introduce containement checks functions

* spot/twaalgos/contains.hh, spot/twaalgos/contains.cc: New files.
* spot/twaalgos/Makefile.am, python/spot/impl.i: Add them.
* python/spot/__init__.py: Also attach these functions as methods,
and support string arguments.
* tests/python/contains.ipynb: New file.
* tests/Makefile.am, doc/org/tut.org: Add it.
* bin/autfilt.cc, tests/python/streett_totgba.py, tests/python/sum.py,
tests/python/toweak.py: Use the new function.
This commit is contained in:
Alexandre Duret-Lutz 2018-05-04 17:00:38 +02:00
parent 58d9a12495
commit d6f9618172
13 changed files with 547 additions and 60 deletions

View file

@ -332,6 +332,7 @@ TESTS_ipython = \
python/atva16-fig2b.ipynb \
python/automata-io.ipynb \
python/automata.ipynb \
python/contains.ipynb \
python/decompose.ipynb \
python/formulas.ipynb \
python/gen.ipynb \

328
tests/python/contains.ipynb Normal file
View file

@ -0,0 +1,328 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import spot\n",
"spot.setup(show_default='.a')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Containement checks\n",
"\n",
"The `spot.contains()` function checks whether the language of its left argument is included in the language of its right argument. The arguments may mix automata and formulas; the latter can be given as strings."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"f = spot.formula('GFa'); aut_f = f.translate()\n",
"g = spot.formula('FGa'); aut_g = g.translate()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spot.contains(f, g), spot.contains(g, f)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spot.contains(aut_f, aut_g), spot.contains(aut_g, aut_f)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spot.contains(aut_f, g), spot.contains(aut_g, f)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spot.contains(f, aut_g), spot.contains(g, aut_f)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spot.contains(\"GFa\", aut_g), spot.contains(\"FGa\", aut_f)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Those functions are also usable as methods:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f.contains(aut_g), g.contains(aut_f)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"aut_f.contains(\"FGa\"), aut_g.contains(\"GFa\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Equivalence checks\n",
"\n",
"The `spot.are_equivalent()` tests the equivalence of the languages of its two arguments. Note that the corresponding method is called `equivalent_to()`."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, False)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spot.are_equivalent(f, g), spot.are_equivalent(aut_f, aut_g)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, False)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f.equivalent_to(aut_g), aut_f.equivalent_to(g)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"aut_f.equivalent_to('XXXGFa')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Containement checks between formulas with cache\n",
"\n",
"In the case of containement checks between formulas, `language_containement_checker` instances provide similar services, but they cache automata representing the formulas checked. This should be prefered when performing several containement checks using the same formulas."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"lcc = spot.language_containment_checker()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, True)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lcc.contains(f, g), lcc.contains(g, f)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lcc.are_equivalent(f, g)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View file

@ -1,6 +1,6 @@
#!/usr/bin/python3
# -*- mode: python; coding: utf-8 -*-
# Copyright (C) 2017 Laboratoire de Recherche et Développement de
# Copyright (C) 2017, 2018 Laboratoire de Recherche et Développement de
# l'EPITA.
#
# This file is part of Spot, a model checking library.
@ -23,29 +23,6 @@ import os
import shutil
import sys
def parse_multiple_auts(hoa):
l = hoa.split('--END--')
a = []
cpt = 0
for x in l:
if x.isspace() or x == '':
continue
x = x + "--END--"
a.append(spot.automaton(x))
return a
def ensure_deterministic(a):
if a.is_existential() and spot.is_deterministic(a):
return a
return a.postprocess('Generic', 'deterministic', 'Low')
def equivalent(a1, a2):
na1 = spot.dualize(ensure_deterministic(a1))
na2 = spot.dualize(ensure_deterministic(a2))
return (not a1.intersects(na2)) and (not a2.intersects(na1))
def tgba(a):
if not a.is_existential():
a = spot.remove_alternation(a)
@ -54,11 +31,11 @@ def tgba(a):
def test_aut(aut):
stgba = tgba(aut)
assert equivalent(stgba, aut)
assert stgba.equivalent_to(aut)
os.environ["SPOT_STREETT_CONV_MIN"] = '1'
sftgba = tgba(aut)
del os.environ["SPOT_STREETT_CONV_MIN"]
assert equivalent(stgba, sftgba)
assert stgba.equivalent_to(sftgba)
slike = spot.simplify_acceptance(aut)
@ -66,7 +43,7 @@ def test_aut(aut):
os.environ["SPOT_STREETT_CONV_MIN"] = "1"
slftgba = tgba(slike)
del os.environ["SPOT_STREETT_CONV_MIN"]
assert equivalent(sltgba, slftgba)
assert sltgba.equivalent_to(slftgba)
# Those automata are generated with ltl2dstar, which is NOT part of spot,
# using the following command:

View file

@ -1,6 +1,5 @@
# -*- mode: python; coding: utf-8 -*-
# Copyright (C) 2017 Laboratoire de Recherche et Développement
# de l'Epita
# Copyright (C) 2017, 2018 Laboratoire de Recherche et Développement de l'Epita
#
# This file is part of Spot, a model checking library.
#
@ -55,37 +54,29 @@ def produce_phi(rg, n):
phi.append(f)
return phi
def equivalent(a, phi):
negphi = spot.formula.Not(phi)
nega = spot.dualize(spot.tgba_determinize(a))
a2 = spot.ltl_to_tgba_fm(phi, dict)
nega2 = spot.ltl_to_tgba_fm(negphi, dict)
return spot.product(a, nega2).is_empty()\
and spot.product(nega, a2).is_empty()
phi1 = produce_phi(rg, 1000)
phi2 = produce_phi(rg, 1000)
inputres = []
aut = []
for p in zip(phi1, phi2):
inputres.append(spot.formula.Or(p))
a1 = spot.ltl_to_tgba_fm(p[0], dict)
a2 = spot.ltl_to_tgba_fm(p[1], dict)
a1 = spot.ltl_to_tgba_fm(p[0], dict)
a2 = spot.ltl_to_tgba_fm(p[1], dict)
aut.append(spot.to_generalized_buchi( \
spot.remove_alternation(spot.sum(a1, a2), True)))
for p in zip(aut, inputres):
assert equivalent(p[0], p[1])
assert p[0].equivalent_to(p[1])
aut = []
inputres = []
for p in zip(phi1, phi2):
inputres.append(spot.formula.And(p))
a1 = spot.ltl_to_tgba_fm(p[0], dict)
a2 = spot.ltl_to_tgba_fm(p[1], dict)
a1 = spot.ltl_to_tgba_fm(p[0], dict)
a2 = spot.ltl_to_tgba_fm(p[1], dict)
aut.append(spot.to_generalized_buchi( \
spot.remove_alternation(spot.sum_and(a1, a2), True)))
for p in zip(aut, inputres):
assert equivalent(p[0], p[1])
assert p[0].equivalent_to(p[1])

View file

@ -1,5 +1,5 @@
# -*- mode: python; coding: utf-8 -*-
# Copyright (C) 2017 Laboratoire de Recherche et Développement
# Copyright (C) 2017, 2018 Laboratoire de Recherche et Développement
# de l'Epita
#
# This file is part of Spot, a model checking library.
@ -29,16 +29,10 @@ GF!b
(b & GF!b) | (!b & FGb)
b | (a & XF(b R a)) | (!a & XG(!b U !a))"""
def equivalent(a, phi):
negphi = spot.formula.Not(phi)
nega = spot.dualize(a)
return not (spot.translate(negphi).intersects(a)
or spot.translate(phi).intersects(nega))
def test_phi(phi):
a = spot.translate(phi, 'TGBA', 'SBAcc')
res = spot.to_weak_alternating(spot.dualize(a))
assert equivalent(res, spot.formula.Not(spot.formula(phi)))
assert res.equivalent_to(spot.formula.Not(spot.formula(phi)))
for p in phi1.split('\n'):
print(p)
@ -87,4 +81,4 @@ State: 6
--END--
""")
a2 = spot.to_weak_alternating(a2)
assert equivalent(a2, phi2)
assert a2.equivalent_to(phi2)