new conversion for Streett->GBA

* src/twaalgos/totgba.hh, src/twaalgos/totgba.cc: Implement
the new function.
* NEWS: Mention this new function.
* src/bin/man/spot-x.x: Document SPOT_STREETT_CONV_MIN.
* src/tests/ltl2dstar4.test: Add tests.
* src/tests/Makefile.am: Add it.
* src/bin/autfilt.cc: Do do call remove_fin explicitely
when --tgba is used, let the postprocessor do it.
* src/twa/acc.hh: Add shift operators for acceptance marks.
* src/twaalgos/remfin.cc: Use the new algorithm.
* src/twaalgos/sccinfo.cc, src/twaalgos/sccinfo.hh: Add
a new method to supply the acceptance sets visited by an SCC.
This commit is contained in:
Alexandre Duret-Lutz 2015-07-10 19:02:21 +02:00
parent c0ffe5cdff
commit d8a1dafad1
11 changed files with 419 additions and 11 deletions

View file

@ -20,12 +20,48 @@
#include "totgba.hh"
#include "remfin.hh"
#include "cleanacc.hh"
#include "sccinfo.hh"
#include "twa/twagraph.hh"
#include <deque>
#include <tuple>
namespace spot
{
namespace
{
struct st2gba_state
{
acc_cond::mark_t pend;
unsigned s;
st2gba_state(unsigned st, acc_cond::mark_t bv = -1U):
pend(bv), s(st)
{
}
};
struct st2gba_state_hash
{
size_t
operator()(const st2gba_state& s) const
{
std::hash<acc_cond::mark_t> h;
return s.s ^ h(s.pend);
}
};
struct st2gba_state_equal
{
bool
operator()(const st2gba_state& left,
const st2gba_state& right) const
{
if (left.s != right.s)
return false;
return left.pend == right.pend;
}
};
typedef std::vector<acc_cond::mark_t> terms_t;
terms_t cnf_terms(const acc_cond::acc_code& code)
@ -55,12 +91,224 @@ namespace spot
}
// Specialized conversion for Streett -> TGBA
// ============================================
//
// Christof Löding's Diploma Thesis: Methods for the
// Transformation of ω-Automata: Complexity and Connection to
// Second Order Logic. Section 3.4.3, gives a transition
// from Streett with |Q| states to BA with |Q|*(4^n-3^n+2)
// states, if n is the number of acceptance pairs.
//
// Duret-Lutz et al. (ATVA'2009): On-the-fly Emptiness Check of
// Transition-based Streett Automata. Section 3.3 contains a
// conversion from transition-based Streett Automata to TGBA using
// the generalized Büchi acceptance to limit the explosion. It goes
// from Streett with |Q| states to (T)GBA with |Q|*(2^n+1) states.
// However the definition of the number of acceptance sets in that
// paper is suboptimal: only n are needed, not 2^n.
//
// This implements this second version.
twa_graph_ptr
streett_to_generalized_buchi(const const_twa_graph_ptr& in)
{
// While "t" is Streett, it is also generalized Büchi, so
// do not do anything.
if (in->acc().is_generalized_buchi())
return std::const_pointer_cast<twa_graph>(in);
int p = in->acc().is_streett();
if (p <= 0)
throw std::runtime_error("streett_to_generalized_buchi() should only be"
" called on automata with Streett acceptance");
// In Streett acceptance, inf sets are odd, while fin sets are
// even.
acc_cond::mark_t inf;
acc_cond::mark_t fin;
std::tie(inf, fin) = in->get_acceptance().used_inf_fin_sets();
assert((inf >> 1) == fin);
scc_info si(in);
// Compute the acceptance sets present in each SCC
unsigned nscc = si.scc_count();
std::vector<std::tuple<acc_cond::mark_t, acc_cond::mark_t, bool>> sccfi;
sccfi.reserve(nscc);
for (unsigned s = 0; s < nscc; ++s)
{
auto acc = si.acc_sets_of(s); // {0,1,2,3,4,6,7,9}
auto acc_fin = acc & fin; // {0, 2, 4,6}
auto acc_inf = acc & inf; // { 1, 3, 7,9}
auto fin_wo_inf = acc_fin - (acc_inf >> 1); // {4}
auto inf_wo_fin = acc_inf - (acc_fin << 1); // {9}
sccfi.emplace_back(fin_wo_inf, inf_wo_fin, acc_fin == 0U);
}
auto out = make_twa_graph(in->get_dict());
out->copy_ap_of(in);
out->prop_copy(in, {false, false, false, true});
out->set_generalized_buchi(p);
acc_cond::mark_t outall = out->acc().all_sets();
// Map st2gba pairs to the state numbers used in out.
typedef std::unordered_map<st2gba_state, unsigned,
st2gba_state_hash,
st2gba_state_equal> bs2num_map;
bs2num_map bs2num;
// Queue of states to be processed.
typedef std::deque<st2gba_state> queue_t;
queue_t todo;
st2gba_state s(in->get_init_state_number());
bs2num[s] = out->new_state();
todo.push_back(s);
bool sbacc = in->has_state_based_acc();
while (!todo.empty())
{
s = todo.front();
todo.pop_front();
unsigned src = bs2num[s];
unsigned scc_src = si.scc_of(s.s);
bool maybe_acc_scc = !si.is_rejecting_scc(scc_src);
acc_cond::mark_t scc_fin_wo_inf;
acc_cond::mark_t scc_inf_wo_fin;
bool no_fin;
std::tie(scc_fin_wo_inf, scc_inf_wo_fin, no_fin) = sccfi[scc_src];
for (auto& t: in->out(s.s))
{
acc_cond::mark_t pend = s.pend;
acc_cond::mark_t acc = 0U;
bool maybe_acc = maybe_acc_scc && (scc_src == si.scc_of(t.dst));
if (pend != -1U)
{
if (!maybe_acc)
continue;
// No point going to some place we will never leave
if (t.acc & scc_fin_wo_inf)
continue;
// For any Fin set we see, we want to see the
// corresponding Inf set.
pend |= (t.acc & fin) << 1;
pend -= t.acc & inf;
// Label this transition with all non-pending
// inf sets. The strip will shift everything
// to the correct numbers in the targets.
acc = (inf - pend).strip(fin) & outall;
// Adjust the pending sets to what will be necessary
// required on the destination state.
if (sbacc)
{
auto a = in->state_acc_sets(t.dst);
if (a & scc_fin_wo_inf)
continue;
pend |= (a & fin) << 1;
pend -= a & inf;
}
pend |= scc_inf_wo_fin;
}
else if (no_fin && maybe_acc)
{
assert(maybe_acc);
acc = outall;
}
st2gba_state d(t.dst, pend);
// Have we already seen this destination?
unsigned dest;
auto dres = bs2num.emplace(d, 0);
if (!dres.second)
{
dest = dres.first->second;
}
else // No, this is a new state
{
dest = dres.first->second = out->new_state();
todo.push_back(d);
}
out->new_edge(src, dest, t.cond, acc);
// Nondeterministically jump to level ∅. We need to do
// that only once per cycle. As an approximation, we
// only to that for transition where t.src >= t.dst as
// this has to occur at least once per cycle.
if (pend == -1U && (t.src >= t.dst) && maybe_acc && !no_fin)
{
acc_cond::mark_t pend = 0U;
if (sbacc)
{
auto a = in->state_acc_sets(t.dst);
if (a & scc_fin_wo_inf)
continue;
pend = (a & fin) << 1;
pend -= a & inf;
}
st2gba_state d(t.dst, pend | scc_inf_wo_fin);
// Have we already seen this destination?
unsigned dest;
auto dres = bs2num.emplace(d, 0);
if (!dres.second)
{
dest = dres.first->second;
}
else // No, this is a new state
{
dest = dres.first->second = out->new_state();
todo.push_back(d);
}
out->new_edge(src, dest, t.cond);
}
}
}
// for (auto s: bs2num)
// {
// std::cerr << s.second << " ("
// << s.first.s << ", ";
// if (s.first.pend == -1U)
// std::cerr << "-)\n";
// else
// std::cerr << s.first.pend << ")\n";
// }
return out;
}
twa_graph_ptr
streett_to_generalized_buchi_maybe(const const_twa_graph_ptr& in)
{
static int min = [&]() {
const char* c = getenv("SPOT_STREETT_CONV_MIN");
if (!c)
return 3;
errno = 0;
int val = strtol(c, nullptr, 10);
if (val < 0 || errno != 0)
throw std::runtime_error("unexpected value for SPOT_STREETT_CONV_MIN");
return val;
}();
if (min == 0 || min > in->acc().is_streett())
return nullptr;
else
return streett_to_generalized_buchi(in);
}
/// \brief Take an automaton with any acceptance condition and return
/// an equivalent Generalized Büchi automaton.
twa_graph_ptr
to_generalized_buchi(const const_twa_graph_ptr& aut)
{
auto maybe = streett_to_generalized_buchi_maybe(aut);
if (maybe)
return maybe;
auto res = remove_fin(cleanup_acceptance(aut));
if (res->acc().is_generalized_buchi())
return res;