event./univ. and syntactic implications rewriting in ltl_simplifier.
* src/ltlvisit/reduce.cc (reduce_visitor): Move ... * src/ltlvisit/simplify.cc (simplify_visitor): ... here, and adjust to use the new ltl_simplifier_options. * src/ltlvisit/reduce.cc (reduce): Use ltl_simplifier to perform the work of reduce_visitor. Eventually we want to get rid of reduce.cc. * src/ltlvisit/reduce.hh (reduce): Remove the syntactic_implication_cache used as third argument.
This commit is contained in:
parent
503bdb5bbf
commit
dd1cd89a73
3 changed files with 423 additions and 415 deletions
|
|
@ -23,7 +23,6 @@
|
|||
|
||||
#include "reduce.hh"
|
||||
#include "basicreduce.hh"
|
||||
#include "syntimpl.hh"
|
||||
#include "ltlast/allnodes.hh"
|
||||
#include <cassert>
|
||||
|
||||
|
|
@ -31,403 +30,27 @@
|
|||
#include "simpfg.hh"
|
||||
#include "nenoform.hh"
|
||||
#include "contain.hh"
|
||||
#include "simplify.hh"
|
||||
|
||||
namespace spot
|
||||
{
|
||||
namespace ltl
|
||||
{
|
||||
namespace
|
||||
{
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class reduce_visitor: public visitor
|
||||
{
|
||||
public:
|
||||
|
||||
reduce_visitor(int opt, syntactic_implication_cache* c)
|
||||
: opt_(opt), c_(c)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~reduce_visitor()
|
||||
{
|
||||
}
|
||||
|
||||
formula*
|
||||
result() const
|
||||
{
|
||||
return result_;
|
||||
}
|
||||
|
||||
void
|
||||
visit(atomic_prop* ap)
|
||||
{
|
||||
formula* f = ap->clone();
|
||||
result_ = f;
|
||||
}
|
||||
|
||||
void
|
||||
visit(constant* c)
|
||||
{
|
||||
result_ = c;
|
||||
}
|
||||
|
||||
void
|
||||
visit(bunop* bo)
|
||||
{
|
||||
result_ = bunop::instance(bo->op(), recurse(bo->child()),
|
||||
bo->min(), bo->max());
|
||||
}
|
||||
|
||||
void
|
||||
visit(unop* uo)
|
||||
{
|
||||
result_ = recurse(uo->child());
|
||||
|
||||
switch (uo->op())
|
||||
{
|
||||
case unop::F:
|
||||
/* If f is a pure eventuality formula then F(f)=f. */
|
||||
if (!(opt_ & Reduce_Eventuality_And_Universality)
|
||||
|| !result_->is_eventual())
|
||||
result_ = unop::instance(unop::F, result_);
|
||||
return;
|
||||
|
||||
case unop::G:
|
||||
/* If f is a pure universality formula then G(f)=f. */
|
||||
if (!(opt_ & Reduce_Eventuality_And_Universality)
|
||||
|| !result_->is_universal())
|
||||
result_ = unop::instance(unop::G, result_);
|
||||
return;
|
||||
|
||||
case unop::Not:
|
||||
case unop::X:
|
||||
case unop::Finish:
|
||||
case unop::Closure:
|
||||
case unop::NegClosure:
|
||||
result_ = unop::instance(uo->op(), result_);
|
||||
return;
|
||||
}
|
||||
/* Unreachable code. */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(binop* bo)
|
||||
{
|
||||
binop::type op = bo->op();
|
||||
|
||||
formula* f2 = recurse(bo->second());
|
||||
|
||||
if (opt_ & Reduce_Eventuality_And_Universality)
|
||||
{
|
||||
/* If b is a pure eventuality formula then a U b = b.
|
||||
If b is a pure universality formula a R b = b. */
|
||||
if ((f2->is_eventual() && (op == binop::U))
|
||||
|| (f2->is_universal() && (op == binop::R)))
|
||||
{
|
||||
result_ = f2;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
formula* f1 = recurse(bo->first());
|
||||
if (opt_ & Reduce_Eventuality_And_Universality)
|
||||
{
|
||||
/* If a is a pure eventuality formula then a M b = a & b.
|
||||
If a is a pure universality formula a W b = a|b. */
|
||||
if (f1->is_eventual() && (op == binop::M))
|
||||
{
|
||||
result_ = multop::instance(multop::And, f1, f2);
|
||||
return;
|
||||
}
|
||||
if (f1->is_universal() && (op == binop::W))
|
||||
{
|
||||
result_ = multop::instance(multop::Or, f1, f2);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* case of implies */
|
||||
if (opt_ & Reduce_Syntactic_Implications)
|
||||
{
|
||||
switch (op)
|
||||
{
|
||||
case binop::Xor:
|
||||
case binop::Equiv:
|
||||
case binop::Implies:
|
||||
assert(!"operator not supported for syntactic implication");
|
||||
return;
|
||||
case binop::UConcat:
|
||||
case binop::EConcat:
|
||||
case binop::EConcatMarked:
|
||||
break;
|
||||
|
||||
case binop::U:
|
||||
/* a < b => a U b = b */
|
||||
if (c_->syntactic_implication(f1, f2))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* !b < a => a U b = Fb */
|
||||
if (c_->syntactic_implication_neg(f2, f1, false))
|
||||
{
|
||||
result_ = unop::instance(unop::F, f2);
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* a < b => a U (b U c) = (b U c) */
|
||||
/* a < b => a U (b W c) = (b W c) */
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if ((bo->op() == binop::U || bo->op() == binop::W)
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case binop::R:
|
||||
/* b < a => a R b = b */
|
||||
if (c_->syntactic_implication(f2, f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* b < !a => a R b = Gb */
|
||||
if (c_->syntactic_implication_neg(f2, f1, true))
|
||||
{
|
||||
result_ = unop::instance(unop::G, f2);
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
/* b < a => a R (b R c) = b R c */
|
||||
/* b < a => a R (b M c) = b M c */
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if ((bo->op() == binop::R || bo->op() == binop::M)
|
||||
&& c_->syntactic_implication(bo->first(), f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
|
||||
/* a < b => a R (b R c) = a R c */
|
||||
if (bo->op() == binop::R
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = binop::instance(binop::R, f1,
|
||||
bo->second()->clone());
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case binop::W:
|
||||
/* a < b => a W b = b */
|
||||
if (c_->syntactic_implication(f1, f2))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* !b < a => a W b = 1 */
|
||||
if (c_->syntactic_implication_neg(f2, f1, false))
|
||||
{
|
||||
result_ = constant::true_instance();
|
||||
f1->destroy();
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
/* a < b => a W (b W c) = (b W c) */
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if (bo->op() == binop::W
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case binop::M:
|
||||
/* b < a => a M b = b */
|
||||
if (c_->syntactic_implication(f2, f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* b < !a => a M b = 0 */
|
||||
if (c_->syntactic_implication_neg(f2, f1, true))
|
||||
{
|
||||
result_ = constant::false_instance();
|
||||
f1->destroy();
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
/* b < a => a M (b M c) = b M c */
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if (bo->op() == binop::M
|
||||
&& c_->syntactic_implication(bo->first(), f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
|
||||
/* a < b => a M (b M c) = a M c */
|
||||
/* a < b => a M (b R c) = a M c */
|
||||
if ((bo->op() == binop::M || bo->op() == binop::R)
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = binop::instance(binop::M, f1,
|
||||
bo->second()->clone());
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
result_ = binop::instance(op, f1, f2);
|
||||
}
|
||||
|
||||
void
|
||||
visit(automatop*)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(multop* mo)
|
||||
{
|
||||
unsigned mos = mo->size();
|
||||
multop::vec* res = new multop::vec;
|
||||
|
||||
for (unsigned i = 0; i < mos; ++i)
|
||||
res->push_back(recurse(mo->nth(i)));
|
||||
|
||||
if ((opt_ & Reduce_Syntactic_Implications)
|
||||
&& (mo->op() != multop::Concat)
|
||||
&& (mo->op() != multop::Fusion))
|
||||
{
|
||||
|
||||
bool removed = true;
|
||||
multop::vec::iterator f1;
|
||||
multop::vec::iterator f2;
|
||||
|
||||
while (removed)
|
||||
{
|
||||
removed = false;
|
||||
f2 = f1 = res->begin();
|
||||
++f1;
|
||||
while (f1 != res->end())
|
||||
{
|
||||
assert(f1 != f2);
|
||||
// a < b => a + b = b
|
||||
// a < b => a & b = a
|
||||
if ((c_->syntactic_implication(*f1, *f2) && // f1 < f2
|
||||
(mo->op() == multop::Or)) ||
|
||||
((c_->syntactic_implication(*f2, *f1)) && // f2 < f1
|
||||
(mo->op() == multop::And)))
|
||||
{
|
||||
// We keep f2
|
||||
(*f1)->destroy();
|
||||
res->erase(f1);
|
||||
removed = true;
|
||||
break;
|
||||
}
|
||||
else if ((c_->syntactic_implication(*f2, *f1) // f2 < f1
|
||||
&& (mo->op() == multop::Or)) ||
|
||||
((c_->syntactic_implication(*f1, *f2)) // f1 < f2
|
||||
&& (mo->op() == multop::And)))
|
||||
{
|
||||
// We keep f1
|
||||
(*f2)->destroy();
|
||||
res->erase(f2);
|
||||
removed = true;
|
||||
break;
|
||||
}
|
||||
else
|
||||
++f1;
|
||||
}
|
||||
}
|
||||
|
||||
// We cannot run syntactic_implication_neg on SERE
|
||||
// formulae, unless they are just Boolean formulae.
|
||||
if (mo->is_boolean() || !mo->is_sere_formula())
|
||||
{
|
||||
bool is_and = mo->op() != multop::Or;
|
||||
/* f1 < !f2 => f1 & f2 = false
|
||||
!f1 < f2 => f1 | f2 = true */
|
||||
for (f1 = res->begin(); f1 != res->end(); f1++)
|
||||
for (f2 = res->begin(); f2 != res->end(); f2++)
|
||||
if (f1 != f2 &&
|
||||
c_->syntactic_implication_neg(*f1, *f2, is_and))
|
||||
{
|
||||
for (multop::vec::iterator j = res->begin();
|
||||
j != res->end(); j++)
|
||||
(*j)->destroy();
|
||||
res->clear();
|
||||
delete res;
|
||||
if (is_and)
|
||||
result_ = constant::false_instance();
|
||||
else
|
||||
result_ = constant::true_instance();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (!res->empty())
|
||||
{
|
||||
result_ = multop::instance(mo->op(), res);
|
||||
return;
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
formula*
|
||||
recurse(formula* f)
|
||||
{
|
||||
return reduce(f, opt_, c_);
|
||||
}
|
||||
|
||||
protected:
|
||||
formula* result_;
|
||||
int opt_;
|
||||
syntactic_implication_cache* c_;
|
||||
};
|
||||
|
||||
} // anonymous
|
||||
|
||||
formula*
|
||||
reduce(const formula* f, int opt, syntactic_implication_cache* c)
|
||||
reduce(const formula* f, int opt)
|
||||
{
|
||||
formula* f1;
|
||||
formula* f2;
|
||||
formula* prev = 0;
|
||||
|
||||
syntactic_implication_cache* sic =
|
||||
c ? c : new syntactic_implication_cache;
|
||||
ltl_simplifier_options o;
|
||||
o.reduce_basics = opt & Reduce_Basics;
|
||||
o.synt_impl = opt & Reduce_Syntactic_Implications;
|
||||
o.event_univ = opt & Reduce_Eventuality_And_Universality;
|
||||
o.containment_checks = opt & Reduce_Containment_Checks;
|
||||
o.containment_checks_stronger = opt & Reduce_Containment_Checks_Stronger;
|
||||
ltl_simplifier simplifier(o);
|
||||
|
||||
int n = 0;
|
||||
|
||||
|
|
@ -458,16 +81,9 @@ namespace spot
|
|||
f2 = f1;
|
||||
}
|
||||
|
||||
if (opt & (Reduce_Syntactic_Implications
|
||||
| Reduce_Eventuality_And_Universality))
|
||||
{
|
||||
reduce_visitor v(opt, sic);
|
||||
f2->accept(v);
|
||||
f1 = v.result();
|
||||
f1 = simplifier.simplify(f2);
|
||||
f2->destroy();
|
||||
f2 = f1;
|
||||
}
|
||||
|
||||
|
||||
if (opt & (Reduce_Containment_Checks
|
||||
| Reduce_Containment_Checks_Stronger))
|
||||
|
|
@ -482,9 +98,6 @@ namespace spot
|
|||
}
|
||||
prev->destroy();
|
||||
|
||||
if (c == 0)
|
||||
delete sic;
|
||||
|
||||
return const_cast<formula*>(f);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
// Copyright (C) 2004, 2006, 2010 Laboratoire d'Informatique de Paris 6 (LIP6),
|
||||
// Copyright (C) 2004, 2006, 2010, 2011 Laboratoire d'Informatique de Paris 6 (LIP6),
|
||||
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
||||
// et Marie Curie.
|
||||
//
|
||||
|
|
@ -52,16 +52,13 @@ namespace spot
|
|||
Reduce_All = -1U
|
||||
};
|
||||
|
||||
class syntactic_implication_cache;
|
||||
|
||||
/// \brief Reduce a formula \a f.
|
||||
///
|
||||
/// \param f the formula to reduce
|
||||
/// \param opt a conjonction of spot::ltl::reduce_options specifying
|
||||
/// which optimizations to apply.
|
||||
/// \return the reduced formula
|
||||
formula* reduce(const formula* f, int opt = Reduce_All,
|
||||
syntactic_implication_cache* c = 0);
|
||||
formula* reduce(const formula* f, int opt = Reduce_All);
|
||||
/// @}
|
||||
|
||||
/// \brief Check whether a formula is a pure eventuality.
|
||||
|
|
|
|||
|
|
@ -24,6 +24,7 @@
|
|||
#include "tgba/bdddict.hh"
|
||||
#include "ltlast/allnodes.hh"
|
||||
#include "ltlast/visitor.hh"
|
||||
#include "ltlvisit/syntimpl.hh"
|
||||
#include <cassert>
|
||||
|
||||
namespace spot
|
||||
|
|
@ -40,6 +41,7 @@ namespace spot
|
|||
ptr_hash<formula> > f2b_map;
|
||||
public:
|
||||
ltl_simplifier_options options;
|
||||
syntactic_implication_cache syntimpl;
|
||||
|
||||
~ltl_simplifier_cache()
|
||||
{
|
||||
|
|
@ -191,6 +193,21 @@ namespace spot
|
|||
nenoform_[orig->clone()] = nenoform->clone();
|
||||
}
|
||||
|
||||
// Return true if f1 < f2 (i.e. f1 implies f2 syntactically)
|
||||
bool
|
||||
syntactic_implication(const formula* f1, const formula* f2)
|
||||
{
|
||||
return syntimpl.syntactic_implication(f1, f2);
|
||||
}
|
||||
|
||||
// If right==false, true if !f1 < f2, false otherwise.
|
||||
// If right==true, true if f1 < !f2, false otherwise.
|
||||
bool syntactic_implication_neg(const formula* f1, const formula* f2,
|
||||
bool right)
|
||||
{
|
||||
return syntimpl.syntactic_implication_neg(f1, f2, right);
|
||||
}
|
||||
|
||||
const formula*
|
||||
lookup_simplified(const formula* f)
|
||||
{
|
||||
|
|
@ -507,8 +524,384 @@ namespace spot
|
|||
return result;
|
||||
}
|
||||
|
||||
// Forward declaration.
|
||||
const formula*
|
||||
simplify_recursively(const formula* f, ltl_simplifier_cache* c);
|
||||
|
||||
class simplify_visitor: public visitor
|
||||
{
|
||||
public:
|
||||
|
||||
simplify_visitor(ltl_simplifier_cache* cache)
|
||||
: c_(cache), opt_(cache->options)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~simplify_visitor()
|
||||
{
|
||||
}
|
||||
|
||||
formula*
|
||||
result() const
|
||||
{
|
||||
return result_;
|
||||
}
|
||||
|
||||
void
|
||||
visit(atomic_prop* ap)
|
||||
{
|
||||
formula* f = ap->clone();
|
||||
result_ = f;
|
||||
}
|
||||
|
||||
void
|
||||
visit(constant* c)
|
||||
{
|
||||
result_ = c;
|
||||
}
|
||||
|
||||
void
|
||||
visit(bunop* bo)
|
||||
{
|
||||
result_ = bunop::instance(bo->op(), recurse(bo->child()),
|
||||
bo->min(), bo->max());
|
||||
}
|
||||
|
||||
void
|
||||
visit(unop* uo)
|
||||
{
|
||||
result_ = recurse(uo->child());
|
||||
|
||||
switch (uo->op())
|
||||
{
|
||||
case unop::F:
|
||||
/* If f is a pure eventuality formula then F(f)=f. */
|
||||
if (!opt_.event_univ || !result_->is_eventual())
|
||||
result_ = unop::instance(unop::F, result_);
|
||||
return;
|
||||
|
||||
case unop::G:
|
||||
/* If f is a pure universality formula then G(f)=f. */
|
||||
if (!opt_.event_univ || !result_->is_universal())
|
||||
result_ = unop::instance(unop::G, result_);
|
||||
return;
|
||||
|
||||
case unop::Not:
|
||||
case unop::X:
|
||||
case unop::Finish:
|
||||
case unop::Closure:
|
||||
case unop::NegClosure:
|
||||
result_ = unop::instance(uo->op(), result_);
|
||||
return;
|
||||
}
|
||||
/* Unreachable code. */
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(binop* bo)
|
||||
{
|
||||
binop::type op = bo->op();
|
||||
|
||||
formula* f2 = recurse(bo->second());
|
||||
|
||||
if (opt_.event_univ)
|
||||
{
|
||||
/* If b is a pure eventuality formula then a U b = b.
|
||||
If b is a pure universality formula a R b = b. */
|
||||
if ((f2->is_eventual() && (op == binop::U))
|
||||
|| (f2->is_universal() && (op == binop::R)))
|
||||
{
|
||||
result_ = f2;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
formula* f1 = recurse(bo->first());
|
||||
if (opt_.event_univ)
|
||||
{
|
||||
/* If a is a pure eventuality formula then a M b = a & b.
|
||||
If a is a pure universality formula a W b = a|b. */
|
||||
if (f1->is_eventual() && (op == binop::M))
|
||||
{
|
||||
result_ = multop::instance(multop::And, f1, f2);
|
||||
return;
|
||||
}
|
||||
if (f1->is_universal() && (op == binop::W))
|
||||
{
|
||||
result_ = multop::instance(multop::Or, f1, f2);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* case of implies */
|
||||
if (opt_.synt_impl)
|
||||
{
|
||||
switch (op)
|
||||
{
|
||||
case binop::Xor:
|
||||
case binop::Equiv:
|
||||
case binop::Implies:
|
||||
assert(!"operator not supported for syntactic implication");
|
||||
return;
|
||||
case binop::UConcat:
|
||||
case binop::EConcat:
|
||||
case binop::EConcatMarked:
|
||||
break;
|
||||
|
||||
case binop::U:
|
||||
/* a < b => a U b = b */
|
||||
if (c_->syntactic_implication(f1, f2))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* !b < a => a U b = Fb */
|
||||
if (c_->syntactic_implication_neg(f2, f1, false))
|
||||
{
|
||||
result_ = unop::instance(unop::F, f2);
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* a < b => a U (b U c) = (b U c) */
|
||||
/* a < b => a U (b W c) = (b W c) */
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if ((bo->op() == binop::U || bo->op() == binop::W)
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case binop::R:
|
||||
/* b < a => a R b = b */
|
||||
if (c_->syntactic_implication(f2, f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* b < !a => a R b = Gb */
|
||||
if (c_->syntactic_implication_neg(f2, f1, true))
|
||||
{
|
||||
result_ = unop::instance(unop::G, f2);
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
/* b < a => a R (b R c) = b R c */
|
||||
/* b < a => a R (b M c) = b M c */
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if ((bo->op() == binop::R || bo->op() == binop::M)
|
||||
&& c_->syntactic_implication(bo->first(), f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
|
||||
/* a < b => a R (b R c) = a R c */
|
||||
if (bo->op() == binop::R
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = binop::instance(binop::R, f1,
|
||||
bo->second()->clone());
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case binop::W:
|
||||
/* a < b => a W b = b */
|
||||
if (c_->syntactic_implication(f1, f2))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* !b < a => a W b = 1 */
|
||||
if (c_->syntactic_implication_neg(f2, f1, false))
|
||||
{
|
||||
result_ = constant::true_instance();
|
||||
f1->destroy();
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
/* a < b => a W (b W c) = (b W c) */
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if (bo->op() == binop::W
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case binop::M:
|
||||
/* b < a => a M b = b */
|
||||
if (c_->syntactic_implication(f2, f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
/* b < !a => a M b = 0 */
|
||||
if (c_->syntactic_implication_neg(f2, f1, true))
|
||||
{
|
||||
result_ = constant::false_instance();
|
||||
f1->destroy();
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
if (f2->kind() == formula::BinOp)
|
||||
{
|
||||
/* b < a => a M (b M c) = b M c */
|
||||
binop* bo = static_cast<binop*>(f2);
|
||||
if (bo->op() == binop::M
|
||||
&& c_->syntactic_implication(bo->first(), f1))
|
||||
{
|
||||
result_ = f2;
|
||||
f1->destroy();
|
||||
return;
|
||||
}
|
||||
|
||||
/* a < b => a M (b M c) = a M c */
|
||||
/* a < b => a M (b R c) = a M c */
|
||||
if ((bo->op() == binop::M || bo->op() == binop::R)
|
||||
&& c_->syntactic_implication(f1, bo->first()))
|
||||
{
|
||||
result_ = binop::instance(binop::M, f1,
|
||||
bo->second()->clone());
|
||||
f2->destroy();
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
result_ = binop::instance(op, f1, f2);
|
||||
}
|
||||
|
||||
void
|
||||
visit(automatop*)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void
|
||||
visit(multop* mo)
|
||||
{
|
||||
unsigned mos = mo->size();
|
||||
multop::vec* res = new multop::vec;
|
||||
|
||||
for (unsigned i = 0; i < mos; ++i)
|
||||
res->push_back(recurse(mo->nth(i)));
|
||||
|
||||
if ((opt_.synt_impl)
|
||||
&& (mo->op() != multop::Concat)
|
||||
&& (mo->op() != multop::Fusion))
|
||||
{
|
||||
|
||||
bool removed = true;
|
||||
multop::vec::iterator f1;
|
||||
multop::vec::iterator f2;
|
||||
|
||||
while (removed)
|
||||
{
|
||||
removed = false;
|
||||
f2 = f1 = res->begin();
|
||||
++f1;
|
||||
while (f1 != res->end())
|
||||
{
|
||||
assert(f1 != f2);
|
||||
// a < b => a + b = b
|
||||
// a < b => a & b = a
|
||||
if ((c_->syntactic_implication(*f1, *f2) && // f1 < f2
|
||||
(mo->op() == multop::Or)) ||
|
||||
((c_->syntactic_implication(*f2, *f1)) && // f2 < f1
|
||||
(mo->op() == multop::And)))
|
||||
{
|
||||
// We keep f2
|
||||
(*f1)->destroy();
|
||||
res->erase(f1);
|
||||
removed = true;
|
||||
break;
|
||||
}
|
||||
else if ((c_->syntactic_implication(*f2, *f1) // f2 < f1
|
||||
&& (mo->op() == multop::Or)) ||
|
||||
((c_->syntactic_implication(*f1, *f2)) // f1 < f2
|
||||
&& (mo->op() == multop::And)))
|
||||
{
|
||||
// We keep f1
|
||||
(*f2)->destroy();
|
||||
res->erase(f2);
|
||||
removed = true;
|
||||
break;
|
||||
}
|
||||
else
|
||||
++f1;
|
||||
}
|
||||
}
|
||||
|
||||
// We cannot run syntactic_implication_neg on SERE
|
||||
// formulae, unless they are just Boolean formulae.
|
||||
if (mo->is_boolean() || !mo->is_sere_formula())
|
||||
{
|
||||
bool is_and = mo->op() != multop::Or;
|
||||
/* f1 < !f2 => f1 & f2 = false
|
||||
!f1 < f2 => f1 | f2 = true */
|
||||
for (f1 = res->begin(); f1 != res->end(); f1++)
|
||||
for (f2 = res->begin(); f2 != res->end(); f2++)
|
||||
if (f1 != f2 &&
|
||||
c_->syntactic_implication_neg(*f1, *f2, is_and))
|
||||
{
|
||||
for (multop::vec::iterator j = res->begin();
|
||||
j != res->end(); j++)
|
||||
(*j)->destroy();
|
||||
res->clear();
|
||||
delete res;
|
||||
if (is_and)
|
||||
result_ = constant::false_instance();
|
||||
else
|
||||
result_ = constant::true_instance();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (!res->empty())
|
||||
{
|
||||
result_ = multop::instance(mo->op(), res);
|
||||
return;
|
||||
}
|
||||
assert(0);
|
||||
}
|
||||
|
||||
formula*
|
||||
recurse(formula* f)
|
||||
{
|
||||
return const_cast<formula*>(simplify_recursively(f, c_));
|
||||
}
|
||||
|
||||
protected:
|
||||
formula* result_;
|
||||
ltl_simplifier_cache* c_;
|
||||
const ltl_simplifier_options& opt_;
|
||||
};
|
||||
|
||||
|
||||
const formula*
|
||||
|
|
@ -519,12 +912,17 @@ namespace spot
|
|||
if (result)
|
||||
return result;
|
||||
|
||||
result = 0;// XXX
|
||||
simplify_visitor v(c);
|
||||
const_cast<formula*>(f)->accept(v);
|
||||
result = v.result();
|
||||
|
||||
c->cache_simplified(f, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ltl_simplifier
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue