1 {}
[0] 2 {1}
--END--
EOF
""")
exp = """HOA: v1
@ -72,7 +71,7 @@ State: 2
[0] 2 {0}
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 3.
@ -106,7 +105,7 @@ State: 1
[0] 1
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 4.
@ -146,7 +145,7 @@ State: 2 {0}
[t] 2
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 5.
@ -192,7 +191,7 @@ State: 3 {0}
[t] 3
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 6.
@ -222,26 +221,26 @@ Start: 0
AP: 2 "p3" "p2"
acc-name: Buchi
Acceptance: 1 Inf(0)
properties: trans-labels explicit-labels trans-acc
properties: trans-labels explicit-labels state-acc
--BODY--
State: 0
[!1] 0
[1] 1
[0&!1] 2
State: 1
[!1] 0 {0}
[1] 1 {0}
State: 1 {0}
[!1] 0
[1] 1
[0&!1] 2
[0&1] 3
State: 2 {0}
[0&!1] 2
[0&1] 3
State: 3 {0}
[0&!1] 2
[0&1] 3
State: 2
[0&!1] 2 {0}
[0&1] 3 {0}
State: 3
[0&!1] 2 {0}
[0&1] 3 {0}
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 7.
@ -276,7 +275,7 @@ State: 1 {0}
[0] 1
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 8.
@ -355,7 +354,7 @@ State: 7
[0&2] 7 {0}
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 9.
@ -391,7 +390,7 @@ State: 1
[1&!2] 1
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 10.
@ -430,7 +429,7 @@ State: 2 {0}
[0&1] 2
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 11.
@ -467,7 +466,8 @@ State: 1
[0] 1 {0}
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 12.
@ -506,13 +506,13 @@ State: 1
[!0] 0
[0] 1
[!0] 3
State: 2
State: 2 {0}
[!0] 2
State: 3 {0}
[!0] 3
--END--"""
res = spot.tra_to_tba(aut)
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 13.
@ -538,8 +538,57 @@ State: 0 "F(Gp3|GFp2)"
--END--
""")
res = spot.tra_to_tba(aut)
tba = spot.tgba_determinize(res)
a = spot.dtwa_complement(aut).intersects(tba)
b = spot.dtwa_complement(tba).intersects(aut)
assert(a == b)
exp = """HOA: v1
States: 2
Start: 0
AP: 2 "p3" "p2"
acc-name: Buchi
Acceptance: 1 Inf(0)
properties: trans-labels explicit-labels trans-acc complete
properties: deterministic
--BODY--
State: 0
[!1] 0 {0}
[1] 1
State: 1
[!1] 0 {0}
[1] 1 {0}
--END--"""
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)
# Test 14.
aut = spot.automaton("""
HOA: v1
States: 1
Start: 0
Acceptance: 4 (Fin(0)&Inf(1)) | (Fin(2)&Inf(3))
AP: 2 "b" "a"
--BODY--
State: 0
0 {3} /*{}*/
0 {1 3} /*{b}*/
0 {2} /*{a}*/
0 {2 1} /*{b, a}*/
--END--""")
exp = """HOA: v1
States: 2
Start: 0
AP: 2 "b" "a"
acc-name: Buchi
Acceptance: 1 Inf(0)
properties: trans-labels explicit-labels trans-acc
--BODY--
State: 0
[0] 0 {0}
[!0] 0
[0&!1] 1 {0}
[!0&!1] 1
State: 1
[!1] 1 {0}
--END--"""
res = spot.remove_fin(aut)
assert(res.to_str('hoa') == exp)