dstar: Improve conversion from DRA to BA.
Extended former conversion from DRA->DBA to handle the case where some SCC is not DBA-realizable. * src/dstarparse/dra2dba.cc: Rename as... * src/dstarparse/dra2ba.cc: ... this. (dra_to_dba, dra_to_dba_worker): Rename as... (dra_to_ba, dra_to_ba_worker): ... these and extend. * src/dstarparse/Makefile.am, src/dstarparse/public.hh, src/dstarparse/dstar2tgba.cc, src/dstarparse/nra2nba.cc: Adjust. * NEWS: Update the description of dstar2tgba accordingly.
This commit is contained in:
parent
c58bfbd2ee
commit
d7027c34d3
6 changed files with 128 additions and 38 deletions
375
src/dstarparse/dra2ba.cc
Normal file
375
src/dstarparse/dra2ba.cc
Normal file
|
|
@ -0,0 +1,375 @@
|
|||
// Copyright (C) 2013 Laboratoire de Recherche et Développement de
|
||||
// l'Epita (LRDE).
|
||||
//
|
||||
// This file is part of Spot, a model checking library.
|
||||
//
|
||||
// Spot is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation; either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||||
// License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "public.hh"
|
||||
#include "tgba/tgbamask.hh"
|
||||
#include "tgbaalgos/scc.hh"
|
||||
#include "tgbaalgos/reachiter.hh"
|
||||
#include "tgbaalgos/gtec/gtec.hh"
|
||||
#include "tgbaalgos/sccfilter.hh"
|
||||
#include "ltlast/constant.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
|
||||
// IMPORTANT NOTE: If you attempt to follow Krishnan et
|
||||
// al. (ISAAC'94) paper while reading this code, make sure you
|
||||
// understand the difference between their Rabin acceptance
|
||||
// definition and the one we are using.
|
||||
//
|
||||
// Here, a cycle is accepting in a Rabin automaton if there exists
|
||||
// an acceptance pair (Lᵢ, Uᵢ) such that some states from Lᵢ are
|
||||
// visited while no states from Uᵢ are visited. This is the
|
||||
// same definition used by ltl2dstar.
|
||||
//
|
||||
// In the Krishnan et al. paper, a cycle is accepting in a Rabin
|
||||
// automaton if there exists an acceptance pair (Lᵢ, Uᵢ) such that
|
||||
// some states from Lᵢ are visited and all visited states belongs to
|
||||
// Uᵢ. In other words, you can switch from one definition to
|
||||
// the other by complementing the Uᵢ set.
|
||||
//
|
||||
// This is a source of confusion; you have been warned.
|
||||
|
||||
|
||||
// This function is defined in nra2nba.cc, and used only here.
|
||||
SPOT_LOCAL
|
||||
tgba* nra_to_nba(const dstar_aut* nra, const tgba* aut);
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef std::list<const state*> state_list;
|
||||
|
||||
// The function that takes aut and dra is first arguments are
|
||||
// either called on the main automaton, in which case dra->aut ==
|
||||
// aut, or it is called on a sub-automaton in which case aut is a
|
||||
// masked version of dra->aut. So we should always explore the
|
||||
// automaton aut, but because the state of aut are states of
|
||||
// dra->aut, we can use dra->aut to get labels, and dra->acccs to
|
||||
// retrive acceptances.
|
||||
|
||||
static bool
|
||||
filter_states(const tgba* aut,
|
||||
const dstar_aut* dra,
|
||||
const state_list& sl,
|
||||
state_list& final,
|
||||
state_list& nonfinal);
|
||||
|
||||
static bool
|
||||
filter_scc(const tgba* aut,
|
||||
const dstar_aut* dra,
|
||||
state_list& final,
|
||||
state_list& nonfinal)
|
||||
{
|
||||
// Iterate over all non-trivial SCCs.
|
||||
scc_map sm(aut);
|
||||
sm.build_map();
|
||||
for (unsigned scc_max = sm.scc_count(), scc = 0;
|
||||
scc < scc_max; ++scc)
|
||||
{
|
||||
if (sm.trivial(scc))
|
||||
{
|
||||
nonfinal.push_back(sm.one_state_of(scc));
|
||||
continue;
|
||||
}
|
||||
|
||||
// Get the list of states of that SCC
|
||||
const std::list<const state*>& sl = sm.states_of(scc);
|
||||
assert(!sl.empty());
|
||||
if (!filter_states(aut, dra, sl, final, nonfinal))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool
|
||||
filter_states(const tgba* aut,
|
||||
const dstar_aut* dra,
|
||||
const state_list& sl,
|
||||
state_list& final,
|
||||
state_list& nonfinal)
|
||||
{
|
||||
// Check whether the SCC composed of all states in sl contains
|
||||
// non-accepting cycles.
|
||||
//
|
||||
// A cycle is accepting (in a Rabin automaton) if there exists
|
||||
// an acceptance pair (Lᵢ, Uᵢ) such that some states from Lᵢ
|
||||
// are visited while no states from Uᵢ are visited.
|
||||
//
|
||||
// Consequently, a cycle is non-accepting if for all acceptance
|
||||
// pairs (Lᵢ, Uᵢ), either no states from Lᵢ are visited or some
|
||||
// states from Uᵢ are visited. (This corresponds to an
|
||||
// accepting cycle with Streett acceptance.)
|
||||
//
|
||||
// Now we consider the SCC as one large cycle and check its
|
||||
// intersection with all Lᵢs and Uᵢs. Let l=[l₁,l₂,...] and
|
||||
// u=[u₁,u₂,...] be bitvectors where bit lᵢ (resp. uᵢ)
|
||||
// indicates that Lᵢ (resp. Uᵢ) has been visited in the SCC.
|
||||
state_list::const_iterator it = sl.begin();
|
||||
int num = dra->aut->get_label(*it++);
|
||||
bitvect* l = dra->accsets->at(num * 2).clone();
|
||||
bitvect* u = dra->accsets->at(num * 2 + 1).clone();
|
||||
for (; it != sl.end(); ++it)
|
||||
{
|
||||
num = dra->aut->get_label(*it);
|
||||
*l |= dra->accsets->at(num * 2);
|
||||
*u |= dra->accsets->at(num * 2 + 1);
|
||||
}
|
||||
// If we have l&!u = [0,0,...] that means that the cycle formed
|
||||
// by the entire SCC is not accepting. However that does not
|
||||
// necessarily imply that all cycles in the SCC are also
|
||||
// non-accepting. We may have a smaller cycle that is
|
||||
// accepting, but which becomes non-accepting when extended with
|
||||
// more states.
|
||||
*l -= *u;
|
||||
delete u;
|
||||
if (l->is_fully_clear())
|
||||
{
|
||||
delete l;
|
||||
// Check whether the SCC is accepting. We do that by simply
|
||||
// converting that SCC into a TGBA and running our emptiness
|
||||
// check. This is not a really smart implementation and
|
||||
// could be improved.
|
||||
{
|
||||
state_set keep(sl.begin(), sl.end());
|
||||
const tgba* masked =
|
||||
build_tgba_mask_keep(dra->aut, keep, sl.front());
|
||||
const tgba* nba = nra_to_nba(dra, masked);
|
||||
emptiness_check* ec = couvreur99(nba);
|
||||
emptiness_check_result* ecr = ec->check();
|
||||
delete ecr;
|
||||
delete ec;
|
||||
delete nba;
|
||||
delete masked;
|
||||
if (ecr)
|
||||
{
|
||||
// This SCC is not DBA-realizable.
|
||||
//std::cerr << "not DBA-realizable\n";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
//std::cerr << "non-accepting\n";
|
||||
for (state_list::const_iterator i = sl.begin();
|
||||
i != sl.end(); ++i)
|
||||
nonfinal.push_back(*i);
|
||||
return true;
|
||||
}
|
||||
// The bits sets in *l corresponds to Lᵢs that have been seen
|
||||
// without seeing the matching Uᵢ. In this SCC, any state in Lᵢ
|
||||
// is therefore final. Otherwise we do not know: it is possible
|
||||
// that there is a non-accepting cycle in the SCC that do not
|
||||
// visit Lᵢ.
|
||||
state_set unknown;
|
||||
for (it = sl.begin(); it != sl.end(); ++it)
|
||||
{
|
||||
num = dra->aut->get_label(*it);
|
||||
bitvect* l2 = dra->accsets->at(num * 2).clone();
|
||||
*l2 &= *l;
|
||||
if (!l2->is_fully_clear())
|
||||
{
|
||||
final.push_back(*it);
|
||||
}
|
||||
else
|
||||
{
|
||||
unknown.insert(*it);
|
||||
}
|
||||
delete l2;
|
||||
}
|
||||
delete l;
|
||||
// Check whether it is possible to build non-accepting cycles
|
||||
// using only the "unknown" states.
|
||||
while (!unknown.empty())
|
||||
{
|
||||
//std::cerr << "unknown\n";
|
||||
// Build a sub-automaton for just the unknown states,
|
||||
// starting from any state in the SCC.
|
||||
const tgba* scc_mask =
|
||||
build_tgba_mask_keep(aut, unknown, *unknown.begin());
|
||||
state_list local_final;
|
||||
state_list local_nonfinal;
|
||||
bool dbarealizable =
|
||||
filter_scc(scc_mask, dra, local_final, local_nonfinal);
|
||||
delete scc_mask;
|
||||
if (!dbarealizable)
|
||||
return false;
|
||||
for (state_list::const_iterator i = local_final.begin();
|
||||
i != local_final.end(); ++i)
|
||||
unknown.erase(*i);
|
||||
final.splice(final.end(), local_final);
|
||||
for (state_list::const_iterator i = local_nonfinal.begin();
|
||||
i != local_nonfinal.end(); ++i)
|
||||
unknown.erase(*i);
|
||||
nonfinal.splice(nonfinal.end(), local_nonfinal);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
class dra_to_ba_worker: public tgba_reachable_iterator_depth_first
|
||||
{
|
||||
public:
|
||||
dra_to_ba_worker(const dstar_aut* a,
|
||||
const state_set& final,
|
||||
const scc_map& sm,
|
||||
const std::vector<bool>& realizable):
|
||||
tgba_reachable_iterator_depth_first(a->aut),
|
||||
in_(a),
|
||||
out_(new tgba_explicit_number(a->aut->get_dict())),
|
||||
final_(final),
|
||||
num_states_(a->aut->num_states()),
|
||||
sm_(sm),
|
||||
realizable_(realizable)
|
||||
{
|
||||
bdd_dict* bd = a->aut->get_dict();
|
||||
bd->register_all_variables_of(a->aut, out_);
|
||||
|
||||
// Invent a new acceptance set for the degeneralized automaton.
|
||||
int accvar =
|
||||
bd->register_acceptance_variable(ltl::constant::true_instance(),
|
||||
out_);
|
||||
acc_ = bdd_ithvar(accvar);
|
||||
out_->set_acceptance_conditions(acc_);
|
||||
}
|
||||
|
||||
tgba_explicit_number*
|
||||
result()
|
||||
{
|
||||
return out_;
|
||||
}
|
||||
|
||||
void
|
||||
process_link(const state* sin, int,
|
||||
const state* sout, int,
|
||||
const tgba_succ_iterator* si)
|
||||
{
|
||||
int in = in_->aut->get_label(sin);
|
||||
int out = in_->aut->get_label(sout);
|
||||
unsigned in_scc = sm_.scc_of_state(sin);
|
||||
|
||||
typedef state_explicit_number::transition trans;
|
||||
trans* t = out_->create_transition(in, out);
|
||||
bdd cond = t->condition = si->current_condition();
|
||||
|
||||
if (realizable_[in_scc])
|
||||
{
|
||||
if (final_.find(sin) != final_.end())
|
||||
t->acceptance_conditions = acc_;
|
||||
}
|
||||
else if (sm_.scc_of_state(sout) == in_scc)
|
||||
{
|
||||
// Create one clone of the SCC per accepting pair,
|
||||
// removing states from the Ui part of the (Li, Ui) pairs.
|
||||
// (Or the Ei part of Löding's (Ei, Fi) pairs.)
|
||||
bitvect& l = in_->accsets->at(2 * in);
|
||||
bitvect& u = in_->accsets->at(2 * in + 1);
|
||||
for (size_t i = 0; i < in_->accpair_count; ++i)
|
||||
{
|
||||
int shift = num_states_ * (i + 1);
|
||||
// In the Ui set. (Löding's Ei set.)
|
||||
if (!u.get(i))
|
||||
{
|
||||
// Transition t1 is a non-deterministic jump
|
||||
// from the original automaton to the i-th clone.
|
||||
//
|
||||
// Transition t2 constructs the clone.
|
||||
//
|
||||
// Löding creates transition t1 regardless of the
|
||||
// acceptance set. We restrict it to the non-Li
|
||||
// states. Both his definition and this
|
||||
// implementation create more transitions than needed:
|
||||
// we do not need more than one transition per
|
||||
// accepting cycle.
|
||||
trans* t1 = out_->create_transition(in, out + shift);
|
||||
t1->condition = cond;
|
||||
|
||||
trans* t2 = out_->create_transition(in + shift,
|
||||
out + shift);
|
||||
t2->condition = cond;
|
||||
// In the Li set. (Löding's Fi set.)
|
||||
if (l.get(i))
|
||||
t2->acceptance_conditions = acc_;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
const dstar_aut* in_;
|
||||
tgba_explicit_number* out_;
|
||||
const state_set& final_;
|
||||
size_t num_states_;
|
||||
bdd acc_;
|
||||
const scc_map& sm_;
|
||||
const std::vector<bool>& realizable_;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
tgba* dra_to_ba(const dstar_aut* dra, bool* dba)
|
||||
{
|
||||
assert(dra->type == Rabin);
|
||||
|
||||
state_list final;
|
||||
state_list nonfinal;
|
||||
|
||||
// Iterate over all non-trivial SCCs.
|
||||
scc_map sm(dra->aut);
|
||||
sm.build_map();
|
||||
unsigned scc_max = sm.scc_count();
|
||||
|
||||
bool dba_realizable = true;
|
||||
std::vector<bool> realizable(scc_max);
|
||||
|
||||
for (unsigned scc = 0; scc < scc_max; ++scc)
|
||||
{
|
||||
if (sm.trivial(scc))
|
||||
{
|
||||
realizable[scc] = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Get the list of states of that SCC
|
||||
const std::list<const state*>& sl = sm.states_of(scc);
|
||||
assert(!sl.empty());
|
||||
bool scc_realizable = filter_states(dra->aut, dra, sl, final, nonfinal);
|
||||
dba_realizable &= scc_realizable;
|
||||
realizable[scc] = scc_realizable;
|
||||
//std::cerr << "realizable[" << scc << "] = " << scc_realizable << "\n";
|
||||
}
|
||||
|
||||
if (dba)
|
||||
*dba = dba_realizable;
|
||||
|
||||
// for (state_list::const_iterator i = final.begin();
|
||||
// i != final.end(); ++i)
|
||||
// std::cerr << dra->aut->get_label(*i) << " is final\n";
|
||||
// for (state_list::const_iterator i = nonfinal.begin();
|
||||
// i != nonfinal.end(); ++i)
|
||||
// std::cerr << dra->aut->get_label(*i) << " is non-final\n";
|
||||
|
||||
state_set fs(final.begin(), final.end());
|
||||
dra_to_ba_worker w(dra, fs, sm, realizable);
|
||||
w.run();
|
||||
tgba_explicit_number* res1 = w.result();
|
||||
tgba* res2 = scc_filter_states(res1);
|
||||
delete res1;
|
||||
return res2;
|
||||
}
|
||||
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue