simplifier: new LTL simplifications
if e is pure eventuality and g => e, then e U g = Fg if u is purely universal and u => g, then u R g = Gg Fixes #93. * doc/tl/tl.tex, NEWS: Document the rules. * spot/tl/simplify.cc: Implement them. * tests/core/reduccmp.test: Test them. * tests/core/det.test: Adjust.
This commit is contained in:
parent
e37f62dc75
commit
d5b2de7fa8
5 changed files with 29 additions and 7 deletions
|
|
@ -1720,7 +1720,9 @@ In the following rewritings rules, $f\simp g$ means that $g$ was
|
|||
proved to be implied by $f$ using either of the above two methods.
|
||||
Additionally, implications denoted by $f\Simp g$ are only checked if
|
||||
the ``\verb|tl_simplifier_options::containment_checks_stronger|''
|
||||
option is set (otherwise the rewriting rule is not applied).
|
||||
option is set (otherwise the rewriting rule is not applied). As in
|
||||
the previous section, formulas $e$ and $u$ represent respectively
|
||||
pure eventualities and purely universal formulas.
|
||||
|
||||
\begin{equation*}
|
||||
\begin{array}{cccr@{\,}l}
|
||||
|
|
@ -1731,6 +1733,7 @@ option is set (otherwise the rewriting rule is not applied).
|
|||
\text{if}& f\simp g &\text{then}& f\U g &\equiv g \\
|
||||
\text{if}& (f\U g)\Simp g &\text{then}& f\U g &\equiv g \\
|
||||
\text{if}& (\NOT f)\simp g &\text{then}& f\U g &\equiv \F g \\
|
||||
\text{if}& g\simp e &\text{then}& e\U g &\equiv \F g \\
|
||||
\text{if}& f\simp g &\text{then}& f\U (g \U h) &\equiv g \U h \\
|
||||
\text{if}& f\simp g &\text{then}& f\U (g \W h) &\equiv g \W h \\
|
||||
\text{if}& g\simp f &\text{then}& f\U (g \U h) &\equiv f \U h \\
|
||||
|
|
@ -1753,6 +1756,7 @@ option is set (otherwise the rewriting rule is not applied).
|
|||
\text{if}& g\simp h &\text{then}& (f\U g) \W h &\equiv (f \U g) \OR h \\
|
||||
\text{if}& g\simp f &\text{then}& f\R g &\equiv g \\
|
||||
\text{if}& g\simp \NOT f &\text{then}& f\R g &\equiv \G g \\
|
||||
\text{if}& u\simp g &\text{then}& u\R g &\equiv \G g \\
|
||||
\text{if}& g\simp f &\text{then}& f\R (g \R h) &\equiv g \R h \\
|
||||
\text{if}& g\simp f &\text{then}& f\R (g \M h) &\equiv g \M h \\
|
||||
\text{if}& f\simp g &\text{then}& f\R (g \R h) &\equiv f \R h \\
|
||||
|
|
@ -1771,8 +1775,8 @@ option is set (otherwise the rewriting rule is not applied).
|
|||
\end{array}
|
||||
\end{equation*}
|
||||
|
||||
The above rules were collected from various
|
||||
sources~\cite{somenzi.00.cav,tauriainen.03.a83,babiak.12.tacas} and
|
||||
Many of the above rules were collected from the
|
||||
literature~\cite{somenzi.00.cav,tauriainen.03.a83,babiak.12.tacas} and
|
||||
sometimes generalized to support operators such as $\M$ and $\W$.
|
||||
|
||||
\appendix
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue