A new complementation construction based on ranking.

* src/tgba/tgbacomplement.cc, src/tgba/tgbacomplement.hh: The
construction.
* src/tgbatest/Makefile.am: Adjust.
* src/tgbatest/complementation.cc: Add options to support this
construction in addition to Safra construction.
* src/tgba/Makefile.am: Adjust.
* src/tgbatest/complementation.test: Adjust to test also this
complementation.
This commit is contained in:
Guillaume Sadegh 2009-09-29 15:16:26 +02:00
parent d037008cdc
commit d6e22c0674
7 changed files with 984 additions and 12 deletions

View file

@ -40,6 +40,7 @@ tgba_HEADERS = \
tgbabddconcreteproduct.hh \
tgbabddcoredata.hh \
tgbabddfactory.hh \
tgbacomplement.hh \
tgbaexplicit.hh \
tgbafromfile.hh \
tgbascc.hh \
@ -63,8 +64,9 @@ libtgba_la_SOURCES = \
tgbabddconcretefactory.cc \
tgbabddconcreteproduct.cc \
tgbabddcoredata.cc \
tgbafromfile.cc \
tgbacomplement.cc \
tgbaexplicit.cc \
tgbafromfile.cc \
tgbaproduct.cc \
tgbareduc.cc \
tgbasafracomplement.cc \

794
src/tgba/tgbacomplement.cc Normal file
View file

@ -0,0 +1,794 @@
#include <vector>
#include <cassert>
#include <sstream>
#include <boost/shared_ptr.hpp>
#include "bdd.h"
#include "state.hh"
#include "tgbacomplement.hh"
#include "misc/hash.hh"
#include "tgbaalgos/bfssteps.hh"
#include "misc/hashfunc.hh"
#include "ltlast/formula.hh"
#include "ltlast/constant.hh"
namespace spot
{
/// \brief An Equivalence Relation for \c boost::shared_ptr<const state>.
/// \ingroup tgba_essentials
///
/// This is meant to be used as a comparison functor for
/// Sgi \c hash_map whose key are of type \c boost::shared_ptr<const state>.
///
/// For instance here is how one could declare
/// a map of \c boost::shared_ptr<const state>
/// \code
/// // Remember how many times each state has been visited.
/// Sgi::hash_map<boost::shared_ptr<const state>, int,
/// spot::state_shared_ptr_hash,
/// spot::state_shared_ptr_equal> seen;
/// \endcode
struct state_shared_ptr_equal:
public std::binary_function<boost::shared_ptr<const state>,
boost::shared_ptr<const state>, bool>
{
bool
operator()(boost::shared_ptr<const state> left,
boost::shared_ptr<const state> right) const
{
assert(left);
return 0 == left->compare(right.get());
}
};
/// \brief Hash Function for \c boost::shared_ptr<const state>.
/// \ingroup tgba_essentials
/// \ingroup hash_funcs
///
/// This is meant to be used as a hash functor for
/// Sgi's \c hash_map whose key are of type
/// \c boost::shared_ptr<const state>.
///
/// For instance here is how one could declare
/// a map of \c boost::shared_ptr<const state>.
/// \code
/// // Remember how many times each state has been visited.
/// Sgi::hash_map<boost::shared_ptr<const state>, int,
/// spot::state_shared_ptr_hash,
/// spot::state_shared_ptr_equal> seen;
/// \endcode
struct state_shared_ptr_hash:
public std::unary_function<boost::shared_ptr<const state>, size_t>
{
size_t
operator()(boost::shared_ptr<const state> that) const
{
assert(that);
return that->hash();
}
};
namespace
{
////////////////////////////////////////
// rank
/// \brief A rank structure, one of the main structure of the algorithm.
///
/// A rank has a number (\a rank) that refers to the depth in the DAG of
/// the current word. When the rank is odd, a \a condition is associated
/// to this rank.
struct rank_t
{
mutable unsigned rank;
mutable bdd_ordered condition;
bool operator<(const rank_t& other) const
{
return rank < other.rank ||
condition.order() < other.condition.order();
}
unsigned get_rank() const
{
return rank;
}
bdd_ordered get_condition() const
{
return condition;
}
size_t hash() const
{
size_t hash = wang32_hash(rank);
if (rank & 1)
hash ^= wang32_hash(condition.order());
return hash;
}
std::string format() const
{
std::ostringstream ss;
ss << "{rank: " << rank;
if (rank & 1)
{
ss << ", bdd: {" << condition.order() << ", " <<
bddset << condition.get_bdd() << "} ";
}
ss << "}";
return ss.str();
}
};
// typedefs.
typedef boost::shared_ptr<const state> shared_state;
typedef Sgi::hash_map<shared_state, rank_t,
state_shared_ptr_hash,
state_shared_ptr_equal> state_rank_map;
typedef Sgi::hash_set<shared_state,
state_shared_ptr_hash,
state_shared_ptr_equal> state_set;
////////////////////////////////////////
// count_states
/// \brief Count the number of states in a tgba.
class count_states : public bfs_steps
{
public:
count_states(const tgba* a)
: bfs_steps(a)
{
shared_state s(a->get_init_state());
states_.insert(s);
tgba_run::steps l;
search(s.get(), l);
}
virtual const state* filter(const state* s)
{
shared_state _s(s);
if (states_.find(_s) == states_.end())
{
states_.insert(_s);
return s;
}
return 0;
}
virtual bool match(tgba_run::step&, const state*)
{
return false;
}
size_t size() const
{
return states_.size();
}
private:
state_set states_;
};
////////////////////////////////////////
// state_complement
/// States used by spot::tgba_complement.
/// A state has a map of states associated to ranks, and a set
/// of filtered states.
/// \ingroup tgba_representation
class state_complement : public state
{
public:
state_complement();
state_complement(const state_complement& other);
state_complement(state_rank_map state_map, state_set state_filter);
virtual ~state_complement() {}
virtual int compare(const state* other) const;
virtual size_t hash() const;
virtual state_complement* clone() const;
void add(shared_state state, const rank_t& rank);
const state_rank_map& get_state_map() const;
const state_set& get_filter_set() const;
bool accepting() const;
private:
state_rank_map state_map_;
state_set state_filter_;
};
state_complement::state_complement()
{
}
state_complement::state_complement(state_rank_map state_map,
state_set state_filter)
: state_map_(state_map), state_filter_(state_filter)
{
}
state_complement::state_complement(const state_complement& other)
{
state_map_ = other.state_map_;
state_filter_ = other.state_filter_;
}
int
state_complement::compare(const state* o) const
{
const state_complement* other = dynamic_cast<const state_complement*>(o);
if (other == 0)
return 1;
if (state_map_.size() < other->state_map_.size())
return -1;
else if (state_map_.size() > other->state_map_.size())
return 1;
if (state_filter_.size() < other->state_filter_.size())
return -1;
else if (state_filter_.size() > other->state_filter_.size())
return 1;
{
state_rank_map::const_iterator i = state_map_.begin();
state_rank_map::const_iterator j = other->state_map_.begin();
while (i != state_map_.end() && j != other->state_map_.end())
{
int result = i->first->compare(j->first.get());
if (result != 0)
return result;
if (i->second < j->second)
return -1;
if (j->second < i->second)
return 1;
++i;
++j;
}
}
{
state_set::const_iterator i = state_filter_.begin();
state_set::const_iterator j = other->state_filter_.begin();
while (i != state_filter_.end() && j != other->state_filter_.end())
{
int result = (*i)->compare(j->get());
if (result != 0)
return result;
++i;
++j;
}
}
return 0;
}
size_t
state_complement::hash() const
{
size_t hash = 0;
{
state_rank_map::const_iterator i = state_map_.begin();
while (i != state_map_.end())
{
hash ^= i->first->hash();
hash ^= i->second.hash();
++i;
}
}
{
state_set::const_iterator i = state_filter_.begin();
while (i != state_filter_.end())
{
hash ^= (*i)->hash();
++i;
}
}
return hash;
}
state_complement*
state_complement::clone() const
{
return new state_complement(*this);
}
void
state_complement::add(shared_state state,
const rank_t& rank)
{
state_map_[state] = rank;
}
const state_rank_map&
state_complement::get_state_map() const
{
return state_map_;
}
const state_set&
state_complement::get_filter_set() const
{
return state_filter_;
}
bool
state_complement::accepting() const
{
return state_filter_.empty();
}
/// Successor iterators used by spot::tgba_complement.
/// \ingroup tgba_representation
///
/// Since the algorithm works on-the-fly, the key components of the
/// algorithm are implemented in this class.
///
///
class tgba_complement_succ_iterator: public tgba_succ_iterator
{
public:
typedef std::list<bdd> bdd_list_t;
tgba_complement_succ_iterator(const tgba_sgba_proxy* automaton,
bdd the_acceptance_cond,
const acc_list_t& acc_list,
const state_complement* origin);
virtual ~tgba_complement_succ_iterator() {};
virtual void first();
virtual void next();
virtual bool done() const;
virtual state_complement* current_state() const;
virtual bdd current_condition() const;
virtual bdd current_acceptance_conditions() const;
private:
/// \brief Create the highest rank of \a origin_ as origin and
/// \a condition as successor condition.
void successor_highest_rank(bdd condition);
void get_atomics(std::set<int>& list, bdd c);
void get_conj_list();
bool is_valid_rank() const;
bool next_valid_rank();
const tgba_sgba_proxy* automaton_;
bdd the_acceptance_cond_;
const acc_list_t& acc_list_;
const state_complement* origin_;
const state_complement* current_state_;
bdd_list_t condition_list_;
bdd_list_t::const_iterator current_condition_;
state_rank_map highest_current_ranks_;
state_rank_map current_ranks_;
state_set highest_state_set_;
};
tgba_complement_succ_iterator::
tgba_complement_succ_iterator(const tgba_sgba_proxy* automaton,
bdd the_acceptance_cond,
const acc_list_t& acc_list,
const state_complement* origin)
: automaton_(automaton), the_acceptance_cond_(the_acceptance_cond),
acc_list_(acc_list), origin_(origin)
{
get_conj_list();
}
/// Insert in \a list atomic properties of the formula \a c.
void
tgba_complement_succ_iterator::get_atomics(std::set<int>& list, bdd c)
{
bdd current = bdd_satone(c);
while (current != bddtrue && current != bddfalse)
{
list.insert(bdd_var(current));
bdd high = bdd_high(current);
if (high == bddfalse)
current = bdd_low(current);
else
current = high;
}
}
/// Create the conjunction of all the atomic properties from
/// the successors of the current state.
void
tgba_complement_succ_iterator::get_conj_list()
{
std::set<int> atomics;
condition_list_.clear();
state_rank_map sr_map = origin_->get_state_map();
// Retrieve all the atomics in acceptance conditions.
for (state_rank_map::const_iterator i = sr_map.begin();
i != sr_map.end();
++i)
{
tgba_succ_iterator* iterator = automaton_->succ_iter(i->first.get());
for (iterator->first(); !iterator->done(); iterator->next())
{
bdd c = iterator->current_condition();
get_atomics(atomics, c);
}
delete iterator;
}
// Compute the conjunction of all those atomic properties.
unsigned atomics_size = atomics.size();
assert(atomics_size < 32);
for (unsigned i = 1; i <= static_cast<unsigned>(1 << atomics_size); ++i)
{
bdd result = bddtrue;
unsigned position = 1;
for (std::set<int>::const_iterator a_it = atomics.begin();
a_it != atomics.end();
++a_it, position <<= 1)
{
bdd this_atomic;
if (position & i)
this_atomic = bdd_ithvar(*a_it);
else
this_atomic = bdd_nithvar(*a_it);
result = bdd_apply(result, this_atomic, bddop_and);
}
condition_list_.push_back(result);
}
}
/// Check whether \a current_ranks_ is a valid rank.
/// For each odd rank, its condition associated must not
/// be present in its tracked state.
bool
tgba_complement_succ_iterator::is_valid_rank() const
{
for (state_rank_map::const_iterator i = current_ranks_.begin();
i != current_ranks_.end();
++i)
{
if (i->second.rank & 1)
{
if ((automaton_->state_acceptance_conditions(i->first.get()) &
i->second.condition.get_bdd()) != bddfalse)
return false;
}
}
return true;
}
/// \brief Decrease \a current_ranks_ and produces a valid rank.
/// \a current_ranks_ is a map of states to a rank.
/// A rank for a state is valid if it is inferior than the rank of its
/// predecessor.
/// When the rank is odd, its has an acceptance condition associated that
/// must not be in its associated state.
/// \return false if there is not valid rank as successor.
bool tgba_complement_succ_iterator::next_valid_rank()
{
state_rank_map::const_iterator i;
do {
for (i = current_ranks_.begin();
i != current_ranks_.end();
++i)
{
if (i->second.rank != 0)
{
if (i->second.rank & 1)
{
if (i->second.condition.order() == 0)
--i->second.rank;
else
i->second.condition =
acc_list_[i->second.condition.order() - 1];
}
else
{
--i->second.rank;
i->second.condition = acc_list_[acc_list_.size() - 1];
}
break;
}
else
{
current_ranks_[i->first] = highest_current_ranks_[i->first];
}
}
}
while ((i != current_ranks_.end()) && !is_valid_rank());
return i != current_ranks_.end();
}
/// \brief Create the highest rank of \a origin_ as origin and
/// \a condition as successor condition.
void
tgba_complement_succ_iterator::successor_highest_rank(bdd condition)
{
// Highest rank for bdd.
state_rank_map sr_map = origin_->get_state_map();
highest_current_ranks_.clear();
for (state_rank_map::const_iterator i = sr_map.begin();
i != sr_map.end();
++i)
{
tgba_succ_iterator* iterator = automaton_->succ_iter(i->first.get());
for (iterator->first(); !iterator->done(); iterator->next())
{
bdd c = iterator->current_condition();
if ((c & condition) != bddfalse)
{
shared_state s(iterator->current_state());
if (highest_current_ranks_.find(s) != highest_current_ranks_.end())
{
if (i->second < highest_current_ranks_[s])
highest_current_ranks_[s] = i->second;
}
else
highest_current_ranks_[s] = i->second;
}
}
delete iterator;
}
// Highest $O$ set of the algorithm.
state_set s_set = origin_->get_filter_set();
highest_state_set_.clear();
for (state_set::const_iterator i = s_set.begin();
i != s_set.end();
++i)
{
tgba_succ_iterator* iterator = automaton_->succ_iter(i->get());
for (iterator->first(); !iterator->done(); iterator->next())
{
bdd c = iterator->current_condition();
if ((c & condition) != bddfalse)
{
shared_state s(iterator->current_state());
highest_state_set_.insert(s);
}
}
delete iterator;
}
current_ranks_ = highest_current_ranks_;
}
void
tgba_complement_succ_iterator::first()
{
current_condition_ = condition_list_.begin();
if (done())
return;
successor_highest_rank(*current_condition_);
if (!is_valid_rank())
next_valid_rank();
}
void
tgba_complement_succ_iterator::next()
{
if (done())
return;
if (!next_valid_rank())
{
++current_condition_;
if (!done())
{
successor_highest_rank(*current_condition_);
if (!is_valid_rank())
next_valid_rank();
}
}
}
bool
tgba_complement_succ_iterator::done() const
{
return (current_condition_ == condition_list_.end());
}
state_complement*
tgba_complement_succ_iterator::current_state() const
{
if (done())
return 0;
// If the filter set is empty, all the states of the map
// that are associated to an even rank create the new filter set.
state_set filter;
if (origin_->get_filter_set().empty())
{
for (state_rank_map::const_iterator i = current_ranks_.begin();
i != current_ranks_.end();
++i)
if (!(i->second.rank & 1))
filter.insert(i->first);
}
else
{
// It the filter set is non-empty, we delete from this set states
// that are now associated to an odd rank.
for (state_set::const_iterator i = highest_state_set_.begin();
i != highest_state_set_.end();
++i)
{
state_rank_map::const_iterator s(current_ranks_.find(*i));
assert(s != current_ranks_.end());
if (!(s->second.get_rank() & 1))
filter.insert(*i);
}
}
return new state_complement(current_ranks_, filter);
}
bdd
tgba_complement_succ_iterator::current_condition() const
{
if (done())
return bddfalse;
return *current_condition_;
}
bdd
tgba_complement_succ_iterator::current_acceptance_conditions() const
{
if (done())
return bddfalse;
// This algorithm doesn't generalized acceptance conditions.
if (origin_->accepting())
return the_acceptance_cond_;
else
return bddfalse;
}
} // end namespace anonymous.
/// Retrieve all the atomic acceptance conditions of the automaton.
/// They are inserted into \a acc_list_.
void
tgba_complement::get_acc_list()
{
bdd c = automaton_->all_acceptance_conditions();
bdd current = bdd_satone(c);
unsigned i = 0;
while (current != bddtrue && current != bddfalse)
{
acc_list_.push_back(bdd_ordered(bdd_var(current), i));
++i;
bdd high = bdd_high(current);
if (high == bddfalse)
current = bdd_low(current);
else
current = high;
}
}
tgba_complement::tgba_complement(const tgba* a)
: automaton_(new tgba_sgba_proxy(a))
{
get_dict()->register_all_variables_of(automaton_, this);
int v = get_dict()
->register_acceptance_variable(ltl::constant::true_instance(), this);
the_acceptance_cond_ = bdd_ithvar(v);
{
count_states count(automaton_);
nb_states_ = count.size();
}
get_acc_list();
}
tgba_complement::~tgba_complement()
{
get_dict()->unregister_all_my_variables(this);
delete automaton_;
}
state*
tgba_complement::get_init_state() const
{
state_complement* init = new state_complement();
rank_t r = {2 * nb_states_, bdd_ordered()};
init->add(shared_state(automaton_->get_init_state()), r);
return init;
}
tgba_succ_iterator*
tgba_complement::succ_iter(const state* local_state,
const state*,
const tgba*) const
{
const state_complement* state =
dynamic_cast<const state_complement*>(local_state);
assert(state);
return new tgba_complement_succ_iterator(automaton_,
the_acceptance_cond_,
acc_list_, state);
}
bdd_dict*
tgba_complement::get_dict() const
{
return automaton_->get_dict();
}
std::string
tgba_complement::format_state(const state* state) const
{
const state_complement* s = dynamic_cast<const state_complement*>(state);
assert(s);
std::ostringstream ss;
ss << "{ set: {" << std::endl;
const state_rank_map& state_map = s->get_state_map();
const state_set& state_filter = s->get_filter_set();
for (state_rank_map::const_iterator i = state_map.begin();
i != state_map.end();
++i)
{
ss << " {" << automaton_->format_state(i->first.get())
<< ", " << i->second.format() << "}" << std::endl;
}
ss << "} odd-less: {";
for (state_set::const_iterator i = state_filter.begin();
i != state_filter.end();
++i)
{
ss << " " << automaton_->format_state(i->get()) << std::endl;
}
ss << "} }";
return ss.str();
}
bdd
tgba_complement::all_acceptance_conditions() const
{
return the_acceptance_cond_;
}
bdd
tgba_complement::neg_acceptance_conditions() const
{
return !the_acceptance_cond_;
}
bdd
tgba_complement::compute_support_conditions(const state* state) const
{
tgba_succ_iterator* i = succ_iter(state);
bdd result = bddtrue;
for (i->first(); !i->done(); i->next())
result |= i->current_condition();
delete i;
return result;
}
bdd
tgba_complement::compute_support_variables(const state* state) const
{
tgba_succ_iterator* i = succ_iter(state);
bdd result = bddtrue;
for (i->first(); !i->done(); i->next())
result &= bdd_support(i->current_condition());
delete i;
return result;
}
} // end namespace spot.

View file

@ -0,0 +1,99 @@
#ifndef SPOT_TGBA_TGBACOMPLEMENT_HH
#define SPOT_TGBA_TGBACOMPLEMENT_HH
#include <vector>
#include "bdd.h"
#include "tgba.hh"
#include "tgba/tgbasgba.hh"
namespace spot
{
class bdd_ordered
{
public:
bdd_ordered()
: order_(0)
{};
bdd_ordered(int bdd_, unsigned order_)
: bdd_(bdd_), order_(order_)
{
}
unsigned order() const
{
return order_;
}
unsigned& order()
{
return order_;
}
bdd get_bdd() const
{
return bdd_ithvar(bdd_);
}
private:
int bdd_;
unsigned order_;
};
typedef std::vector<bdd_ordered> acc_list_t;
/// \brief Build a complemented automaton.
/// \ingroup tgba
///
/// The construction comes from:
/// @Article{ kupferman.05.tcs,
/// title = {{From complementation to certification}},
/// author = {Kupferman, O. and Vardi, M.Y.},
/// journal = {Theoretical Computer Science},
/// volume = {345},
/// number = {1},
/// pages = {83--100},
/// year = {2005},
/// publisher = {Elsevier}
/// }
///
/// The original automaton is used as a States-based Generalized
/// Büchi Automaton.
///
/// The construction is done on-the-fly, by the
/// \c tgba_complement_succ_iterator class.
/// \see tgba_complement_succ_iteratora
class tgba_complement : public tgba
{
public:
tgba_complement(const tgba* a);
virtual ~tgba_complement();
// tgba interface
virtual state* get_init_state() const;
virtual tgba_succ_iterator*
succ_iter(const state* local_state,
const state* global_state = 0,
const tgba* global_automaton = 0) const;
virtual bdd_dict* get_dict() const;
virtual std::string format_state(const state* state) const;
virtual bdd all_acceptance_conditions() const;
virtual bdd neg_acceptance_conditions() const;
protected:
virtual bdd compute_support_conditions(const state* state) const;
virtual bdd compute_support_variables(const state* state) const;
private:
/// Retrieve all the atomic acceptance conditions of the automaton.
/// They are inserted into \a acc_list_.
void get_acc_list();
private:
const tgba_sgba_proxy* automaton_;
bdd the_acceptance_cond_;
unsigned nb_states_;
acc_list_t acc_list_;
}; // end class tgba_complement.
} // end namespace spot.
#endif // !SPOT_TGBA_TGBACOMPLEMENT_HH

View file

@ -31,7 +31,7 @@ check_SCRIPTS = defs
# Keep this sorted alphabetically.
check_PROGRAMS = \
bddprod \
safracomplement \
complement \
explicit \
expldot \
explprod \

View file

@ -16,18 +16,22 @@
#include "tgba/tgbatba.hh"
#include "tgba/tgbasafracomplement.hh"
#include "tgba/tgbacomplement.hh"
void usage(const char* prog)
{
std::cout << "usage: " << prog << " [options]" << std::endl;
std::cout << "with options" << std::endl
<< "-S Use safra complementation"
<< std::endl
<< "-s buchi_automaton display the safra automaton"
<< std::endl
<< "-a buchi_automaton display the complemented automaton"
<< std::endl
<< "-astat buchi_automaton statistics for !a" << std::endl
<< "-fstat formula statistics for !A_f" << std::endl
<< "-f formula test !A_f and !A_!f" << std::endl;
<< "-f formula test !A_f and !A_!f" << std::endl
<< "-p formula print the automaton for f" << std::endl;
}
int main(int argc, char* argv[])
@ -40,6 +44,8 @@ int main(int argc, char* argv[])
bool stats = false;
bool formula = false;
bool automaton = false;
bool safra = false;
bool print_formula = false;
if (argc < 3)
{
@ -67,12 +73,16 @@ int main(int argc, char* argv[])
switch (argv[i][1])
{
case 'S':
safra = true; break;
case 's':
print_safra = true; break;
safra = true; print_safra = true; break;
case 'a':
print_automaton = true; break;
case 'f':
check = true; break;
case 'p':
print_formula = true; break;
default:
std::cerr << "unrecognized option `-" << argv[i][1]
<< "'" << std::endl;
@ -98,14 +108,46 @@ int main(int argc, char* argv[])
if (spot::format_tgba_parse_errors(std::cerr, file, pel))
return 2;
spot::tgba_safra_complement* complement =
new spot::tgba_safra_complement(a);
spot::tgba* complement = 0;
if (safra)
complement = new spot::tgba_safra_complement(a);
else
complement = new spot::tgba_complement(a);
if (print_automaton)
spot::dotty_reachable(std::cout, complement);
if (print_safra)
spot::display_safra(complement);
{
spot::tgba_safra_complement* safra_complement =
dynamic_cast<spot::tgba_safra_complement*>(complement);
spot::display_safra(safra_complement);
}
delete complement;
delete a;
}
else if (print_formula)
{
spot::tgba* a;
spot::ltl::formula* f1 = 0;
spot::ltl::parse_error_list p1;
f1 = spot::ltl::parse(file, p1);
if (spot::ltl::format_parse_errors(std::cerr, file, p1))
return 2;
a = spot::ltl_to_tgba_fm(f1, dict);
spot::tgba* complement = 0;
if (safra)
complement = new spot::tgba_safra_complement(a);
else
complement = new spot::tgba_complement(a);
spot::dotty_reachable(std::cout, complement);
spot::ltl::destroy(f1);
delete complement;
delete a;
}
@ -133,7 +175,7 @@ int main(int argc, char* argv[])
return 2;
}
spot::tgba_safra_complement* complement =
spot::tgba_safra_complement* safra_complement =
new spot::tgba_safra_complement(a);
spot::tgba_statistics a_size = spot::stats_reachable(a);
@ -152,8 +194,18 @@ int main(int argc, char* argv[])
<< std::endl;
delete buchi;
spot::tgba_statistics b_size = spot::stats_reachable(complement);
std::cout << "Complement: "
spot::tgba_statistics b_size = spot::stats_reachable(safra_complement);
std::cout << "Safra Complement: "
<< b_size.states << ", "
<< b_size.transitions << ", "
<< safra_complement->number_of_acceptance_conditions()
<< std::endl;
spot::tgba_complement* complement =
new spot::tgba_complement(a);
b_size = spot::stats_reachable(complement);
std::cout << "GBA Complement: "
<< b_size.states << ", "
<< b_size.transitions << ", "
<< complement->number_of_acceptance_conditions()
@ -191,8 +243,19 @@ int main(int argc, char* argv[])
spot::ltl::formula* nf1 = spot::ltl::unop::instance(spot::ltl::unop::Not,
spot::ltl::clone(f1));
spot::tgba* Anf = spot::ltl_to_tgba_fm(nf1, dict);
spot::tgba_safra_complement* nAf = new spot::tgba_safra_complement(Af);
spot::tgba_safra_complement* nAnf = new spot::tgba_safra_complement(Anf);
spot::tgba* nAf;
spot::tgba* nAnf;
if (safra)
{
nAf = new spot::tgba_safra_complement(Af);
nAnf = new spot::tgba_safra_complement(Anf);
}
else
{
nAf = new spot::tgba_complement(Af);
nAnf = new spot::tgba_complement(Anf);
}
spot::tgba* prod = new spot::tgba_product(nAf, nAnf);
spot::emptiness_check* ec = spot::couvreur99(prod);
spot::emptiness_check_result* res = ec->check();

View file

@ -26,6 +26,7 @@ set -e
while read f; do
run 0 ../complement -f "$f"
run 0 ../complement -S -f "$f"
done <<EOF
GFa
FGa